• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 76
  • 27
  • 22
  • 12
  • 8
  • 7
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 192
  • 55
  • 31
  • 28
  • 28
  • 20
  • 19
  • 18
  • 17
  • 16
  • 15
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Etude fondamentale des mécanismes physico-chimiques de gravure plasma basés sur les effets stériques et de diffusion. Comportements prévisionnels de la gravure des éléments de la colonne IV et des composés III-V par les halogènes : loi de similitude / Fundamental study of plasma etching physico-chemical mechanisms based on steric effects and diffusion - Forecasted behaviors of the etching of the elements in the group IV and III-V compounds by the halogens : laws of similarity

Phan, Thanh Long 23 October 2013 (has links)
L'objectif de ce travail porte sur la généralisation de la modélisation de la gravure du silicium dans les plasmas de fluor ou de chlore à celle de la gravure des éléments de la colonne IV et des composés III-V de structure cristalline de type diamant ou zinc-blende dans les plasmas d'halogènes, i.e. fluor, chlore, brome et iode. Dans ce contexte, les effets stériques et de diffusion en volume et/ou en surface en constituent les problématiques principales. Cette généralisation s'appuie sur le modèle de gravure de Petit et Pelletier qui, par rapport aux modèles antérieurs, prend en compte un certain nombre d'hypothèses distinctes ou additionnelles telles que les interactions répulsives entre adatomes d'halogènes proches voisins, les mécanismes de Langmuir-Hinshelwood pour la formation des produits de réaction, la nature mono-couche ou multi-couches de l'adsorption, et la diffusion des adatomes en surface. Les effets stériques relatifs à la diffusion des atomes d'halogènes à travers les surfaces (100) des structures cristallines des éléments de la colonne IV et des composés III-V définissent une première loi de similitude entre la maille du réseau cristallin et le rayon ionique de Shannon des atomes d'halogènes concernant leurs conditions de diffusion en volume. Cette loi se traduit par un diagramme prévisionnel, commun aux éléments de la colonne IV et aux composés III-V, délimitant les systèmes de gravure de types mono-couche et multi-couches. Les effets stériques relatifs aux mécanismes réactionnels de gravure sur les surfaces (100) aboutissent à des secondes lois de similitude entre la maille du réseau et le rayon covalent des adatomes d'halogènes caractérisant la nature de la gravure : gravure isotrope, gravure anisotrope, ou absence de gravure. Ces lois de similitude, distinctes pour les éléments de la colonne IV et les composés III-V (stœchiométrie différente des produits de réaction), se traduisent par deux diagrammes prévisionnels délimitant les différents domaines de gravure. Les diagrammes prévisionnels pour les éléments de la colonne IV ont pu être validés, d'une part, à partir des résultats expérimentaux antérieurs, et, d'autre part, en l'absence de données, à partir d'études expérimentales complémentaires : gravure de Si et Ge en plasma de brome et d'iode, gravure de Sn en plasma d'iode. / The objective of this work is the generalization of the modeling of the etching of silicon in fluorine or chlorine plasmas to that of the etching of the elements in column IV and of III-V compounds with diamond-like or zinc-blend crystal structure in halogen plasmas (i.e. fluorine, chlorine, bromine and iodine). In this context, steric effects and volume and/or surface diffusion are the main issues. This generalization is based on the etching model of Petit and Pelletier which, compared to previous models, takes into account a number of separate or additional assumptions such as the repulsive interactions between halogen adatoms in nearest neighbor positions, the Langmuir-Hinshelwood mechanisms for the formation of reaction products, the mono-layer or multi-layer nature of the adsorption, and the diffusion of adatoms on the surface. Steric effects related to the diffusion of halogens through the (100) surfaces of the crystal structures of the elements of column IV and III-V compounds define a first law of similarity between the crystal lattice and the Shannon ionic radius of the halogen atoms concerning their bulk diffusion conditions. This law results in a forecast diagram, common to column IV elements and III-V compounds, delimiting the mono-layer or multi-layer type of the etching systems. Steric effects related to the reaction mechanisms of etching on (100) surfaces lead to the second laws of similarity between the crystal lattice and the covalent radius of halogen adatoms characterizing the etching behavior: isotropic etching, anisotropic etching or no etching. These laws of similarity, distinct between the elements of the column IV and III-V compounds (different stoichiometry of the reaction products), result in two forecast diagrams delimiting the distinct etching domains. Forecast diagrams for column IV elements have been validated, first, from previous experimental results, and, secondly, in the absence of data, from additional experimental studies: etching of Si and Ge in bromine and iodine plasmas, and etching of Sn in iodine plasmas.
172

Efeito in vitro da terapia fotodin?mica sobre bact?rias orais em suspens?o e na forma??o de biofilme : ensaio com azul de metileno e toluidina ativados por luz hal?gena

Dantas, Emanuelle Dayana Vieira 26 August 2011 (has links)
Made available in DSpace on 2014-12-17T15:30:59Z (GMT). No. of bitstreams: 1 EmanuelleDVD_DISSERT.pdf: 1398010 bytes, checksum: 85e1d1f82b33da3e697eacbf6655c267 (MD5) Previous issue date: 2011-08-26 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Photodynamic therapy (PDT) has been proposed as an alternative method for the treatment of biofilm-dependent oral diseases like dental caries. This therapy consists of simultaneous action of a visible light (L) and a photosensitizer (FS) in the presence of oxygen, which leads to production of different reactive oxygen species that can interact with the bacterial cell components, and promote cell death. This study aims to evaluate the antimicrobial action of PDT on oral bacteria in suspension, as well as the formation of mono and multi-species biofilms, in vitro, from a standard strain of Streptococcus mutans (ATCC 25175) and saliva samples, respectively. The dye methylene blue (MB) and toluidine blue (TB) were used at a concentration of 100 mg/ L and activated by halogen light (600 to 750 nm) from a modified hand held photopolymerizer (Ultralux ?, Dabi Atlante, Ribeir?o Preto , S?o Paulo, Brazil.). Planktonic cultures were prepared and submitted to different experimental conditions: 1. PDT using TB 2. PDT using MB, 3. L+ FS- , 4. TB + L - ; 5. MB+ L-; 6. L- FS- (negative control) and 7. administration of 0.12% chlorhexidine digluconate (positive control) (Periogard ?, Colgate-Palmolive Company, New York, USA). The immediate and mediated action of PDT on bacterial suspensions, as well as its effect on biofilm formation were observed from the number of colony-forming units per milliliter (CFU/mL) and measures optical density (OD). The data were statistically analyzed using the Kruskal-Wallis and Mann-Whitney test for the significance level of 5%. According to the results, the PDT showed no antibacterial action on suspensions of S. mutans, regardless of the dye used. PDT with MB activated by halogen light was able to reduce 86.6% CFU/mL multi-species planktonic cultures, however, this reduction was not significant (p > 0.05). PDT showed antibacterial effect, mediate on multi-species planktonic cultures with TB (p < 0.001) and MB (p < 0.001), activated by halogen light. PDT was able to prevent the formation of multispecies biofilm, through the activation of TB by halogen light (p = 0.01). We conclude that activation of the dye toluidine blue and methylene blue, by halogen light (PDT) showed antimicrobial activity, compared to multi-species planktonic cultures prepared from saliva samples / A terapia fotodin?mica (TFD) tem sido proposta como um m?todo alternativo para o tratamento de doen?as orais biofilme-dependentes, como a c?rie dent?ria. Tal terapia consiste na a??o simult?nea de uma fonte luminosa (FL) e de um agente fotossensibilizante (FS), na presen?a de oxig?nio tecidual, levando ? produ??o de radicais livres que ao interagirem com componentes celulares bacterianos, promovem a morte celular. Este estudo tem como objetivo avaliar a a??o antimicrobiana da TFD sobre bact?rias orais em suspens?o, bem como na forma??o de biofilmes mono e multiesp?cies, in vitro, a partir de uma cepa padr?o de Streptococcus mutans (ATCC 25175) e de amostras de saliva, respectivamente. Os corantes azul de metileno (CM) e azul de toluidina (CT) foram administrados na concentra??o de 100 mg/L e ativados por luz hal?gena (600 a 750 nm) proveniente de um aparelho fotopolimerizador modificado (Ultralux?, Dabi Atlante, Ribeir?o Preto, S?o Paulo, Brasil.). Suspens?es monoesp?cies e mistas foram preparadas e submetidas a diferentes condi??es experimentais: 1. TFD na presen?a de CT; 2. TFD na presen?a de CM; 3. irradia??o sem administra??o de qualquer corante; 4. sensibiliza??o com CT e aus?ncia de luz; 5. sensibiliza??o com CM e aus?ncia de luz; 6. aus?ncia de irradia??o e sem qualquer corante (controle negativo) e 7. administra??o de solu??o de digluconato de clorexidina a 0,12% (controle positivo) (Periogard?, Colgate-Palmolive Company, Nova York, EUA). A a??o imediata e mediata da TFD sobre as suspens?es bacterianas, bem como seu efeito sobre a forma??o de biofilme foram verificados, a partir do n?mero de unidade formadoras de col?nias por mL (UFC/mL) e de medidas de densidade ?tica (DO). Os dados obtidos foram analisados estatisticamente atrav?s dos Testes Kruskal-Wallis e Mann-Whitney, para o n?vel de signific?ncia de 5%. De acordo com os resultados, a TFD n?o apresentou a??o antibacteriana sobre as suspens?es de S. mutans, independente do corante utilizado. A TFD com CM ativado por luz hal?gena foi capaz de reduzir em 86,6% o n?mero de UFC/mL diante de suspens?es multiesp?cies, entretanto, tal redu??o n?o foi significativa (p > 0,05). A TFD apresentou efeito antibacteriano, mediato, sobre suspens?es mistas, quer na presen?a de CT (p < 0,001) ou CM (p < 0,001), ativados por luz hal?gena. A TFD preveniu a forma??o de biofilme multiesp?cie, atrav?s da ativa??o de CT por luz hal?gena (p = 0,01). Conclui-se que a ativa??o dos corantes azul de toluidina e azul de metileno, pela luz hal?gena (TFD) apresentou a??o antimicrobiana, frente a suspens?es multiesp?cies preparadas a partir de amostras de saliva, ressaltando a possibilidade da utiliza??o da terapia fotodin?mica como um m?todo coadjuvante no tratamento de les?es de c?rie dent?ria
173

Organic Fluorine in Crystal Engineering : Consequences on Molecular and Supramolecular Organization

Dikundwar, Amol G January 2013 (has links) (PDF)
The thesis entitled “Organic fluorine in crystal engineering: Consequences on molecular and supramolecular organization” consists of six chapters. The main theme of the thesis is to address the role of substituted fluorine atoms in altering the geometrical and electronic features in organic molecules and its subsequent consequences on crystal packing. The thesis is divided into three parts. Part I deals with compounds that are liquids under ambient conditions, crystal structures of which have been determined by the technique of in situ cryocrystallography. Part II demonstrates the utilization of in situ cryocrystallography to study kinetically trapped metastable crystalline phases that provide information about crystallization pathways. In part III, crystal structures of a series of conformationally flexible molecules are studied to evaluate the consequences of fluorine substitution on the overall molecular conformation. The genesis and stabilization of a particular molecular conformation has been rationalized in terms of variability in intermolecular interactions in the crystalline state. Part I. In situ cryocrystallography: Probing the solid state structures of ambient condition liquids. Chapter 1 discusses the crystal structures of benzoyl chloride and its fluorinated analogs. These compounds have been analysed for the propensity of adoption of Cl···O halogen bonded dimers and catemers. The influence of conformational and electronic effects of sequential fluorination on the periphery of the phenyl ring has been quantified in terms of the most positive electrostatic potential, VS,max (corresponding to σ-hole) on the Cl-atom. It is shown that fluorine also exhibits “amphoteric” nature like other heavier halogens, particularly in presence of electron withdrawing groups. Although almost all the derivatives pack through C–H···O, C–H···F, C–H···Cl, Cl···F, C–H···π and π···π interactions, the compound 2,3,5,6-tetrafluorobenzoyl chloride exhibited a not so commonly observed Cl···O halogen bonded catemer. On the other hand, the proposed Cl···O mediated dimer is not observed in any of the structures due to geometrical constraints in the crystal lattice. Chapter 2 presents the preferences of fluorine to form hydrogen bond (C–H···F) and halogen bonds (X···F; X= Cl, Br, I). Crystal structures of all three isomers of chloro-, bromo-and iodo-fluorobenzene have been probed in order to gain insights into packing interactions preferred by fluorine and other heavier halogens. It has been observed that homo halogen…halogen (Cl···Cl, Br···Br and I···I) contacts prevail in most of the structures with fluorine being associated with the hydrogen atom forming C–H···F hydrogen bond. The competition between homo and hetero halogen bonds (I···I vs I···F) is evident from the packing polymorphism exhibited by 4-iodo fluorobenzene observed under different cooling protocols. The crystal structures of pentafluoro halo (Cl, Br, I) benzenes were also determined in order to explore the propensity of formation of homo halogen bonds over hetero halogen bonds. Different dimeric and catemeric motifs based on X···F and F···F interactions were observed in these structures. Chapter 3 focuses on the effect of different cooling protocols in generating newer polymorphs of a given liquid. The third polymorph (C2/c, Z'=6) of phenylacetylene was obtained by sudden quenching of the liquid filled in capillary from a hot water bath (363 K) to the nitrogen bath (< 77 K). Also, different polymorphs were obtained for both 2¬fluoro phenylacetylene (Pna21, Z'=1) and 3-fluoro phenylacetylene (P21/c, Z'=3) when crystallized by sudden quenching in contrast to the generally followed method of slow cooling which results in isostructural forms (P21, Z'=1). The rationale for these kinetically stable “arrested” crystalline configurations is provided in part II of the thesis. Part II. Tracing crystallization pathways via kinetically captured metastable forms. Chapter 4 explains the utilization of the new approach of sudden quenching of liquids (detailed in chapter 3) to obtain kinetically stable (metastable) crystalline phases that appear to be closer to the unstructured liquids. Six different examples namely, phenylacetylene, 2-fluorophenylacetylene, 3-fluorophenylacetylene, 4-fluorobenzoyl chloride, 3-chloro fluorobenzene and ethyl chloroformate are discussed in this context. In each case, different polymorphs were obtained when the liquid was cooled slowly (100 K/h) and when quenched sharply in liquid nitrogen. The relationship between these metastable forms and the stable forms (obtained by slow cooling) combined with the mechanistic details of growth of stable forms from metastable forms provides clues about the crystallization pathways. Part III. Conformational analysis in the solid state: Counterbalance of intermolecular interactions with molecular and crystallographic symmetries. Chapter 5 describes the crystal structures of a series of conformationally flexible molecules namely, acetylene and diacetylene spaced aryl biscarbonates and biscarbamates. While most of the molecules adopt commonly anticipated anti (transoid) conformation, some adopt unusual cisoid and gauche conformations. It is shown that the unusually twisted conformation of one of the compounds [but-2-yne-bis(2,3,4,5,6¬pentafluorocarbonate)] is stabilized mainly by the extraordinarily short C–H···F intermolecular hydrogen bond. The strength of this rather short C–H···F hydrogen bond has been authenticated by combined single crystal neutron diffraction and X-ray charge density analysis. It has also been shown that the equi-volume relationship of H-and F-atoms (H/F isosterism) can be explored to access various possible conformers of a diacetylene spaced aryl biscarbonate. While biscarbonates show variety of molecular conformations due to absence of robust intermolecular interactions, all the biscarbamates adopt anti conformation where the molecules are linked with antiparallel chains formed with N–H···O=C hydrogen bonds. Chapter 6 presents a unique example where the commonly encountered crystallographic terms namely, high Z' structure, polymorphism, phase transformation, disorder, isosterism and isostructuralism are witnessed in a single molecular species (parent compound benzoylcarvacryl thiourea and its fluorine substituted analogs). The origin of all these phenomenon has been attributed to the propensity of formation of a planar molecular dimeric chain mediated via N–H···O [R2 (12)] and N–H···S [R2 (8)] dimers.
174

Estudo da influência de impurezas e da qualidade das superfícies em cristais de brometo de tálio para aplicação como um detector de radiação / Methodology optimization of the thallium bromide crystal preparation for application as a radiation detector

SANTOS, ROBINSON A. dos 11 November 2016 (has links)
Submitted by Claudinei Pracidelli (cpracide@ipen.br) on 2016-11-11T13:09:25Z No. of bitstreams: 0 / Made available in DSpace on 2016-11-11T13:09:25Z (GMT). No. of bitstreams: 0 / Neste trabalho, cristais de TlBr foram crescidos e purificados pelo método de Bridgman Repetido, a partir de sais comerciais de TlBr, e caracterizados para serem usados como detectores de radiação à temperatura ambiente. Para avaliar a eficiência de purificação, estudos da diminuição da concentração de impurezas foram feitos após cada crescimento, analisando as impurezas traço por Espectrometria de Massas com Plasma (ICP-MS). Um decréscimo significativo da concentração de impurezas em função do número de purificações foi observado. Os cristais crescidos apresentaram boa qualidade cristalina de acordo com os resultados de análise por Difração de Raios X (DRX), boa qualidade morfológica e estequiometria adequada de acordo com os resultados de análise por MEV(SE) e MEV(EDS). Um modelo matemático definido por equações diferenciais foi desenvolvido para avaliar as concentrações de impurezas no cristal de TlBr e suas segregações em função do número de crescimentos pelo método de Bridgman. Este modelo pode ser usado para calcular o coeficiente de migração das impurezas e mostrou ser útil para prever o número necessário de repetições de crescimento Bridgman para atingir nível de pureza adequado para assegurar a qualidade do cristal como detector de radiação. Os coeficientes se segregação obtidos são parâmetros importantes para análise microestrutural e análise de transporte de cargas nos cristais detectores. Para avaliar os cristais a serem usados como detectores de radiação, medidas de suas resistividades e resposta à incidência de radiação gama das fontes de 241Am (59,5keV) e 133Ba (81 keV) foram realizadas. Essa resposta foi dependente da pureza do cristal. Os detectores apresentaram um avanço significativo na eficiência de coleta de cargas em função da pureza. / Tese (Doutorado em Tecnologia Nuclear) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
175

\"Avaliação da resistência flexural, microinfiltração e grau de conversão de uma resina composta fotoativada com luz halógena e laser de argônio\" / Evaluation of the flexural strenght, microleakage and degree of convertion of a composite resin photocured with argon laser and halogen lamp.

Patricia Ramos Lloret 13 February 2007 (has links)
Nesta pesquisa foi avaliado a resistência flexural, a microinfiltração e o grau de conversão de uma resina composta micro-híbrida fotoativada por laser de argônio e luz halógena. Para o teste de resistência flexural e grau de conversão foram preparadas cinco amostras de 25 X 2 X 2mm de acordo com a norma ISO 4049. Os parâmetros de fotoativação utilizados em todas as etapas do trabalho foram: luz halógena (500mW/cm2) por 20 segudos, laser de argônio (250mW) por 10 e 20 segundos. As amostras foram lixadas com a seqüência de granulações 500, 800, 1000, 1200, 2500 e 4000. Os espécimes eram armazenados em água destilada, em recipiente escuro, em estufa a 37ºC por 24 horas e eram submetidos ao ensaio de resistência flexural (Máquina de Ensaios Mecânicos - Modelo 4411 ? Instron) em velocidade de 1mm/min. Para o estudo da microinfiltração foram utilizados dentes incisivos bovinos (n=20), As cavidades eram preparadas com brocas Carbide #330 com 4mm (altura) X 3mm (largura) X 2mm (profundidade). Os dentes eram então restaurados, e recebiam acabamento e polimento e em seguida eram armazenados em água destilada, em estufa a 37ºC por 24 horas. As amostras foram submetidas ao processo de termociclagem (500 ciclos de 30 segundos - 6ºC e 60ºC). Após a termociclagem, os ápices dos dentes eram selados com IRM e adesivo a base de cianoacrilato e imersos em fucsina básica a 0,5% por 24 horas, em estufa a 37ºC. A análise do grau de conversão foi feita com o Espectrômetro FT-Raman RFS 100/S (Bruker). Para o teste de resistência flexural foi realizado o teste de análise de variância, que mostrou não haver diferença estatisticamente significante entre as fontes fotoativadoras estudadas (p>0,05). A microinfiltração das margens oclusais (em esmalte) e gengivais (em dentina) dos três grupos foram analisadas separadamente por meio do teste de Mann-Whitney. Houve diferença estatisticamente significante ao nível de 5% entre esmalte e dentina, sendo que em todos os grupos a microinfiltração em dentina foi maior que em esmalte. O teste nãoparamétrico Kruskall-Wallis foi utilizado separadamente nas comparações entre as fontes para as análises do grau de microinfiltração em esmalte e dentina. Não houve diferença estatisticamente significante em ambas as comparações, sendo o valor de H= 0,1283 para esmalte e de H=2,3083 para em dentina. Para a análise do grau de conversão foi realizada a análise de variância (ANOVA) entre os grupos. Não houve diferença estatisticamente significante entre as fontes. Diante dos resultados obtidos, pode-se afirmar que o laser de argônio apresentou qualidade de fotoativação semelhante à da luz halógena e que nenhuma fonte ativadora estudada foi capaz de evitar a microinfiltração. / In the research was evaluated the flexural strength, the microleakage and the degree of conversion of a micro-hybrid composite resin photocured with argon laser and halogen lamp. For both flexural test and degree of conversion analysis five bar samples of composite resin (25 X 2 X 2mm) were prepared and polymerized following the ISO 4049. The light cured unit halogen was used with 500mW/cm2 for 20 seconds and the argon laser with 250mW for 10 and 20 seconds. After curing, samples were removed from the molds, polished using silicon carbide paper up to 4000 grit-number and stored in distilled water in dark environment at 37oC for 24 hours. The flexural property was quantified by a three-point loading test (Model 4411, Instron Corp., Canton, MA) with a cross-head speed of 1,0mm/min. To microleakage test sixty bovine incisors were used to prepare standardized class V cavities that were restored and polished. The specimens were stored in water for 24 hours at 37oC and thermocycled 500 times between water baths kept at 5 oC and 55 oC. After thermocycling, specimens were immersed in a aqueous solution of basic fuchsin for 24 hours. Longitudinal sections of each restoration were obtained and examined with a stereomicroscope for qualitive evaluation of microleakage. FTRaman RFS 100/S spectrometer (Bruker) was used to analyse the degree of conversion. The ANOVA test showed that there were no statistically significant difference of the flexural setrength between the photo-activation types evaluated in the flexural study. Microleakage data was statistically analysed by Mann-Whitney and Kruskall-Wallis tests. Enamel margins resulted in statistical lower degree of leakage than dentin margins. There was no statistically significant difference between the three types of photo-curing studied. The ANOVA test also showed that there were no statistically significant difference of the degree of conversion between the studied groups. According to the methodology used in this research it was concluded that the argon laser is a posible alternative for photocuring, providing the same quality of polymerization as do the halogen lamp. None of the photocured units tested in this study completely eliminated microleakage.
176

Microwave Spectroscopic and Atoms in Molecules Theoretical Investigations on Weakly Bound Complexes : From Hydrogen Bond to 'Carbon Bond'

Devendra Mani, * January 2013 (has links) (PDF)
Weak intermolecular interactions have very strong impact on the structures and properties of life giving molecules like H2O, DNA, RNA etc. These interactions are responsible for many biological phenomena. The directional preference of some of these interactions is used for designing different synthetic approaches in the supramolecular chemistry. The work reported in this Thesis comprises of investigations of weak intermolecular interactions in gas phase using home-built Pulsed Nozzle Fourier Transform Microwave (PN-FTMW) spectrometer as an experimental tool and ab-initio and Atoms in Molecules (AIM) theory as theoretical tools. The spectrometer which is coupled with a pulsed nozzle is used to record pure rotational spectra of the molecular clusters in a jet cooled molecular beam. In the molecular beam molecules/complexes are free from interactions with other molecules/complexes and thus, spectroscopy in the molecular beams provides information about the 'isolated' molecule/complex under investigation. The rotational spectra of the molecules/complexes in the molecular beam provide their geometry in the ground vibrational states. These experimental geometries can be used to test the performance and accuracy of theoretical models like ab-initio theory, when applied to the weakly bound complexes. Further the AIM theory can be used to gain insights into the nature and strength of the intermolecular interactions present in the system under investigation. Chapter I of this Thesis gives a brief introduction of intermolecular interactions. Other than hydrogen bonding, which is considered as the most important intermolecular interaction, many other intermolecular interactions involving different atoms have been observed in past few decades. The chapter summarizes all these interactions. The chapter also gives a brief introduction to the experimental and theoretical methods used to probe these interactions. In Chapter II, the experimental and theoretical methods used in this work are summarized. Details of our home-built PN-FTMW spectrometer are given in this chapter. The chapter also discusses briefly the theoretical methods like ab-initio, AIM and Natural bond orbital (NBO) analysis. We have made few changes in the mode of control of one of our delay generators which have also been described. Chapter III and Chapter V of this Thesis are dedicated to the propargyl alcohol complexes. Propargyl alcohol (PA) is a molecule of astrophysical interest. It is also important in combustion chemistry since propargyl radical is considered as the precursor in soot formation. Moreover, PA is a multifunctional molecule, having a hydroxyl (-OH) and an acetylenic (-C≡C-H) group. Both of the groups can individually act as hydrogen bond acceptor as well as donor and thus PA provides an exciting possibility of studying many different types of weak interactions. Due to internal motion of -OH group, PA monomer can exist in gauche as well as trans form. However, rotational spectra of PA-monomer show the presence of only gauche conformer. In Chapter III, rotational spectra of Ar•••PA complex are discussed. The pure rotational spectra of the parent Ar•••PA complex and its two deuterated isotopologues, Ar•••PA-D (OD species) and Ar•••PA-D (CD species), could be observed and fitted within experimental uncertainty. The structural fitting confirmed a structure in which PA is present as gauche conformer and argon interacts with both the O-H group and the acetylenic group leading to Ar•••H-O and Ar•••π interactions respectively. Presence of these interactions was further confirmed by AIM theoretical analysis. In all the three isotopologues c-type rotational transitions showed significant splitting. Splitting patterns in the three isotopologues suggest that it originates mainly due to the large amplitude motion of the hydroxyl group and the motion is weakly coupled with the carbon chain bending motion. No evidence for the complex with trans conformer of PA was found. Although, we could not observe Ar•••trans-PA complex experimentally, we decided to perform ab-initio and AIM theoretical calculations on this complex as well. AIM calculations suggested the presence of Ar•••H-O and a unique Ar•••C interaction in this complex which was later found to be present in the Ar•••methanol complex as well. This prompted us to explore different possible interactions in methanol, other than the well known O-H•••O hydrogen bonding interactions, and eventually led us to an interesting interaction which we termed as carbon bond. Chapter IV discusses carbon bonding interaction in different complexes. Electrostatic potential (ESP) calculations show that tetrahedral face of methane is electron-rich and thus can act as hydrogen/halogen bond acceptor. This has already been observed in many complexes, e.g. CH4•••H2O/HF/HCl/ClF etc., both experimentally and theoretically. However, substitution of one of the hydrogens of methane with -OH leads to complete reversal of the properties of the CH3 tetrahedral face and this face in methanol is electron-deficient. We found that CH3 face in methanol interacts with electron rich sites of HnY molecules and leads to the formation of complexes stabilized by Y•••C-X interactions. This interaction was also found to be present in the complexes of many different CH3X (X=OH/F/Cl/Br/NO2/NF2 etc.) molecules. AIM, NBO and C-X frequency shift analyses suggest that this interaction could be termed as "carbon bond". The carbon bonding interactions could be important in understanding hydrophobic interactions and thus could play an important role in biological phenomena like protein folding. The carbon bonding interaction could also play a significant role in the stabilization of the transition state in SN2 reactions. In Chapter V of this Thesis rotational spectra of propargyl alcohol dimer are discussed. Rotational spectra of the parent dimer and its three deuterated (O-D) isotopologues (two mono-substituted and one bi-substituted) could be recorded and fitted within experimental uncertainty. The fitted rotational constants are close to one of the ab-initio predicted structure. In the dimer also propargyl alcohol exists in the gauche form. Atoms in molecules analysis suggests that the experimentally observed dimer is bound by O-H•••O, O-H•••π and C-H•••π interactions. Chapter VI of the thesis explores the 'electrophore concept'. To observe the rotational spectra of any species and determine its rotational constant by microwave spectroscopy, the species should have a permanent dipole moment. Can we obtain rotational constants of a species having no dipole moment via microwave spectroscopy? Electrophore concept can be used for this purpose. An electrophore is an atom or molecule which could combine with another molecule having no dipole moment thereby forming a complex with a dipole moment, e.g. Argon atom is an electrophore in Ar•••C6H6 complex. The microwave spectra of Ar•••13CC5H6 and Ar•••C6H5D complexes were recorded and fitted. The A rotational constant of these complexes was found to be equal to the C rotational constant of 13CC5H6 and C6H5D molecules respectively and thus we could determine the C rotational constant of microwave 'inactive' 13CC5H6. This concept could be used to obtain the rotational spectra of parallel displaced benzene-dimer if it exists. We recently showed that the square pyramidal Fe(CO)5 can act as hydrogen bond acceptor. Appendix I summarizes the extension of this work and discusses interactions of trigonal bipyramidal Fe(CO)5 with HF, HCl, HBr and ClF. Our initial attempts on generating a chirped pulse to be used in a new broadband spectrometer are summarized in Appendix II. Preliminary investigations on the propargyl•••water complex are summarized in Appendix III.
177

Microwave Spectroscopic and Theoretical Investigations on Inter/Intra Molecular Bonding

Shahi, Abhishek January 2014 (has links) (PDF)
The importance of weak interactions between molecules to life and all parts of science and engineering is unquestionable and there have been an enormous interest in such interactions. Among all the weak interactions, hydrogen bonding is the most popular and it has enjoyed the most attention of the scientific community. Halogen bonding is gaining more popularity in the recent time, as its importance to biological molecules and crystal engineering has been recognized. In this work, a Pulsed Nozzle Fourier Transform Microwave spectrometer has been used to study the rotational spectra of molecules and hydrogen bonded complexes. Structural information is obtained from the rotational spectra. Ab initio electronic structure, Natural Bond Orbital (NBO) and Atoms in Molecules (AIM) theoretical methods have been used to characterize the weak intermolecular interactions, including hydrogen bonding, halogen bonding and lithium bonding. In Chapter I, introduction to weak interaction is discussed. A brief introduction of different experimental and theoretical methods is presented. Chapter II discusses in detail about the different methods used to investigate weak interaction, both experimentally and theoretically, in this work. In our lab, we use Pulsed Nozzle Fourier Transform Microwave spectrometer to determine the complexes spectra and structures. We generate MW radiation with the help of electronic devices and use Balle-Flygare cavity where molecular interaction takes place. We inject the sample inside the cavity in form of supersonic molecular beam through a pulsed nozzle, parallel to MW radiation. The detailed instrumental discussion about MW spectrometer has been done in this Chapter. We extensively use theoretical methods to probe weak bonding and characterize them. Ab initio and DFT calculations are used to optimize the structure of the complexes and predict their rotational spectra. Atoms in Molecules theory and Natural Bond Orbital theory are then used with the ab initio wave functions to understand the weak interactions in depth. Discussion about these methods and software used for the analysis will also be discussed. In Chapter III, rotational spectrum of Hexafluoroisopropanol (HFIP) monomer is presented. HFIP is an interesting molecule as it offers many possibilities as hydrogen bond donor and acceptor. It has the OH group which can both accept/donate a hydrogen bond and in addition it has a very acidic CH group. It is the only solvent that can dissolve polyethylene terephthalate, a normally difficult-to-dissolve polymer, and clearly it has unique interactions with this difficult to solve polymer. We have recorded and fitted rotational spectra of five different isotopologues of HFIP which helped us in determining its accurate structure. Though, it can exist in synclinical and antiperiplanar conformers, only the later has been detected in our molecular beam spectrometer. This happens to be the global minimum structure of HFIP. Combination of experimental observations and ab initio calculations provided many evidences which confirmed the presence of antiperiplanar conformer, experimentally. Since, the rotational constants for both conformers were very close, it was always challenging to pick up one conformer as experimentally observed structure. A prototype molecule, hexafluoroisobutene (HFIB) shows doubling of rotational transitions due to tunnelling/counter rotation of the two CF3 groups through a small barrier. Interestingly, such motion has no barrier in HFIP and hence no splitting in transitions was observed. Potential energy surface calculated for counter-rotation of the two CF3 groups is consistent with this observation. This barrier is different from eclipsed-staggered exchange barrier, observed by 60 counter rotation of both terminal CF3 groups, for which the barrier height is very large and tunnelling cannot occur. The origin/lack of the small barrier in HFIB/HFIP has been explored using Natural Bond Orbital (NBO) method which helped in understanding intramolecular bonding in these molecules. Along with HFIB, other prototype molecules were also considered for the analysis e.g. hexafluoroacetone, hexafluoroacetone imine, hexafluoroisobutane, hexafluoroisopropylamine. In the last section of this Chapter, we have discussed the generalized behaviour of molecules which have CF3-C-CF3 groups. In Chapter IV, rotational spectrum of HFIP•••H2O complex is presented. Aqueous solution of HFIP stabilizes α-helical structure of protein, a unique property of this solvent. The main objective of this Chapter is understanding the interaction between HFIP and H2O. Microwave spectrum of HFIP•••H2O was predicted and recorded. Three isotopologues were investigated. Though, this complex could in principle have several structural conformers, detailed ab initio calculations predicted two conformers and only one was observed. Though, the rotational constants for both structures were somewhat similar, lack of a dipole transitions, larger intensity of b-dipole transitions over c-dipole transitions and isotopic substitution analysis positively confirm the structure in which HFIP acts as the hydrogen bond donor. The linear O-H•••O hydrogen bond in HFIP-H2O complex is significantly stronger than that in water dimer with the H•••O distance of 1.8 Å. The other structure for this complex, not found in experiment is cyclic with both C-H•••O and O-H•••O hydrogen bonds, both of which are bent with H•••O distances in the range 2.2-2.3 Å. Both AIM and NBO calculations have been used to characterize the hydrogen bond in this complex. In Chapter V, a comprehensive study on hydrogen bonding, chlorine bonding and lithium bonding have been done. A typical hydrogen bonded complex can be represented as A•••H-D, where A is the acceptor unit and H-D is the hydrogen bond donor unit. Many examples are known in literature, both experimentally and theoretically, in which the A-H-D bond angles are not linear. Deviation from linearity also results in the increase in A•••H bond lengths, as noted above for the two structures of HFIP•••H2O complex. Though this has been known for long, the distance between A and D being less than the sum of their van der Waals ‘radii’ is still used as a criterion for hydrogen bonding by many. Our group has recently shown the inappropriateness of van der Waals ‘radii’ and defined hydrogen bond ‘radii’ for various donors, DH and A. A strong correlation of DH hydrogen bond ‘radii’ with the dipole moment was noted. In this Chapter, we explored in detail the angular dependence of hydrogen bond ‘radii’. Electron density topology around DH (D = F, Cl and OH) has been analyzed in detail and shown to be elliptical. For these molecules, the two constants for H atom treated as an ellipse have been determined. It is hoped that these two constants will be used widely in analyzing and interpreting H•••A distances, as a function of D-H•••A angles, rather than one ‘radius’ for H and acceptor atoms. In Chapter VI, Detailed analysis and comparisons among hydrogen bond, chlorine bond and lithium bond, have been done. Hydrogen can be placed in group 1 as well as group 17 of the periodic table. Naturally, lithium bonding and halogen bonding have been proposed and investigated. There have been numerous investigations on the nature of hydrogen bonding and the physical forces contributing to it. In this Chapter, a total of one hundred complexes having H/Cl/Li bonding have been investigated using ab initio, AIM and NBO theoretical methods. Various criteria proposed in the literature have been examined. A new criterion has been proposed for the characterization of closed shell (ionic/electrostatic) and open shell (covalent) interactions. It has been well known that the D-H bond weakens on the D-H•••A hydrogen bond formation and H•••A bond acquires a fractional covalency. This Chapter shows that for D-Li•••A complexes, the ionicity in D-Li is reduced as the Li•••A bond is formed This comprehensive investigation of H/Cl/Li bonding has led us to propose a conservation of bond order, considering both ionic and covalent contributions to both D-X and X•••A bonds, where DX is the X-bond donor and A is the acceptor with X = H/Cl/Li. Hydrogen bond is well understood and its definition has been recently revised [Arunan et al. Pure Appl. Chem., Vol. 83, pp. 1619–1636, 2011]. It states “The X–H•••Y hydrogen bond angle tends toward 180° and should preferably be above 110°”. Using AIM theory and other methods, this fact is examined and presented in Appendix A. In second part of appendix A, a discussion about calling H3¯ complex as trihydrogen bond and its comparison with FHF¯ complex, is presented. In Appendix B, there is tentative prediction and discussion about the HFIP dimer. Condense phase studies show that HFIP have strong aggregation power to form dimer, trimer etc. During, HFIP monomer study, we have unassigned lines which are suspected to be from HFIP dimer. These are tabulated in the Appendix B as well.
178

Tropospheric ozone and photochemical processing of hydrocarbons : laboratory based kinetic and product studies

Leather, Kimberley January 2012 (has links)
Laboratory based temperature-dependent kinetics and product yields for alkene ozonolysis and the reaction of CH3O2 with ClO and BrO have been measured via chamber studies and a turbulent flow tube coupled to CIMS (Chemical Ionisation Mass Spectrometry). In order to gain a better understanding of the fate of the products formed during hydrocarbon oxidation and their subsequent impact on the ozone budget (and so the oxidising capacity of the atmosphere) it is imperative to know the rate at which these reactions proceed and to identify their product yields. As tropospheric temperature varies, Arrhenius parameters were determined during the ozonolysis of selected alkenes. The temperature dependent kinetic database was extended and the activation energies for the ozonolysis of selected alkenes were correlated with an existing SAR (Structure Activity Relationship). Given the myriad organic species in the atmosphere, SARs are useful tools for the prediction of rate coefficients. Inclusion of Arrhenius parameters into the SAR allows for prediction over a range of temperatures, improving the conditions reflected in models. Achieving mass balance for alkene ozonolysis has proven to be a difficult challenge considering the numerous pathways of the Criegee Intermediate (CI). The product yield of formic acid – an organic acid with significant atmospheric implications which is under predicted by models – was determined as a function of relative humidity during ethene ozonolysis. This reaction exhibited a strong water dependence which lead to the prediction of the reaction rate of the CI with water which ranges between 1 × 10-12 – 1 × 10-15 cm3 molecule-1 s-1 and will therefore dominate its loss with respect to bimolecular processes in the atmosphere. Peroxy radicals, strongly influence the total oxidising capacity of the troposphere. The reaction of peroxy radicals with halogen oxides is recognised to be responsible for considerable ozone depletion in the atmosphere, exacerbated by reactive halogens (X, XO) taking part in catalytic cycles. Arrhenius parameters were determined for ClO + CH3O2 and BrO + CH3O2. Temperature is an important parameter affecting rate, exemplified here as the reaction involving ClO exhibited a positive temperature dependence whereas for BrO a negative temperature dependence was evident. As a consequence, the impact of ClO + CH3O2 with respect to ozone loss is diminished. Global modelling predicts a reduction in ozone loss by a factor of around 1.5 and implicates regions such as clean marine environments rather than the polar stratosphere. Conversely, a more pronounced temperature dependence for the reaction of BrO with CH3O2 placed particular importance on lower stratospheric chemistry where the modelled CH3O2 oxidation is doubled. The main products for this reaction were identified to be HOBr and CH2O2. The decomposition of CH2O2 could enhance HOx in the lower and middle stratosphere and contribute to a significant source of HOx in the upper troposphere. Bimolecular reaction of CH2O2 with water could also provide a none negligible source HC(O)OH in the upper troposphere. Alkenes and peroxy radicals undergo chemical processing in the atmosphere whilst acting as a source and sink of ozone and thus can impose detrimental effects on the biosphere, climate and air quality of the Earth.
179

Metody prostorové a spektrální charakterizace světelných zdrojů používaných v automobilové technice / Methods of Space and Spectral Characterization of Light Sources used in Car Industries

Guzej, Michal January 2018 (has links)
Automotive headlamps work in very variable operating conditions during which the producer have to guarantee their primary function of seeing and being seen. During the development stage of the new headlamps the manufacturers want to eliminate defects which could led to malfunction in operation. The numerical simulations along with the test procedures are appropriate tools for detection of problematic areas. The most appropriate approach is designing of experiment with a view to the subsequent simple implementation of the measured data into numerical simulations software and carefully choosing a measuring method of the monitored physical quantities. The thesis deals with phenomenon of condensation in headlamps, which has a negative effect on the light distribution and their life expectancy. Due to this experimental defog methodology was developed based on evaporation of a specified amount of water into the headlamp and then condensation on the inside surface of the headlamp lens. Pictures are taken during the measurements and the fogged and defogged areas are automatically detected. The results from experiments are used to adjust and verify a numerical model. The next part is devoted to the thermal load of the headlamp components which are mostly heated by waste heat from light sources. This phenomena depends mainly on the type of source, emissivity and thermal conductivity. A methodology of temperature measurement, thermal conductivity measurement, non-stationary method for emissivity determination and spectral characterization of thermal source based on their thermal fluxes to the surroundings has been developed.
180

The synthesis, structure and reactivity of iron-bismuth complexes : Potential Molecular Precursors for Multiferroic BiFeO3

Wójcik, Katarzyna 30 March 2010 (has links)
The thesis presented here is focused on the synthesis of iron-bismuth alkoxides and siloxides as precursors for multiferroic BiFeO<sub>3</sub> systems. Spectrum of novel cyclopentadienyl substituted iron-bismuth complexes of the general type [{Cp<sup>y</sup>(CO)<sub>2</sub>Fe}BiX<sub>2</sub>], as potential precursors for cyclopentadienyl iron-bismuth alkoxides or siloxides [{Cp<sup>y</sup>(CO)<sub>2</sub>Fe}Bi(OR)<sub>2</sub>] (R-O<sup>t</sup>Bu, OSiMe<sub>2</sub><sup>t</sup>Bu), were obtained and characterised. The use of wide range of cyclopentadienyl rings in the iron carbonyl compounds allowed for a comprehensive analysis of its influence on structure, reactivity as well as solubility of the studied complexes, which are crucial features of potential precursors. The results fill the gap in the chemistry of cyclopentadienyl iron-bismuth complexes. In this work a new method of preparation of novel alkoxides or siloxides iron-bismuth complexes has been developed. In the reaction of Fe<sub>2</sub>(CO)<sub>9</sub> with Bi(O<sup>t</sup>Bu)<sub>3</sub> or Bi(OSiMe<sub>2</sub><sup>t</sup>Bu)<sub>3</sub> molecular precursors for preparation of heterobimetallic oxides were obtained. Moreover, characterised compounds allowed to extend the knowledge about existence of iron-bismuth clusters and open new ways for the further investigations on the carbonyl iron-bismuth siloxides and alkoxides. The resulting compounds are good single source precursors for the BiFeO<sub>3</sub> materials. The presented synthetic route can be generalized and other heterobimetallic compounds can be obtained. This work should also be helpful in the designing new precursors for synthesis of metal oxides.

Page generated in 0.0525 seconds