• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 9
  • 7
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 74
  • 74
  • 24
  • 20
  • 19
  • 18
  • 16
  • 14
  • 12
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Case Study on Residential Humidity Control at U.S. Coast Guard Bayamon Housing

Meneses, Ivan R. 21 November 2004 (has links)
The intention of this study is to investigate the main source of unacceptable humidity levels at the U.S. Coast Guard Housing located in Bayamon, Puerto Rico. The aim of this research is to use a systematic approach to resolve the humidity and mold issues by testing the least expensive solutions first. This study involves the recording of indoor air quality conditions for six months as an analysis tool to investigate current air conditions and to document how physical changes to the air conditioning units will affect the resulting air conditions. This research will investigate and implement different approaches geared to solving the high humidity issues. Some of the most relevant changes that will be tested are the installation of heat pipe technology, the addition of fresh air to existing air conditioning units to create positive pressure, and the review of the space load design of currently installed air conditioning units to determine if the units were over-designed. In addition, this study will verify the relationship between energy-saving thermostats and high humidity, determine any connection between roof leaks and high humidity indoors, and determine the estimated cost to the Coast Guard to implement the recommended changes.
62

Theoretical And Experimental Studies Of Capillary Pumped Loop And Loop Heat Pipe

Adoni, Abhijt Avinash 01 1900 (has links)
Capillary pumped loop (CPL) and loop heat pipe (LHP), are two-phase heat transport devices which rely on surface tension induced by a fine pore wick to drive a working fluid in a loop. These are based on a working principle similar to that of heat pipes -closed evaporation and condensation cycle being maintained by capillary pumping. CPLs and LHPs are gaining importance as a part of the thermal control system of modern high power spacecraft, electronic thermal management, cryogenics, etc. A mathematical model to simulate the thermo-hydraulic performance of CPLs and LHPs is developed to aid in the design of such a spacecraft thermal control system. In this study a unified mathematical model to estimate thermal and hydraulic performance of a CPL and an LHP -with a two-phase or a hard-filled reservoir is presented. The steady state model is based on conservation of energy and mass in the system. Heat exchanges between the loop and the surroundings and pressure drops in the loop are calculated. The constant conductance regime in a CPL or an LHP occurs when the reservoir is hard-filled. It also occurs in an LHP if the condenser is fully utilised. The heat leak across the wick becomes significant in a hard-filled LHP since the core is no longer saturated and hence the mass flow rate must be calculated using an energy balance on the outer surface of the wick. Theoretical studies indicate that the core of a hard-filled CPL and LHP is always sub-cooled. Hard-filled LHPs (with a bayonet) cannot be operated under all conditions. If the heat exchange between the compensation chamber (of an LHP with bayonet) and the ambient is small then such an LHP will not deprime if the hard-filling occurs before the condenser opens. Deprime due to hard-filling is not expected if it occurs after the condenser opens. A laboratory model is built to demonstrate the operation of these two devices and to correlate the theoretical predictions with the experimental observations. The CPL/LHP laboratory model is fabricated and designed so that different evaporator and reservoir designs can be integrated into the test-rig and tested with different working fluids. Experiments are conducted on a three-port CPL with a tubular axially grooved (TAG) evaporator. This CPL is operated with three different fluids -namely -Ammonia, Acetone and R134a. The CPL is operated for heat loads in the range of 75W to 400W with sink temperatures of -10◦C and 0◦C. The influence of reservoir temperature (35◦C and 43◦C) is also studied. The TAG evaporator is modified to operate in an LHP mode with R134a as the working fluid with heat loads in the range of 75W to 150W. This LHP does not exhibit typical “√” shaped operating characteristic due to large liquid inventory in the compensation chamber (CC). The R134a based LHP results suggest that large liquid inventory (in the CC) and absence of secondary wick significantly influence the thermal coupling between the core and the compensation chamber. Experiments are also conducted with a flat plate (FP) evaporator, in LHP operating mode, with Ammonia as the working fluid. This LHP can transport heat loads from 25W to 300W with a sink temperature at -15◦C. The experimental results indicate that ammonia is the best working fluid (moderate temperature regime) among all the working fluids tested, and that evaporation heat transfer coefficients in sintered Ni-wick are better. The correlation of the predicted temperatures on the transport lines and the saturation temperature (in LHPs) with the observations is good. Some of the salient conclusions from these experiments are that mass of charge can significantly influence the operating characteristics of a TAG LHP, even though the fluid in the CC is in two-phase condition. Theoretical predictions can be significantly affected when thermal and hydraulic development lengths in the condenser are comparable with the length of the sub-cooling section.
63

Refroidissement passif de batteries lithium pour le stockage d'énergie / Passive cooling of lithium batteries for energy storage

Rizk, Rania 28 September 2018 (has links)
Ce mémoire présente une étude sur le refroidissement passif de batteries lithium-ion. Il se compose de deux grandes parties. La première partie est une étude expérimentale et numérique du comportement thermique d’une batterie et la seconde partie est l’étude expérimentale d’un système passif pour le refroidissement de plusieurs batteries. Un banc d’essais expérimental a été conçu pour suivre l’évolution thermique des batteries soumises à différents courants de sollicitation. Les batteries prismatiques étudiées sont de type LFP et de capacité 60 Ah. Dans un premier temps, le comportement thermique d’une batterie soumise à des cycles de charge / décharge, est caractérisé expérimentalement. Nous montrons que la température n’est pas uniforme à la surface de la batterie et la zone la plus chaude est identifiée. Dans un second temps, un modèle numérique tridimensionnel a été développé pour prédire la température en tout point de la batterie. Ce modèle thermique permet de prédire notamment les températures à l’intérieur de la batterie, non mesurées expérimentalement et ceci, pour différents courants de sollicitation. Les données d’entrée du modèle sont issues des essais expérimentaux et de la littérature. Cette phase de caractérisation thermique de la batterie est essentielle pour la conception d’un système de refroidissement. Enfin, une étude expérimentale d’un système de refroidissement passif basé sur des caloducs et des plaques à ailettes est réalisée. Plusieurs configurations sont testées au fur et à mesure en apportant des améliorations aboutissant enfin à un système à dix caloducs munis de plaques à ailettes verticales au niveau du condenseur combinés à des plaques à ailettes placées sur les faces des batteries. / This thesis deals with the passive cooling of lithium-ion batteries. It consists of two large parts. The first part is an experimental and numerical study of the thermal behaviour of a battery and the second part is the experimental study of a passive system for the cooling of several batteries. An experimental test bench was designed to monitor the thermal evolution of batteries subjected to different currents. The prismatic batteries studied are made of lithium-iron-phosphate and have a capacity of 60 Ah. In a first step, the thermal behaviour of a battery subjected to charge / discharge cycles is experimentally characterized. We show that the temperature is not uniform at the surface of the battery and the hottest area is identified. In a second step, a three-dimensional numerical model was developed to predict the temperature at any point of the battery. This thermal model makes it possible to predict in particular the temperatures inside the battery, not measured experimentally and this, for different currents. The model input data are from experimental trials and literature. This phase of thermal characterization of the battery is essential for the design of a cooling system. Finally, an experimental study of a passive cooling system based on heat pipes and finned plates is carried out. Several configurations are tested progressively with improvements leading finally to a system with ten heat pipes with vertical finned plates at the condenser combined with finned plates placed on the faces of the batteries.
64

Návrh a optimalizace regulačního ventilu pro EHRS výměník / Design and optimization of the control valve for EHRS exchanger

Rada, Jakub January 2015 (has links)
This diploma thesis deals with the design and optimization of the control valve for EHRS exchanger. The first part of the thesis contains a research describing the historical development of internal combustion engines, their impact on the environment and especially the possible ways of waste heat recovery. The second part focuses on the design of the control valve and experimental measurement to verify its functionality. The final part contains an analysis of pressure losses of the designed valve to improve its construction disadvantages.
65

Boiling in Capillary-Fed Porous Evaporators Subject to High Heat Fluxes

Srivathsan Sudhakar (11171943) 23 July 2021 (has links)
<div>Thermal management in next generation power electronic devices, radar applications and semiconductor packaging architectures is becoming increasingly challenging due to the need to reject localized high heat fluxes as well as large total powers. Air cooling has been considered as a simple and reliable method for thermal management compared to architectures that incorporate liquid cooling. However, air-cooled heat sinks typically require effective heat spreading to provide the requisite level of area enhancement to dissipate high heat fluxes. Compared to solid metallic heat spreaders, advanced heat sinks that incorporate two-phase heat transfer devices such as vapor chambers can significantly enhance the power dissipation capabilities in such configurations. Vapor chambers are devices that utilize evaporation/boiling processes within a sealed cavity to achieve efficient heat spreading. In high-heat-flux applications, boiling can occur within the internal wick structure of the vapor chamber at the location of the heat input (i.e., the evaporator). The maximum dryout heat flux and thermal resistance of the device is dictated by the resulting two-phase flow and heat transfer in the porous evaporator due to boiling. While various works in the literature have introduced new evaporator wick designs to improve the dryout heat flux during boiling, the enhancement is limited to small, millimeter scale hotspots or at a very high thermal resistance. In additixon, the effective design of such evaporator systems requires mechanistic models that can accurately predict the dryout limit and thermal performance. </div><div> This thesis first explores the usage of a novel ‘two-layer’ evaporator wick for passive high heat flux dissipation over large heater areas at a low thermal resistance. Moreover, a new mechanistic (first principles based) model framework is introduced for dryout limit and thermal performance prediction during boiling in capillary fed evaporators, by considering the resulting simultaneous flow of two phases (liquid and vapor) within the microscale porous media.</div><div> The novel two-layer wick concept uses a thick ‘cap’ layer of porous material to feed liquid to a thin ‘base’ layer through an array of vertical liquid-feeding ‘posts’. Vapor ‘vents’ in the cap layer allow for vapor formed during the boiling process (which is constrained to the base layer) to escape out of the wick. This two-layer structure decouples the functions of liquid resupply and capillary-fed boiling heat transfer, making the design realize high heat flux dissipation greater than 500 W/cm2 over large heat input areas of ~1 cm2. A reduced-order model is first developed to demonstrate the performance of a vapor chamber incorporating such a two-layer evaporator wick design. The model comprises simplified hydraulic and thermal resistance networks for predicting the capillary-limited maximum heat flux and the overall thermal resistance, respectively. The reduced-order model is validated against a higher fidelity numerical model and then used to analyze the performance of the vapor chamber with varying two-layer wick geometric feature sizes. The fabrication of the proposed two-layer wick is then presented. The thermal performance of the fabricated wicks is characterized using a boiling test facility that utilizes high speed visualization to identify the characteristic regimes of boiling operation in the wicks. The performance is also benchmarked to conventional single-layer wicks. </div><div> It is observed that single-layer wicks exhibit an unfavorable boiling regime where the center of the heater area dries out locally, leading to a high value of thermal resistance. The two-layer wicks avoid local dryout due to the distributed feeding provided by the posts and enhance the dryout heat flux significantly compared to single-layer wicks. A two-layer design that consists of a 10 × 10 array of liquid feeding posts provided a 400% improvement in the dryout heat flux. Following a parametric analysis of the effect of particle size, two-layer wicks composed of 180 – 212 µm particles and a 15 × 15 array of liquid feeding posts yielded a maximum heat flux dissipation of 485 W/cm2 over a 1 cm2 heat input area while also maintaining a low thermal resistance of only ~0.052 K/W. The effect of vapor venting and liquid-feeding areas is also experimentally studied. By understanding these effects, a parametrically optimized design is fabricated and shown to demonstrate an extremely high dryout limit of 512 W/cm2. We identify that the unique area-scalability of the two-layer wick design allows it to achieve an unprecedented combination of high total power and low-thermal-resistance heat dissipation over larger areas than was previously possible in the literature.</div><div> The results from the characterization of two-layer wicks revealed that the overall performance of the design was limited by the boiling process in the thin base wick layer. A fundamental model-based understanding of the resulting two-phase flow and heat transfer process in such thin capillary-fed porous media was still lacking. This lack of a mechanistic model precluded the accurate prediction of dryout heat flux and thermal performance of the two-layer wick. Moreover, such an understanding is needed for the optimal design of advanced hybrid evaporator wicks that leverage capillary-fed boiling. Despite the existence of various experimental works, there are currently no mechanistic approaches that model this behavior. To fill this unmet need, this thesis presents a new semi-empirical model for prediction of dryout and thermal resistance of capillary-fed evaporator systems. Thermal conduction across the solid and volumetric evaporation within the pores are solved to obtain the temperature distribution in the porous structure. Capillary-driven lateral liquid flow from the outer periphery of the evaporator to its center, with vapor flow across the thickness, is considered to obtain the local liquid and vapor pressures. Experiments are conducted on sintered copper particle evaporators of different particle sizes and heater areas to collect data for model calibration. To demonstrate the wider applicability of the model for other types of porous evaporators, the model is further calibrated against a variety of dryout limit and thermal resistance data collected from the literature. The model is shown to predict the experimentally observed trends in the dryout limit with mean particle/pore size, heater size, and evaporator thicknesses. This physics–based modeling approach is then implemented into a vapor chamber model to predict the thermal performance limits of air-cooled heat sinks with embedded vapor chambers. The governing energy and momentum equations of a low-cost analytical vapor chamber modeling approach is coupled with the evaporator model to capture the effect of boiling in the evaporator wick. An example case study illustrating the usage of the model is demonstrated and compared to a purely evaporation-based modeling approach, for quantifying the differences in dryout limit prediction, signifying the need to account for boiling in the evaporator wick. </div><div> The understanding gained from this thesis can be utilized for the prediction of dryout and thermal performance during boiling in capillary limited evaporator systems. The work also suggests the usage of a universal relative permeability correlation for the two-phase flow configuration studied herein for capillary-fed boiling, based on a wide calibration to experimental data. The modeling framework can also be readily leveraged to find novel and unexplored designs of advanced evaporator wicks. From an application standpoint, the new vapor chamber model developed here can be used for the improved estimation of performance limits specifically when high heat fluxes are encountered by the device. This will enable better and informed design of air-cooled heat sink architectures with embedded vapor chambers for high performance applications. </div><div><br></div>
66

OPTIMAL SOLUTIONS FOR PRESSURE LOSS AND TEMPERATURE DROP THROUGH THE TOP CAP OF THE EVAPORATOR OF THE MICRO LOOP HEAT PIPE

ARRAGATTU, PRAVEEN KUMAR 02 October 2006 (has links)
No description available.
67

Simulations of heat and mass transfer within the capillary evaporator of a two-phase loop / Simulation tridimensionnelle des échanges de masse et de chaleur dans les évaporateurs capillaires

Mottet, Laetitia 23 February 2016 (has links)
Le contrôle thermique des composants électroniques embarqués dans les engins spatiaux est souvent assuré par des boucles fluides diphasiques à pompage capillaire (Loop Heat Pipe (LHP) ou Capillary Pumped Loop (CPL)). La présente étude est centrée sur les évaporateurs des LHP. Ils sont composés principalement d’un bâti métallique, d’une mèche poreuse et de cannelures. Le milieu poreux est initialement saturé en liquide. La charge thermique à évacuer est appliquée sur le bâti entraînant la vaporisation du liquide au sein de la mèche. La vapeur est ensuite récoltée au sein des cannelures pour être évacuée. L’étude est effectuée sur une cellule unitaire de l’évaporateur. Dans le but d’étudier les transferts de masse et de chaleur, un modèle de réseau de pores 3D dit mixte a été développé. Les champs de pression et de température sont calculés à partir des équations macroscopiques tandis que la capillarité est gérée à l’aide d’une approche réseau de pore classique. L’un des avantages d’une telle formulation est de pouvoir accéder à la répartition des phases liquide et vapeur au sein de l’espace poral du milieu poreux. Il a ainsi été mis en évidence qu’une zone diphasique (zone où le liquide et la vapeur coexistent) se met en place pour une large gamme de flux lorsque la vapeur apparait dans la structure capillaire. Cette zone diphasique est localisée sous le bâti métallique et est corrélée avec les meilleures performances thermiques de l’évaporateur. Cette observation diffère fortement de l’hypothèse souvent considérée de la présence d’une zone sèche dans cette région. Trois positions différentes de cannelures ont été étudiées. Il a ainsi pu être mis en évidence que la plus large gamme de flux, pour laquelle les performances de l’évaporateur sont les meilleures, est obtenue lorsque les cannelures sont usinées à la surface extérieure de la mèche. Toujours dans le but d’améliorer les performances thermiques de l’évaporateur, une étude paramétrique a été menée pour mettre en évidence les paramètres qui influencent positivement la conductance de l’évaporateur. Finalement, l’étude de l’influence d’une mèche biporeuse/bidispersée, c’est-à-dire d’un milieu poreux caractérisé par deux tailles de pores/liens différentes, a été menée. La distribution des phases liquide et vapeur au sein de la structure capillaire bidispersée est différente de celle d’un milieu mono-poreux du fait des chemins préférentiels créés par les larges pores. Par ailleurs, l’analyse thermique a montré qu’un tel milieu poreux permet de réduire considérablement la température du bâti ainsi que d’augmenter les performances thermiques de l’évaporateur. Un deuxième modèle basé sur une approche continue a été développé. Cette méthode utilise l’algorithme IMPES (IMplicit Pressure Explicit Saturation) et est couplé à la résolution du champ de température avec changement de phase. Ce type de résolution permet d’accéder à un champ de saturation. Les résultats ainsi obtenus sont en bon accord avec ceux prédits par le modèle réseau de pores mixte. Le modèle continu, moins gourmand en temps de calcul, permet d’envisager des simulations sur une plus grande partie de l’évaporateur. / The thermal control of electronic devices embedded in spacecraft is often carried out by capillary twophase loop systems (Loop Heat Pipe (LHP) or Capillary Pumped Loop (CPL)). This thesis focuses on the LHP evaporators. They mostly consist of a metallic casing, a porous wick and vapour grooves. The porous medium is initially saturated with liquid. The heat load is applied at the external surface of the casing inducing the vaporisation of the liquid within the wick. The vapour is then evacuated thanks to the vapour grooves. A unit cell of the evaporator is studied and corresponds to our computational domain. A so-called 3D mixed pore network model has been developed in order to study the heat and mass transfers. Pressure and temperature fields are computed from macroscopic equations, while the capillarity is managed using the classical pore network approach. The main advantage of such formulation is to obtain the liquid-vapour phase distribution within the porous medium pore space. The work highlights that a two-phase zone (characterized by the coexistence of the liquid and the vapour) exists for a large range of fluxes when vaporisation takes place within the capillary structure. This twophase zone is located right under the casing and is positively correlated with the best evaporator thermal performances. This result differs from the often made assumption of a dry region under the casing. Three different groove locations are tested. This investigation highlights that evaporator thermal performances are the best over a large range of fluxes for grooves manufactured at the external surface of the wick. In complement, a parametric study is performed to highlight parameters which impact positively the evaporator thermal performances. Finally, a biporous/bidispersed wick, i.e. a wick with a bimodal pore/throat size distribution, is studied. The liquidvapour phase distribution within the capillary structure is different from the one for a monoporous structure due to preferential vapour paths created by the large throats and pores-network. Moreover, the thermal analysis shows that such a porous medium permits to reduce considerably the evaporator wall temperature and to increase the evaporator thermal performances. A second model is developed based on a continuum approach. This method uses the IMPES (IMplicit Pressure Explicit Saturation) algorithm coupled with the heat transfer with phase change. Results are in good agreement with those predicted by the mixed pore network model. The continuum model, requiring less computing time, should allow considering larger sub domains of the evaporator.
68

Thermo-hydrodynamics of an extended meniscus as unit-cell approach of pulsating heat pipe / Thermo-hydrodynamique d'un ménisque étendu que l'approche de l’unit-cell du caloduc oscillant

Rao, Manoj 18 September 2015 (has links)
Ce travail fait une tentative pour expliquer les oscillations induites thermiquement auto-entretenue d'un système à deux phases constitué d'un liquide-vapeur confinée ménisque isolé (un bouchon de liquide unique attenant à une bulle de vapeur) à l'intérieur d'un tube capillaire circulaire, la longueur du tube être exposé à un gradient de température net, créant ainsi un cycle continu de l'évaporation et la condensation. Ce système représente la simple « unité-cellule" version d'un caloduc oscillant (PHP). La compréhension fondamentale de son comportement de transport menant à oscillations auto-soutenue est essentielle pour la construction des modèles mathématiques jusque-là inexistants du système PHP complet. Tout d'abord, la visualisation des oscillations de l'unité de cellules a été effectuée dans des conditions aux limites thermiques contrôlées. Ici, une compréhension nouvelle et unique de la dynamique du système a été atteint par une synchronisation en temps réel de la mesure de pression interne avec la vidéographie haute vitesse qui a été utilisé pour visualiser et enregistrer les oscillations du ménisque et le mince film de liquide qui est mis sur le mur lorsque le ménisque quitte l'évaporateur. Un modèle numérique a été développé pour le système constitué par un bouchon de vapeur et un bouchon de liquide oscillant dans un tube fermé à une extrémité et relié à un réservoir à une pression constante à l'autre extrémité. Le principe de modélisation avait été posé lors de travaux antérieurs. Quelques modifications ont été jamais moins introduites dans ce travail pour prendre en compte les particularités de la nouvelle expérimental et pour améliorer le liquide modèle film de l'évaporation à la lumière des résultats expérimentaux. Une étude paramétrique a également été réalisée pour comprendre les implications des différents facteurs sur le fonctionnement d'un tel système. / This work makes an attempt to explain the self-sustained thermally-induced oscillations of a two-phase system consisting of an isolated confined liquid–vapour meniscus (a single liquid plug adjoining a vapour bubble) inside a circular capillary tube, the tube length being exposed to a net temperature gradient, thereby creating a continuous cycle of evaporation and condensation. This system represents the simplest ‘unit-cell’ version of a Pulsating Heat Pipe (PHP). The fundamental understanding of its transport behavior leading to self-sustained oscillations is vital for building the hitherto non-existent mathematical models of the complete PHP system. First, visualization of the oscillations of the unit-cell has been done under controlled thermal boundary conditions. Here, a unique and novel understanding of the system dynamics has been achieved by real-time synchronization of the internal pressure measurement with high-speed videography that was used to visualize and record the meniscus oscillations and the thin liquid film that is laid on the wall when the meniscus leaves the evaporator. A numerical model was developed for the system consisting of a vapour plug and a liquid slug oscillating in a tube closed at one end and connected to a reservoir at a constant pressure at the other end. The modeling principle had been posed in previous work. Some modifications were never the less introduced in this work to take into account the peculiarities of the new experimental set-up and to improve the liquid film evaporation model in the light of the experimental results. Also a parametric study was carried out to understand the implications of the various factors on the working of such system.
69

Modélisation instationnaire des transferts de masse et de chaleur au sein des évaporateurs capillaires / Transient model of heat and mass transfer in capillary evaporators

Louriou, Clément 13 December 2010 (has links)
Dans ce travail, nous nous intéressons à la dynamique de croissance d'une poche de vapeur par vaporisation en milieu poreux, en relation avec l'analyse des transferts couplés de masse et de chaleur dans les mèches poreuses des boucles fluides diphasiques à pompage capillaire. Nous proposons un modèle pour les régimes transitoires, régimes encore très mal compris en dépit de leur grande importance pratique (phase de démarrage, variations de puissance, etc.). Une approche de type "réseau de pores" est adoptée et permet de prédire la distribution des phases à l'échelle de l'espace des pores. Dans une étape préliminaire, une étude spécifique de drainage (déplacement d'un fluide mouillant par un fluide non mouillant) par pressurisation du fluide envahisseur est abordée. Cette étape, nécessaire au développement et au test d'un algorithme de croissance de poche de gaz, permet de valider le modèle hydrodynamique quantitativement par une étude expérimentale dédiée. Il est mis en évidence le rôle des films liquides et de la compressibilité du gaz. Le modèle est ensuite complété par l'ajout des transferts thermiques et du changement de phase. Ici encore, une étude expérimentale dédiée est proposée, afin de valider l'outil numérique mis en place. Enfin, un ultime ajout au modèle permet de prendre en compte les phénomènes particuliers liés à l'imbibition (déplacement d'un fluide non mouillant par un fluide mouillant). Des résultats statistiques concernant la réponse dynamique d'une poche de vapeur à l'application d'une densité de puissance sont présentés, ainsi que certaines situations oscillantes dans la mèche poreuse. Nous finissons par discuter de l'influence du re-mouillage de la mèche poreuse, phénomène qui entraîne une hystérésis significative. / We study the dynamic of a vapour pocket growing by vaporisation in a porous medium, in relation with the analysis of coupled heat and mass transfers in the porous wick of loop heat pipes (LHP). We propose a model for transient modes, which are still poorly understood in spite of their importance (start-ups, power transitions, etc.). This work is based on a pore network approach enabling us to predict the phase distribution at the pore space scale. In a preliminary step, a study of drainage (displacement of a wetting fluid by a non wetting one) by pressurisation of the invading fluid is performed. This step is necessary for the development and the test of the vapour pocket growing algorithm. A quantitative validation of the hydro-dynamical model is obtained thanks to a dedicated experimental study. The influence of liquid films as well as gas compressibility is investigated. Our model is then improved to deal with heat transfer and phase change. Again, a dedicated experimental study is performed in order to validate the numerical tool. The model is finally improved a last time to deal with the effects due to imbibition mechanisms (displacement of a non wetting fluid by a wetting one). Statistical results concerning the dynamic response of a vapour pocket to the application of a power density are presented, andsome specific oscillating situations in the wick are identified. We finish discussing the influence of the re- etting of the porous wick, a phenomenon which induces a significant hysteresis effect.
70

Návrh systému řízení a diagnostiky ohřevu vody s využitím solární energie / Design of system control and diagnostics water heating using solar energy

Kužel, Kristián January 2013 (has links)
This thesis deals with problems related to heating of hot service water. It focuses on solar water heating, describes individual types of solar panels and summarizes the existing information about solar water heating. It demonstrates actual problems of solar system solution on a specific example of a two-generation family house, where it analyses possibilities of diagnostics and control of such system. It also deals with suggestions of possible expansion of the current solar system.

Page generated in 0.0712 seconds