• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 14
  • 13
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 103
  • 53
  • 25
  • 18
  • 17
  • 17
  • 16
  • 16
  • 15
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Search for Charged Higgs Bosons with the ATLAS Detector at the LHC

Czodrowski, Patrick 18 July 2013 (has links)
Die Entdeckung eines geladenen Higgs-Bosons, H+, wäre ein unbestreitbarer Nachweis von Physik jenseits des Standardmodells. In der vorliegenden Arbeit wird die Suche nach dem H+ mit Hilfe von Proton-Proton-Kollisionen, welche im Jahr 2011 mit dem ATLAS Experiment am Large Hadron Collider, LHC, des CERN aufgenommen wurden, beschrieben. Im Rahmen dieser Arbeit wurde eine überarbeitete Analyse der Suche nach geladenen Higgs-Bosonen, die eine Verhältnismethode anwendet und damit die Sensitivität des traditionell direkten Suchansatzes stark verbessert, durchgeführt. Leichte geladene Higgs-Bosonen, welche eine Masse geringer als die des Top-Quarks aufweisen, können aus einem Top-Quark-Zerfall hervorgehen. Im Gegensatz zu den schweren geladenen Higgs-Bosonen sind die leichten aufgrund des hohen Produktionswirkungsquerschnitts von Top-Quark-Paaren am LHC potenziell mit den ersten Daten des Experiments beobachtbar. In den meisten Theorien und Szenarien sowie dem größten Bereich ihres Phasenraumes zerfallen leichte geladene Higgs-Bosonen meist im H± → τ±ν Kanal. Demzufolge spielen sowohl die τ-Identifikation als auch die τ-Fehlidentifikation eine besondere Rolle für die Suche nach geladenen Higgs-Bosonen. Eigens für die Ermittlung der Fehlidentifikationswahrscheinlichkeiten von Elektronen als hadronisch zerfallende τ-Leptonen wurde eine “tag-and-probe”-Methode, basierend auf Z → ee Ereignissen, entwickelt. Diese Messungen sind mit den allerersten Daten durchgeführt worden. Dabei haben diese einerseits für alle Analysen, welche die Elektronenveto-Algorithmen der τ-Identifikation nutzen, essenzielle Skalenfaktoren hervorgebracht. Andererseits wurde, beruhend auf diesen Ergebnissen, eine datenbasierte Abschätzungsmethode entwickelt und für die Untergründe der geladenen Higgs-Boson-Suche, die von der Fehlidentifikation von Elektronen als hadronisch zerfallende τ-Leptonen stammen, erfolgreich implementiert. Im Rahmen dieser Arbeit wurden Triggerstudien, mit dem Ziel höchstmögliche Signaleffizienzen zu gewährleisten, durchgeführt. Neuartige Triggerobjekte, basierend auf einer Kombination aus τ-Trigger und fehlender transversaler Energie-Trigger, wurden entworfen, überprüft und in das Triggermenü für die Datennahme im Jahr 2012 aufgenommen. Eine direkte Suche nach dem geladenen Higgs-Boson wurde in drei Kanälen mit einem τ-Lepton im Endzustand unter Berücksichtigung des gesamten Datensatzes des Jahres 2011 durchgeführt. Da kein signifikanter Überschuss, der von den Vorhersagen des Standardmodells abweicht, in den Daten beobachtet wurde, sind obere Ausschlussgrenzen auf B(t → bH+) gesetzt worden. Letztlich ist die Analyse des Kanals mit einem hadronisch zerfallenden τ-Lepton und einem Myon oder Elektron im Endzustand des tt ̄-Zerfalls, unter Anwendung der sogenannten Verhältnismethode, wiederholt worden. Diese Methode misst Verhältnisse von Ereignisausbeuten, anstatt die Verteilungen diskriminierender Variablen zu evaluieren. Folglich kürzen sich die meisten dominant beitragenden systematischen Unsicherheiten intrinsisch heraus. Die Daten stimmen mit den Vorhersagen des Standardmodells überein. Durch Zuhilfenahme der Verhältnismethode wurden die oberen Ausschlussgrenzen, im Vergleich zur direkten Suche, signifikant verbessert. Die Resultate der Verhältnismethode sind mit denen der direkten Suche, welche ein hadronisch zerfallendes τ-Lepton und zwei Jets im Endzustand des tt ̄-Zerfalls nutzt, kombiniert worden. Auf diese Art und Weise konnten obere Ausschlussgrenzen auf B(t → bH+) in einem Bereich von 0,8 %–3,4 % für geladene Higgs-Bosonen in einem Massenbereich für m_H+ zwischen 90 GeV und 160 GeV gesetzt werden. Sollte das Minimal Supersymmetrische Standardmodell (MSSM) in der Natur realisiert sein, so haben die hier ermittelten oberen Ausschlussgrenzen auf B(t → bH+) direkte Konsequenzen für die Identität des Higgs-Boson-ähnlichen Teilchens, welches im Jahr 2012 am LHC entdeckt wurde.:Kurzfassung v Abstract vii Contents ix 1 Introduction 1 2 Theoretical Framework 3 2.1 The Standard Model of Particle Physics 3 2.1.1 Particles, Fields and Interactions 3 2.1.2 Gauge Theory in a Nutshell 6 2.1.3 Brout-Englert-Higgs Mechanism 9 2.2 Supersymmetry 11 2.2.1 Sources of Supersymmetry Breaking 20 2.2.2 Two Higgs Doublet Model 21 2.2.3 Charged Higgs Boson Production and Decay 22 2.3 Current Status of charged Higgs Boson Searches 24 3 Monte Carlo Simulation 33 3.1 Methodology of Monte Carlo Simulation 33 3.2 Monte Carlo Simulation for Electron to t Mis-identification Analysis 35 3.3 Monte Carlo Simulation for H± Analysis with Data taken 2010 35 3.4 Monte Carlo Simulation for H± Analyses with Data taken 2011 37 4 LHC and the ATLAS Detector 41 4.1 The Large Hadron Collider 41 4.2 The ATLAS Detector 42 4.2.1 Magnet Systems 46 4.2.2 Inner Detector 47 4.2.3 Calorimeter Systems 50 4.2.4 Muon Spectrometer 60 4.2.5 Forward Detectors 61 4.2.6 Trigger and Data Acquisition 63 4.3 Data Taking 67 5 Event Selection and Data-Driven Background Estimation Techniques 73 5.1 Event Cleaning 74 5.2 Trigger for the Charged Higgs Boson Analyses 74 5.2.1 Trigger for the thad+Lepton and tlep+Jets Channels 75 5.2.2 Trigger for the thad+Jets Channel 77 5.3 Physics Object Reconstruction 77 5.3.1 Muons 77 5.3.2 Electrons 77 5.3.3 Jets 78 5.3.4 b-Tagging 79 5.3.5 Hadronically decaying t Leptons 79 5.3.6 Missing Transverse Momentum 79 5.3.7 Removal of Geometric Overlaps between Objects 80 5.4 Selection and Cut Optimisation 80 5.4.1 thad+Lepton Analysis Selection 80 5.4.2 tlep+Jets Analysis Selection 82 5.4.3 thad+Jets Analysis Selection 83 5.5 Background Estimations 84 5.5.1 Measurement of the t Lepton Mis-identification Probability from Electrons 84 5.5.2 Backgrounds with Electrons and Jets Mis-identified as t Leptons 88 5.5.3 Embedding Method 92 5.5.4 Multi-Jet Background 92 5.5.5 Backgrounds with Mis-identified Leptons 93 6 Direct Searches for the Charged Higgs Boson 95 6.1 Analysis of the thad+Lepton Channel 95 6.2 Analysis of the tlep+Jets Channel 95 6.3 Analysis of the thad+Jets Channel 98 6.4 Systematic Uncertainties 101 6.4.1 Systematic Uncertainties of Detector Simulation 101 6.4.2 Systematic Uncertainties of Generation of tt Events 103 6.4.3 Systematic Uncertainties of Data-Driven Background Estimates 103 6.5 Results 107 7 Indirect Search for the Charged Higgs Boson – The Ratio-Method 111 7.1 Ratio-Method: A Re-Analysis of the thad+Lepton Channel 111 7.2 Event Selection 112 7.3 Measured Event Yield Ratios 115 7.4 Systematic Uncertainties 115 7.4.1 Systematic Uncertainties of Detector Simulation 115 7.4.2 Systematic Uncertainties of Generation of tt Events 115 7.4.3 Systematic Uncertainties of Data-Driven Background Estimates 118 7.5 Results 119 7.5.1 Upper Limits obtained from Results of the Ratio-Method 119 7.5.2 Combination of Upper Limits obtained from Direct Searches for Charged Higgs Bosons in the thad+jets final state and the Ratio-Method Results 124 8 Comparison and Discussion of the Results 131 9 Summary and Outlook 137 A Monte Carlo Simulation Samples 141 A.1 Monte Carlo Simulation Samples for 2010 Analyses 141 A.1.1 Monte Carlo Simulation Samples for the Electron to t Lepton Mis-identification Analysis 141 A.1.2 Monte Carlo Simulation Samples for the H± Analysis 143 A.2 Monte Carlo Simulation Samples for 2011 Analyses 147 A.2.1 Monte Carlo Samples for H± Ratio-Method Search Analysis 147 List of Figures 149 List of Tables 153 Bibliography 155 Acknowledgements 179
102

Hadronic corrections to electroweak observables from twisted mass lattice QCD

Pientka, Grit 16 September 2015 (has links)
Für verschiedene Richtgrößen, die untersucht werden, um Hinweise auf Neue Physik jenseits des Standardmodells der Teilchenphysik zu finden, stellt die Gitter-QCD stellt derzeit den einzigen Ab-initio-Zugang für die Berechnung von nichtperturbativen hadronischen Beiträgen dar. Zu diesen Observablen gehören die anomalen magnetischen Momenten der Leptonen und das Laufen der elektroschwachen Kopplungskonstanten. Wir bestimmen den führenden QCD-Beitrag zum anomalen magnetischen Moment des Myons mit Hilfe einer Gitter-QCD-Rechnung auf Ensemblen, die Nf=2+1+1 dynamische Twisted-Mass-Fermionen berücksichtigen. Durch die Betrachtung aktiver up, down, strange and charm Quarks können erstmalig Gitter-QCD-Daten für die Myonanomalie direkt mit phänomenologischen Resultaten verglichen werden, da letztere bei der derzeitigen Genauigkeit sensitiv auf die ersten beiden Quarkgenerationen sind. Unlängst wurde darauf hingewiesen, dass es auch möglich sein könnte Beiträge Neuer Physik durch verbesserte Messungen der anomalen magnetischen Momente des Elektrons und des Tauons nachzuweisen. Aus diesem Grund berechnen wir auch deren führende QCD-Beiträge, was gleichzeitig eine Überprüfung des Wertes für das Myon liefert. Zusätzlich nutzen wir die gewonnenen Daten, um den führenden hadronischen Beitrag zum Laufen der Feinstrukturkonstante zu berechnen. Darüber hinaus zeigen wir, dass sogar für den schwachen Mischungswinkel der führende QCD-Beitrag mit Hilfe dieser Daten berechnet werden kann. Dadurch identifizieren wir eine neue grundlegende Observable für die Suche nach Neuer Physik, deren hadronische Beiträge mit Hilfe der Gitter-QCD beschafft werden können. Mit den Resultaten dieser Arbeit ist es uns gelungen ungeeignete Herangehensweisen der phänomenologisch notwendigen Flavourseparation auszuschließen und somit direkt die derzeit präziseren phänomenologischen Bestimmungen dieser bedeutsamen physikalischen Größe zu unterstützen. / For several benchmark quantities investigated to detect signs for new physics beyond the standard model of elementary particle physics, lattice QCD currently constitutes the only ab initio approach available at small momentum transfers for the computation of non-perturbative hadronic contributions. Among those observables are the lepton anomalous magnetic moments and the running of the electroweak coupling constants. We compute the leading QCD contribution to the muon anomalous magnetic moment by performing lattice QCD calculations on ensembles incorporating Nf=2+1+1 dynamical twisted mass fermions. Considering active up, down, strange, and charm quarks, admits for the first time a direct comparison of the lattice data for the muon anomaly with phenomenological results because both the latter as well as the experimentally obtained values are sensitive to the complete first two generations of quarks at the current level of precision. Recently, it has been noted that improved measurements of the electron and tau anomalous magnetic moments might also provide ways of detecting new physics contributions. Therefore, we also compute their leading QCD contributions, which simultaneously serve as cross-checks of the value obtained for the muon. Additionally, we utilise the obtained data to compute the leading hadronic contribution to the running of the fine structure constant, which enters all perturbative QED calculations. Furthermore, we show that even for the weak mixing angle the leading QCD contribution can be computed from this data. In this way, we identify a new prime observable in the search for new physics whose hadronic contributions can be obtained from lattice QCD. With the results obtained in this thesis, we are able to exclude unsuitable phenomenologically necessary flavour separations and thus directly assist the presently more precise phenomenological determinations of this eminent quantity.
103

W boson measurement in the muonic decay channel at forward rapidity with ALICE / Mesure de la production du boson W dans le canal muonique à rapidité à l'avant avec ALICE

Zhu, Jianhui 01 April 2017 (has links)
La haute densité d’énergie atteinte au Large Hadron Collider (LHC) au CERN permet une production abondante de sondes dures, telles que quarkonia, jets à haute impulsion transverse (p<sub>T</sub>) et bosons vecteurs (W, Z), qui sont produits lors de la collision partonique initiale. Les bosons vecteur se désintègrent avant la formation du Plasma de Quark et de Gluons (PQG), une phase déconfinée de la matière, qui peut être produite lors de collisions d’ions lourds ultra-relativistes. Les leptons issus de la désintégration des bosons électrofaibles ne sont pas sensibles à l’interaction forte avec le PQG. Pour ces raisons les bosons électrofaibles fournissent une référence pour l’étude des modifications induites par le milieu sur les sondes colorées.La production de bosons W en collisions pp à √s=8 TeV et en collisions p-Pb à √s<sub>NN</sub>=5.02 TeV est mesurée dans le canal de désintégration muonique au LHC avec le détecteur ALICE. En collision pp, la gamme de rapidité couverte par la mesure est -4<y<sub>cms</sub><-2.5. En collision p-Pb, la différence d’énergie entre le proton et l’ ion plomb donne lieu à un décalage en rapidité. En inversant la direction des faisceaux, il est possible de couvrir les régions de rapidité -4.46<y<sub>cms</sub><-2.96 et 2.03<y<sub>cms</sub><3.53. Les résultats présentés dans cette thèse consistent dans la mesure de la section efficace de la production de muons avec pT>10GeV/c issus de la désintégration des bosons W+ et W-. La mesure de l’asymétrie de charge, définie comme la différence des taux de production des muons positifs et négatifs divisée par leur somme, est également effectuée. Les résultats sont comparés avec des calculs théoriques obtenus avec ou sans tenir compte des modifications des fonctions de distribution partonique dans les noyaux. La production du boson W est aussi étudiée en fonction de la centralité des collisions : nous observons que, dans les erreurs expérimentales, la section efficace des muons issus de la désintégration du boson W est proportionnelle aux nombre de collisions binaires entre les nucléons. / The high collision energies available at the LHC allow for an abundant production of hard probes, such as quarkonia, high-p<sub>T</sub> jets and vector bosons (W, Z), which are produced in initial hard parton scattering processes. The latter decay before the formation of the Quark-Gluon Plasma (QGP), which is a deconfined phase of QCD matter produced in high-energy heavy-ion collisions. Their leptonic decay products do not interact strongly with the QGP. Thus electroweak bosons introduce a way for benchmarking in-medium modifications to coloured probes. The production of W-boson in pp collisions at √s=8 TeV and p-Pb collisions at √s<sub>NN</sub>=5.02 TeV are measured via the muonic decay channel at the LHC with the ALICE detector. In pp collisions the rapidity covered by the measurement is -4<y<sub>cms</sub><-2.5. In p-Pb collisions, on the other hand, the different energies of the proton and lead ion give rise to a rapidity shift. By exchanging the direction of the beams, it is possible to cover the rapidity ranges -4.46<y<sub>cms</sub><-2.96 and 2.03<y<sub>cms</sub><3.53. The production cross section and charge asymmetry of muons from W-boson decays with p<sup>μ</sup>T>10 GeV/c are determined. The results are compared to theoretical calculations both with and without including the nPDFs. The W-boson production is also studied as a function of the collision centrality: the cross section of muons from W-boson decays is found to scale with the average number of binary nucleon-nucleon collisions with uncertainties.

Page generated in 0.0593 seconds