• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 9
  • 7
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 74
  • 74
  • 24
  • 20
  • 19
  • 18
  • 16
  • 14
  • 12
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

LOOP HEAT PIPE (LHP) MODELING AND DEVELOPMENT BY UTILIZING COHERENT POROUS SILICION (CPS) WICKS

HAMDAN, MOHAMMAD OMAR 17 April 2003 (has links)
No description available.
42

Proof of Operation in a Planar Loop Heat Pipe (LHP) Based on CPS Wick

Suh, Junwoo January 2005 (has links)
No description available.
43

Development of Microfluidic Packaging Strategies, with Emphasis on the Development of a MEMS Based Micro Loop Heat Pipe

Medis, Praveen S. January 2005 (has links)
No description available.
44

Material and Processing Development Contributions Toward the Development of a MEMS Based Micro Loop Heat Pipe

Shuja, Ahmed A. 03 July 2007 (has links)
No description available.
45

Investigation of a Planar Heat Pipe Topology

Guzek, Brian John 13 September 2016 (has links)
No description available.
46

NUMERICAL AND EXPERIMENTAL ANALYSIS OF HEAT PIPES WITH APPLICATION IN CONCENTRATED SOLAR POWER SYSTEMS

Mahdavi, Mahboobe January 2016 (has links)
Thermal energy storage systems as an integral part of concentrated solar power plants improve the performance of the system by mitigating the mismatch between the energy supply and the energy demand. Using a phase change material (PCM) to store energy increases the energy density, hence, reduces the size and cost of the system. However, the performance is limited by the low thermal conductivity of the PCM, which decreases the heat transfer rate between the heat source and PCM, which therefore prolongs the melting, or solidification process, and results in overheating the interface wall. To address this issue, heat pipes are embedded in the PCM to enhance the heat transfer from the receiver to the PCM, and from the PCM to the heat sink during charging and discharging processes, respectively. In the current study, the thermal-fluid phenomenon inside a heat pipe was investigated. The heat pipe network is specifically configured to be implemented in a thermal energy storage unit for a concentrated solar power system. The configuration allows for simultaneous power generation and energy storage for later use. The network is composed of a main heat pipe and an array of secondary heat pipes. The primary heat pipe has a disk-shaped evaporator and a disk-shaped condenser, which are connected via an adiabatic section. The secondary heat pipes are attached to the condenser of the primary heat pipe and they are surrounded by PCM. The other side of the condenser is connected to a heat engine and serves as its heat acceptor. The applied thermal energy to the disk-shaped evaporator changes the phase of working fluid in the wick structure from liquid to vapor. The vapor pressure drives it through the adiabatic section to the condenser where the vapor condenses and releases its heat to a heat engine. It should be noted that the condensed working fluid is returned to the evaporator by the capillary forces of the wick. The extra heat is then delivered to the phase change material through the secondary heat pipes. During the discharging process, secondary heat pipes serve as evaporators and transfer the stored energy to the heat engine. Due to the different geometry of the heat pipe network, a new numerical procedure was developed. The model is axisymmetric and accounts for the compressible vapor flow in the vapor chamber as well as heat conduction in the wall and wick regions. Because of the large expansion ratio from the adiabatic section to the primary condenser, the vapor flow leaving the adiabatic pipe section of the primary heat pipe to the disk-shaped condenser behaves similarly to a confined jet impingement. Therefore, the condensation is not uniform over the main condenser. The feature that makes the numerical procedure distinguished from other available techniques is its ability to simulate non-uniform condensation of the working fluid in the condenser section. The vapor jet impingement on the condenser surface along with condensation is modeled by attaching a porous layer adjacent to the condenser wall. This porous layer acts as a wall, lets the vapor flow to impinge on it, and spread out radially while it allows mass transfer through it. The heat rejection via the vapor condensation is estimated from the mass flux by energy balance at the vapor-liquid interface. This method of simulating heat pipe is proposed and developed in the current work for the first time. Laboratory cylindrical and complex heat pipes and an experimental test rig were designed and fabricated. The measured data from cylindrical heat pipe were used to evaluate the accuracy of the numerical results. The effects of the operating conditions of the heat pipe, heat input, and portion of heat transferred to the phase change material, main condenser geometry, primary heat pipe adiabatic radius and its location as well as secondary heat pipe configurations have been investigated on heat pipe performance. The results showed that in the case with a tubular adiabatic section in the center, the complex interaction of convective and viscous forces in the main condenser chamber, caused several recirculation zones to form in this region, which made the performance of the heat pipe convoluted. The recirculation zone shapes and locations affected by the geometrical features and the heat input, play an important role in the condenser temperature distributions. The temperature distributions of the primary condenser and secondary heat pipe highly depend on the secondary heat pipe configurations and main condenser spacing, especially for the cases with higher heat inputs and higher percentages of heat transfer to the PCM via secondary heat pipes. It was found that changing the entrance shape of the primary condenser and the secondary heat pipes as well as the location and quantity of the secondary heat pipes does not diminish the recirculation zone effects. It was also concluded that changing the location of the adiabatic section reduces the jetting effect of the vapor flow and curtails the recirculation zones, leading to higher average temperature in the main condenser and secondary heat pipes. The experimental results of the conventional heat pipe are presented, however the data for the heat pipe network is not included in this dissertation. The results obtained from the experimental analyses revealed that for the transient operation, as the heat input to the system increases and the conditions at the condenser remains constant, the heat pipe operating temperature increases until it reaches another steady state condition. In addition, the effects of the working fluid and the inclination angle were studied on the performance of a heat pipe. The results showed that in gravity-assisted orientations, the inclination angle has negligible effect on the performance of the heat pipe. However, for gravity-opposed orientations, as the inclination angle increases, the temperature difference between the evaporator and condensation increases which results in higher thermal resistance. It was also found that if the heat pipe is under-filled with the working fluid, the capillary limit of the heat pipe decreases dramatically. However, overfilling of the heat pipe with working fluid degrades the heat pipe performance due to interfering with the evaporation-condensation mechanism. / Mechanical Engineering
47

Contribution to the manufacturing and the understanding of the thermal behaviour of capillary structures dedicated to Loop Heat Pipes / Contribution à la fabrication et la compréhension du comportement thermique de structures capillaires optimisées pour les boucles diphasiques à pompage thermo-capillaire

Giraudon, Rémi 15 January 2018 (has links)
Les boucles diphasiques à pompage thermo-capillaire de type LHP (pour Loop Heat Pipe, en anglais), dont le fonctionnement s’apparente à celui d’un caloduc, permettent un transfert de chaleur particulièrement efficace et entièrement passif entre une source chaude et une source froide. Ce transfert s’effectue au moyen d’un fluide diphasique, mû grâce à la force motrice capillaire générée par un matériau poreux contenu dans l’évaporateur/réservoir de la LHP. Outre son rôle de barrière hydraulique entre les phases liquide et vapeur, ce matériau doit assurer une fonction de barrière thermique afin de favoriser l’évaporation du liquide. L’aptitude du matériau à remplir ses fonctions dépend étroitement de sa microstructure, elle-même liée à la méthode de fabrication. Dès lors, l’objectif de la thèse est d’associer la science des matériaux à celle de la thermique, pour améliorer les procédures de fabrication de structures capillaires existantes ou tester de nouvelles méthodes, et aboutir à des structures dont les caractéristiques sont en adéquation avec celles qui sont recherchées. / The capillary pumped loops (CPL) or loop heat pipes (LHP), whom the operating principle is similar to classic heat pipes, enable an efficient heat transfer between a hot source and a cold source without additional energy sources. Indeed, a porous structure provides a capillary force that enables a two-phase fluid to circulate around the loop, transferring the heat from the evaporator to the condenser. The porous structure acts as a hydraulic barrier between the two phases and as a thermal barrier enabling the liquid evaporation. The ability of the capillary structure to fulfil its mission depends on its microstructure, and thus on the manufacturing process. Therefore, the objective of the present thesis is to join the thermal sciences with the material sciences in order to improve the existing manufacturing procedure or even to test new ones. It aims at obtaining capillary structures corresponding to heat transfer applications.
48

Refroidissement d'une armoire de Télécommunication avec Bouche Diphasique Thermosyphon / Two-phase cooling of a telecomunication cabinet

Mecheri, Boubakeur 17 February 2011 (has links)
France Télécom possède des armoires de télécommunication dont la puissance est limitée à cause de la dissipation thermique des équipements actifs qui entraîne une augmentation de leur température interne. La puissance des équipements limite le nombre de clients qu'il est possible de connecter aux services des réseaux à hauts débits. En plus de cette contrainte, les armoires sont soumises à des effets liés au climat (ensoleillement) qui peuvent être sévères et difficiles à maîtriser. Ceci nécessite l’intégration de systèmes de refroidissement permettant de maintenir la température des composants en dessous de la limite imposée (55°C). C’est dans cet objectif que ce travail de thèse a été mené au sein du laboratoire FEMTO-ST en collaboration avec le service R&D de France Télécom à Lannion. Le refroidissement par changement de phase est favorisé pour maintenir la température de fonctionnement du système stable et pour être utilisé dans les systèmes à haute densité de puissance. Les boucles diphasiques sont des systèmes de refroidissement pour le contrôle thermique et fonctionnent passivement sans pompage mécanique du fluide caloporteur. Après une étude bibliographique sur les boucles de refroidissement diphasiques et leurs applications, on a constaté que les boucles thermosiphons sont particulièrement adaptées aux applications où le faible coût, l'efficacité énergétique et la fiabilité d’entretien sont souhaités. Cette étude a été conduite en suivant un cahier de charge proposé par France Télécom qui consiste à : (i) développer un modèle numérique permettant de modéliser les transferts échangés entre l’armoire de télécommunication et le milieu ambiant, (ii) mener une étude expérimentale en vue de concevoir une boucle thermosiphon pour le refroidissement d’armoires de télécommunication.Le mémoire de cette thèse montre la limitation des systèmes de refroidissement classiques utilisant des écoulements d’air en convection forcée ou autre fluides sans changement de phase. Un modèle numérique est développé afin de permettre la prédiction des températures à l’entrée des boitiers chauffants pour différentes conditions climatiques. Le choix est porté sur l’utilisation d’une modélisation par réseau nodal. La modélisation est effectuée en tridimensionnel et en régime transitoire. Nous avons également modélisé le rayonnement solaire auquel est soumise l’armoire de télécommunication. Le modèle développé a été validé en effectuant une comparaison entre les résultats issus de la modélisation et ceux obtenus à partir des expériences menées au laboratoire et à la plateforme CLIMA chez France Télécom. Les essais sont effectués en régime transitoire en imposant une puissance électrique et en faisant varier la température ambiante ou la densité de flux thermique solaire. L’ensemble des résultats obtenus ont permis de constituer une base de données. Le deuxième objectif fixé dans le cadre de ce travail de thèse est la conception d’un système de refroidissement sous forme d’une boucle thermosiphon. La contrainte principale qui a guidée cette conception était le fait que la boucle doit refroidir l’armoire et assurer une température d’air à l’entrée des équipements inférieure à la limite imposée par la norme ETSI. Ceci nous a mené à concevoir un prototype de boucle thermosiphon dont la puissance thermique qu’il doit dissiper est imposée. On a montré que ce prototype permet de dissiper des puissances thermiques allant jusqu’à 470 W en utilisant une petite charge de npentane. Nous avons effectué des essais sur le refroidissement du prototype d’armoire de télécommunication en utilisant la boucle thermosiphon légèrement modifiée. On montre que les performances thermiques obtenues en utilisant un mode de refroidissement en boucle thermosiphon sont meilleures. Les boucles thermosiphons semblent intéressantes pour un refroidissement passif de matériels déployés dans un réseau de télécommunication... / France Telecom owns telecommunication cabinets whose power is limited because of the heat dissipation of active devices which leads to increased internal temperature. Power equipment limits the number of clients that can connect to networks services with high data rates. In addition to this constraint, the cabinets are subject to climate-related impacts (sunlight) that can be severe and difficult to master. This requires the integration of cooling systems to maintain the temperature of components below the limit (55 ° C). It is with this aim that this work was conducted in the laboratory Femto-ST in collaboration with the R & D department of France Telecom in Lannion.Cooling the phase change is promoted to maintain the operating temperature of the stable and system for use in systems with high power density. The loops are two-phase cooling systems for thermal control and operate passively without mechanical pumping of the coolant.After a literature review on two-phase cooling loops and their applications, it was found that the thermosyphon loops are particularly suitable for applications where low cost, energy efficiency and reliability maintenance are desired. This study was conducted by following a set of specifications proposed by France Telecom which involves: (i) develop a numerical model to model transfers exchanged between the cabinet and the telecommunications environment, (ii) conduct an experimental study to design a thermosyphon loop for cooling telecommunication cabinets.The memory of this thesis shows the limitation of conventional cooling systems using air flow forced convection or other fluids without phase change. A numerical model is developed to enable the prediction of temperatures at the inlet of heated enclosures for different climatic conditions. The choice is focused on the use of a nodal network modeling. The modeling is done by three-dimensional and transient. We also modeled the solar radiation, which applies to the telecommunications closet. The developed model was validated by comparison between the results of modeling and those obtained from experiments in the laboratory and platform CLIMA at France Telecom. The tests are performed by imposing transient electrical power and varying the temperature or heat flux density solar. All the results obtained allowed to establish a database.The second goal as part of this thesis is the design of a cooling system as a thermosyphon loop. The main constraint has guided this design was that the loop needs to cool the cabinet and provide air temperature at the inlet of the equipment below the limit imposed by the ETSI. This led us to design a prototype of thermosyphon loop with a heat output that must be dissipated is imposed. We showed that this prototype is used to dissipate the heat ratings up to 470 W using a small load of npentane.We conducted tests on the prototype cooling telecommunication cabinet using slightly modified thermosyphon loop. We show that the thermal performance obtained by using a cooling mode loop thermosyphon are better. Thermosyphon loops seem interesting for passive cooling of equipment deployed in a telecommunications network. Indeed, being able to use an air conditioning system independent and requires no energy should be promoted in a reduction of overall energy consumption.
49

Latent heat thermal energy storage for solar water heating using flat heat pipes and aluminum fins as heat transfer enhancers

Malan, Daniel Johannes 12 1900 (has links)
Thesis (MEng) -- Stellenbosch University, 2014. / ENGLISH ABSTRACT: Solar energy is a time dependent, high-temperature radiant energy resource. The utility of a solar thermal energy system increases if the hot temperature source is available when it is needed most. This is realized by the thermal storage of the solar energy. Thermal storage gives greater versatility to a solar energy system by decoupling the heat source from the heat sink. A large quantity of energy may be stored during the melting process in a phase change material (PCM) within a small temperature range. This molten PCM can then deliver its absorbed heat at a constant temperature in a heating application. In this study a phase change storage system (PCS) is developed and proposed for a solar water heating application. This PCS system stores more heat per unit mass than would be possible with water across the same temperature range. The heat transfer rate in and out of many PCMs is slow because of the low thermal conductivity of the PCM. However, heat transfer enhancers (HTE), such as heat pipes and fins may be added to enhance heat absorption and heat removal rates. Heat pipes have the inherent capability to transfer heat at high rates across large distances, even where the temperature difference is small. In this thesis a description is given of a PCS system consisting of paraffin wax as the PCM and which uses rectangular heat pipes in conjunction with aluminium fins to enhance heat transfer. The storage design is modular and each module has the characteristic that enhanced heat transfer in and out of the PCM is possible when the module is heated or cooled. It also has the capability to quickly absorb or alternatively to supply heat at a nearly constant temperature during the phase change of the module. A rectangular module was designed and built. The module was then analysed under controlled heat absorption and heat removal cycles. The heat up experiment involved an electrical kettle as the hot temperature source. The heat sink was a mains water heat exchanger. The experimental results were compared to those of a transient numerical model, which calculates theoretically how the module will perform thermally under the given test conditions. The numerical model of the experimental set-up was validated when it was found that the numerical model results resemble the experimental results. The numerical model was then adapted to simulate a novel solar water heater (SWH) with an additional PCS container. The improvement over previous designs is that the additional storage container can be heated to a higher temperature than the allowable geyser temperature. The system also heats up and cools down at a faster rate than would be possible without the HTEs. From the numerical simulation the size and performance of such a system is determined. This numerical analysis indicated that a phase change storage system in a SWH application will increase the hot water delivered by a given solar collector and geyser by increasing the storage capacity and by heating up the geyser overnight for early morning hot water use. / AFRIKKANSE OPSOMMING: Son energie is ‘n tyd afhanklike, hoë temperatuur radiasie energiebron. Die bruikbaarheid van ‘n sontermiese energie sisteem verhoog indien die hoë temperatuur bron beskikbaar is wanneer dit die meeste benodig word. Dit kan verwesenlik word deur die sonenergie termies te stoor. Termiese storing bied groter veelsydigheid aan ‘n sontermiese stelsel deur effektief die hittebron te ontkoppel van die hitte sink. ‘n Groot hoeveelheid energie kan, gedurende die smeltingsproses in ‘n faseveranderingsmateriaal binne ‘n nou temperatuurband gestoor word. Hierdie gesmelte materiaal kan weer op sy beurt in die waterverhittingstoepassing, die geabsorbeerde hitte teen ‘n konstante temperatuur oordra. In hierdie studie word ‘n sonwaterverwarmer stelsel wat aangepas is deur ‘n addisionele latente hittestoor daaraan te heg, voorgestel. Hierdie faseverandering hittestoor kan meer hitte stoor as wat water in dieselfde temperatuur band sou kon. Die hitteoordrag tempo na en van baie van die faseveranderingsmateriale (FVM) is egter as gevolg van die lae termiese geleidingskoëfisient, stadig. Hierdie eienskap kan gelukkig verbeter word deur hittepype en hitteoordrag verhogings materiaal soos vinne by te voeg. Hittepype het die inherente eienskap om hitte teen ‘n hoë tempo oor groot afstande, oor te dra, selfs oor ‘n klein temperatuurverskil. In hierdie tesis word ‘n ondersoek rakende ‘n faseverandering storingsisteem wat bestaan uit paraffien was as die FVM en reghoekige hittepype wat te same met met aluminium finne gebruik word om die hitteoordragtempo te verhoog, beskryf. Die stoorontwerp is modulêr en elke module het die kenmerk van hoë hitteoordrag na en van die FVM. Die module het verder ook die eienskap om vining hitte te absorbeer of hitte af te gee. Dit gebeur teen ‘n konstante temperatuur gedurende die faseverandering van die FVM. Presies so ‘n reghoekige module is ontwerp en gebou en onder beheerde hitte absorbering- en hitte verwyderingsiklusse analiseer. Tydens die verhittings eksperiment is ‘n elektriese ketel van gebruik gemaak wat gedien het as die hoë temperatuur bron. Die hitte sink was ‘n hitteruiler wat kraanwater van ‘n konstante hoogte tenk ontvang het. Die resultate van die volledige toets is met die resultate van tydafhanklike numeriese model vergelyk. Hierdie numeriese model bereken teoreties wat die module se storing verrigting onder gegewe toets omstandighede sal wees. Die numeriese model se resultate het goed vergelyk met die resultate van die eksperimente. Die numeriese model van die module is toe aangepas om ‘n sonwaterverwarmer met addisionele stoortenk wat fase verandering materiaal gebruik, te simuleer. Hierdie ontwerp is anders as vorige ontwerpe in die sin dat hoër temperature as wat die warmwatertoestel kan hanteer, in die faseverandering storingstenk, bereik kan word. Die sisteem kan ook as gevolg van die hitteoordrag verhoging materiaal, vinniger verhit of afkoel en teen ‘n vinniger tempo. Die simulasie van die sonwaterverwarmer met FVM word gebruik om die grootte en verrigting van die sisteem te bepaal. Hierdie numeriese model toon aan dat wanneer ‘n addisionele faseverandering storingstelsel in ‘n sonwaterverwarmer toepassing gebruik word, die warm water wat die verbruiker uit die sisteem kan verkry, kan verhoog. Die rede hiervoor is dat meer hitte gestoor kan word, wat beskikbaar gemaak word aan die warm water tenk.
50

Thermophotovoltaic energy conversion in space nuclear reactor power systems

Presby, Andrew L. 12 1900 (has links)
Approved for public release, distribution is unlimited / Thermophotovoltaic energy conversion offers a means of efficiently converting heat into electrical power. This has potential benefits for space nuclear reactor power systems currently in development. The primary obstacle to space operation of thermophotovoltaic devices appears to be the low heat rejection temperatures which necessitate large radiator areas. A study of the tradespace between efficiency and radiator size indicates that feasible multi-junction TPV efficiencies result in substantial overall system mass reduction with manageable radiator area. The appendices introduce the endothermodynamic model of a TPV cell and briefly assess the utility of advanced carbon-carbon heat pipe radiator concepts. / Lieutenant, United States Navy

Page generated in 0.0724 seconds