• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 43
  • 38
  • 23
  • 17
  • 16
  • 16
  • 13
  • 10
  • 9
  • 9
  • 8
  • 7
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Complex soil-microorganism-pollutant interactions underpinning bioremediation of hydrocarbon/heavy metal contaminated soil.

Phaal, Clinton B. 14 June 2013 (has links)
This study evaluated the efficacy of bioremediation as a treatment option for a hydrocarbon and heavy metal contaminated soil. Microbial degradation of hydrocarbons under aerobic, nitrate-reducing and sulphate-reducing conditions was examined. Nutrient supplementation with nitrogen and phosphate as well as aeration seemed to be the most important factors for enhancing biodegradation. From initial batch studies, a carbon: nitrogen ratio of 50: 1 was found to be optimal for biodegradation. However, very low carbon to nitrogen ratios were undesirable since these inhibited microbial activity. Manipulation of the pH did not seem to be beneficial with regard to hydrocarbon biodegradation. However, low pH values induced elevated concentrations of leachate heavy metals. Aerobic conditions provided optimal conditions for hydrocarbon catabolism with up to 54% of the original contaminant degraded after 2 months of treatment. Further treatment for up to 20 months did not significantly increase hydrocarbon biodegradation. Under nitrate- and sulphatereducing conditions, 6% and 31 % respectively of the initial contaminant was degraded after 2 months while after a further 20 months, 50% and 42%, respectively were degraded. The addition of soil bulking agents and the use of sparging did not significantly increase biodegradation. Similarly, the addition of inoculum did not influence biodegradation rates to any great degree. The presence of heavy metals up to concentrations of 400 mgt1 Mn, 176 mgt1 Zn and 94 mgt1 Ni did not reduce microbial activity within the soil. During the treatment phase, heavy metal and hydrocarbon migration were limited even under water saturation and low pH conditions. A Biodegradation Index was developed and evaluated and may, potentially, find use as an in situ assessment technique for microbial hydrocarbon catabolism. The iodonitrophenyltetrazolium salt assay was also found to be an effective and rapid alternative assay for monitoring bioremediation progress. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 1996.
32

The partitioning of Cd, Cu, Pb and Zn between the solid and solution phase of forest floor horizons in podzolic soils near metal smelters /

MacDonald, James Douglas January 2005 (has links)
The emission of trace metals (TMs) into boreal forest regions of the northern hemisphere is an important environmental issue due to their potential detrimental impacts on these sensitive ecosystems. One of the foremost factors controlling metal cycling is the chemistry of the overlying organic forest floor of the forest soil. In this thesis we examine the chemistry of forest floor horizons of podzolic soils. Our goal is to improve our ability to predict the partitioning of metals between the soil solid and solution phases. / We developed a standard protocol to produce solutions that resemble lysimeter solutions from podzolic soils using air-dried samples. We hypothesized that the stabilization point of the electrical conductivity (EC) of the soil solution is indicative of the point in which soluble salts and organic material precipitated during sampling and storage are removed from the soil particle surfaces. Solutions produced by leaching the soils, once the EC of wash solutions had stabilized, were comparable to lysimeter solutions from the area where samples were collected with respect to the concentrations of divalent cations, pH, EC and dissolved organic carbon (DOC). The applicability of this procedure to trace metal partitioning in forest floors was explored. Laboratory extractions produced partition coefficients (log Kd) similar to observed lysimeter solutions ranging from 3.4 to 3.9 for Cd, 3.4 to 3.9 for Cu, 3.4 to 4.1 for Ni, 4.1 to 5.2 for Pb and 3.2 to 3.5 for Zn. According to a semi-mechanistic regression model based on observed lysimeter concentrations, the metal concentrations in solution were appropriate relative to known factors that influence metal partitioning in soils: pH, the concentrations of total metals and DOC. / While chemical characteristics of soils have been consistently observed to play important roles in the partitioning and toxicity of metals we wished to place the importance of the chemical characteristics of soil on mobility and toxicity in context. We interpreted field data that had been collected from transects established with distance from two point source emitters in Rouyn PQ, and Sudbury ON. Canada find developed equations that predict dissolved metal concentrations from total metal concentrations, soil pH, soil organic matter (SOM), and DOC contents. We integrated these equations into a simple box model that calculates changes in the concentration of metals in the organic and upper mineral horizons and includes a loop for vegetative return of metals to the forest floor.
33

Assessment of trace element contamination in streambed sediment and spatial associations in Palolo Valley watershed, Honolulu, Oʻahu, Hawaiʻi

Hotton, Veronica K January 2005 (has links)
Thesis (M.A.)--University of Hawaii at Manoa, 2005. / Includes bibliographical references (leaves 146-156). / Also available by subscription via World Wide Web / xxi, 156 leaves, bound ill., maps 29 cm
34

Chemical characterisation of sediments and its correlation with the bioavailability of selected heavy metals

Pentz, Tarryn Susan 21 August 2012 (has links)
M.Sc. / The study looks into the sediment-bound metals (Fe, Mn, Cu, Cr, Cd, Co, Pb, Ni, Zn and Hg) of the Leeu/Taaibospruit catchment, which is impacted by agricultural, industrial and urban development. A number of chemical procedures, including total metal determination, the Tessier-sequential extraction scheme, the BCR Protocol, evaluation of the % TOC and determination of AVS to SEM ratios were applied to sediment samples collected from eight sites along the two rivers in the study area. Samples were collected during both high flow (summer) and low flow (winter) conditions. Following the chemical characterisation, bioaccumulation testing was conducted by exposing chironomid larvae to the sediment samples collected in from the study sites and determining their metal uptake relative to control specimens in uncontaminated sediments. These bioaccumulation results were then considered in conjunction with the chemical parameters in an attempt to identify any trends and correlations. Significant spatial and temporal differences were found in the metal concentrations from the study area. The total extraction results indicated that abundant amounts of Cr and Fe are present throughout the system. This was expected based on the make-up of the underlying geology. In addition, one of the sites, which is in close proximity to the town of Sasolburg, was identified as a potentially contaminated site. This site had significantly higher concentrations of Zn, Cu, Pb and, most notably, Hg when compared to the other sites. The elevated metal concentrations are most evident in samples collected under low flow conditions, but are also seen in the high flow Hg concentrations. Sequential extractions showed that Fe and Cr are concentrated in the residual phases of the sediment. Copper is largely present in the oxidisable fraction under low flow conditions, but also has considerable residual and reducible chemical forms. Manganese and Zn are distributed among all the different chemical phases and are therefore likely to be readily available for uptake by benthic organisms. The TOC was found to be highest during low flow conditions and at those sites with observable amounts of organic debris from the surrounding reeds and other vegetation. The AVS/SEM ratios were used to predict that due to the formation of insoluble metal sulphides, Cd, Cu, Hg, Ni, Pb and Zn are unlikely to be bioavailable at certain sites, i.e. the contaminated site 1 and at site 5, which only has agricultural impacts. In general, the bioaccumulation of Fe, Co, Ni, Cr and Mn was higher in the test larvae than the control larvae. Bioaccumulation of Cu, Pb, Zn and Hg levels were only higher than the control worms at sites where contamination was suspected to have taken place. Average bioaccumulation factors indicated that Hg is the metal that is most readily available for bioaccumulation, followed by Cu, Zn and Mn. All of these metals were bioconcentrated in the tissues of the test chironomids, while levels of Fe, Ni, Cr and Pb were found to be lower in the organisms than in the sediments. Although many of the chemical fractions were found to correlate significantly with the uptake of the different metals, the best overall correlation existed between the bioaccumulated metal and the total non-residual fraction. In fact, the sum of the first four steps of the Tessier-scheme correlated significantly with the bioaccumulated metal for all elements considered in the calculation, except for Pb. Additionally, the predictions made by the AVS model were found to be useful in justifying the behaviour and accumulation patterns of Hg, Zn and Cu at certain sites. The correlations and bioavailability clearly differed spatially, temporally and among the different elements. It is therefore suggested that prediction of the bioavailability and subsequent uptake of sediment-bound metals will require as many chemical and environmental factors as possible, and should include bioaccumulation and toxicity testing in order to examine the validity and completeness of these predictions.
35

The partitioning of Cd, Cu, Pb and Zn between the solid and solution phase of forest floor horizons in podzolic soils near metal smelters /

MacDonald, James Douglas January 2005 (has links)
No description available.
36

Toxicological assessments of PAHs, OCPs and heavy metals in sediments at Mai Po and Deep Bay, Hong Kong

Kwok, Chun Kit 01 January 2008 (has links)
No description available.
37

Bioavailability and bioremediation of heavy metals and nutrients in cultivated and fallowed soils following irrigation with treated wastewater

Phadu, Moedisha Lorraine January 2019 (has links)
Thesis (MSc. Agriculture (Soil Science)) -- University of Limpopo, 2019 / Global shortage of fresh quality water has led to the use of treated wastewater in arid and semi-arid regions. Although, the treated wastewater has proven to be the best solution in ameliorating pressures brought by water shortage, it contains toxic heavy metals, some in high concentrations that could possibly pose health risks and degrade soil quality. Therefore, the objectives of the study were to determine the vertical and horizontal distribution of bioavailable heavy metals on virgin, cultivated and fallowed fields and to investigate the bioremediation abilities of selected soil microbes on non-essential heavy metals in cultivated and fallowed soils following irrigation with treated wastewater at University of Limpopo (UL) Experimental Farm. Three fields, namely, virgin field (VF), cultivated field (CF) and fallowed field (FF), each being 6.4 ha, were each divided into 40 equal grids, equivalent to 40 m × 40 m, which were used in vertical assessment of heavy metals. Soil profiles were established inside each grid and soil samples collected at 0-20; 20-40 and 40-60 cm soil depth for further laboratory analysis. The soil samples were analyzed for basic soil physico-chemicals, namely, particle size distribution, soil pH (H20 and KCl), electrical conductivity (EC), reduction potential (Eh), organic carbon (OC) and cation exchange capacity (CEC). Five essential heavy metals namely zinc (Zn), iron (Fe), copper (Cu), cobalt (Co), manganese (Mn) and five non-essential heavy metals, namely, arsenic (As), chromium (Cr), lead (Pb), aluminium (Al), and cadmium (Cd), were also extracted from the soil samples. Heavy metal resistant Gram-negative (–) and Gram-positive (+) bacteria were isolated from the soil and identified as Providencia rettgeri (–), Enterobacter cloacae (–), Bacillus cereus (+) and Arthrobacter aurescens (+). xix The isolated bacteria were cultured and inoculated in heavy metal-contaminated soils and incubated for 12 weeks to bioremediate the non-essential heavy metals. Results obtained suggested that the treatments had no significant (P ≤ 0.05) effects on vertical distribution of all the essential and non-essential heavy metals among the three fields. However, on average Co was above the permissible level at 53 mg/kg in CF at 0-20 cm and although all the other essential heavy metals increased, they were still within the permissible levels. The concentration of As was also above the permissible levels in CF with an average concentration of 4.30 mg/kg. Cadmium levels were also above the permissible levels in CF with an average concentration of 1.146 mg/kg in CF and this increased by 0.46 units from VF which had an average value of 1 mg/kg. However, fallowing reduced Cd to 0.51 mg/kg which was below or within the expected limits in soil previously irrigated with treated waste water. Gram-positive bacteria reduced more concentrations of non-essential heavy metals separately and combined, especially in the fallowed field. Irrigation with treated wastewater has shown to have both negative and positive effects on the concentration of essential and non-essential heavy metals in cultivated and fallowed fields. Bioremediation coupled with fallowing has been proven to be the best solution in ameliorating heavy metal toxicity while naturally improving the quality of the soil. / National Research Foundation (NRF)
38

Heavy metal accumulation in soils at three field sites subject to effluent irrigation.

Xiong, Xianzhe, mikewood@deakin.edu.au January 2003 (has links)
Three field sites were chosen to study the environmental assimilative capacity of heavy metals in soil. These sites were the Werribee Farm and the Myome Farm in Australia and Shenyang Zhangshi Irrigation Area in China. The Werribee Farm and the Shenyang Zhangshi Irrigation Area received sewage treatment and application on land for a long time. The Myome farm is an experimental site in which investigations on land application of municipal wastewater on water repellent soils is currently being trailed. Heavy metal contamination, in particular Cr, Cu and Zn, in the Land Filtration soil of Werribee Farm was widespread. More than a century of sewage irrigation has occurred in the Werribee Farm. The temporal distribution pattern of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) in the soil at this site follow an exponential trend with time and the spatial distribution pattern of accumulation of heavy metals in different paddocks correlates with the number of years of sewage irrigation at that site in the Farm. Extensive sewage irrigation at Shenyang Zhangshi Irrigation Area resulted in significant Cd pollution in soil-plant (rice) system and poses a significant threat to the health of local people. Even after eight years since cessation of sewage irrigation, the bioavailable fractions of Cd in the soil as analyzed by sequential extraction techniques were very high thus illustrating long-term persistence. The simultaneous competitive adsorption of metals in water repellent soils (at Myome Farm in South Australia) was studied. In the competitive situation, Cr, Pb and Cu are the heavy metal cations more strongly adsorbed by the soil, whereas Cd, Ni and Zn are the least adsorbed. The increase in Freundlich adsorption capacity by clay amendment suggested that clayed soils are capable sorption of higher heavy metal loadings compared to the non-clayed water repellent soil, which is more vulnerable to heavy metal inputs. A simple model of environmental assimilative capacity is proposed. The results of comparison of the three field sites shows that the Werribee Farm has a higher environmental assimilative capacity of heavy metals in soil than the soils at Shenyang Zhangshi Irrigation Area and Myome Farm, however heavy metal contamination at Werribee Farm is still a concern. The model of environmental assimilative capacity of heavy metals in soil is an effective tool to assist management of effluent applied land irrigation systems and can be used to better design environmental engineering systems.
39

Historical inventory of sedimentary carbon and metals in a Bay of Fundy salt marsh

Clegg, Yolanda. January 1999 (has links)
In 1996, four cores (∼30 cm depth) were extracted from the high marsh zone of Dipper Harbour salt marsh in the Bay of Fundy. Soil bulk densities are shown to be controlled by mineral density and are higher than those reported for salt marshes in the northeastern United States. Examination of variations in mineral content suggests that regular tidal action and ice rafting deposits the majority of the mineral sediment to the high marsh zone. Dating techniques (based upon pollen, 137Cs, 210Pb and total Pb) were applied to selected cores, suggesting accretion rates from 0.25 to 0.31 cm yr-1 which are higher than the rates of local relative sea level rise. Correlation of trace metal densities (Cu, Fe, Pb and Zn) to Al densities were used to justify Al normalization. After consideration of natural sources and adsorption factors, the normalized Pb profiles are shown to reflect historical pollution levels of leaded gasoline consumption. Carbon storage values in the upper 25 cm of sediment range from 7.3--10.5 kg C m-2 and carbon accumulation rates vary from 95 to 124 g C m-2 yr-1, representing 15--29% of the salt marsh macrophyte productivity.
40

Heavy metal uptake and accumulation in agricultural crops in urban areas of the Western Cape

Sheldon, Bonita Joy January 2005 (has links)
Thesis (MTech (Physical Sciences))--Cape Peninsula University of Technology, 2005. / A research study into heavy metals in the Cape Town area, found significant amounts of potentially toxic metals such as lead, cadmium, chromium and iron leaching into the underground aquifer. A further additional study conducted on a community garden in Khayelitsha, showed that vegetable crops have the tendency to accumulate certain heavy metals if they are present in soil and water resources. This study was centered around the Philippi Horticultural Area, which is a large significant farming area within the Cape Metropolitan Region. The significance of the study lies in the fact that at least 50% of the local farmers' produce is sold directly to street traders, residents, local supermarket-chains and restaurants. The remainder of the produce is sold at the Epping Market. The purpose of this study was to investigate heavy metal accumulation in various vegetable crop species taken from some of the local farms in the Phillipi Farming area with the objective to: • investigate heavy metal accumulation in various vegetable crop species taken from some local farms in the Phillipi Farming area. • determine the concentrations of heavy metals present in water and soil resource since these will be the primary source of heavy metals to the vegetables. • determine the soil pH and soil organic matter as these two factors would determine the bie-availability ofthe heavy metals. • identify those crops that pose a definite health risk by means of comparing the determined results to the allowed limits.

Page generated in 0.0944 seconds