• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 12
  • 10
  • 10
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The Role of Norrie Disease Pseudoglioma (Ndp) in Cerebellar Development/Tumorigenesis and Its Relationship with the Sonic Hedgehog Pathway

Tokarew, Nicholas January 2017 (has links)
Medulloblastoma (MB), a cancer of the cerebellum, is the most common solid tumor affecting children. In the cerebellum, Sonic Hedgehog (Shh) drives the proliferative expansion of granule neuron progenitors (GNP). These cells are located in the external granule layer (EGL) and are the cells of origin of Shh-MB. We recently identified Norrie Disease Pseudoglioma (Ndp) as a novel downstream target of Hh signaling in the developing retina. Ndp encodes an X-linked cysteine-rich secreted protein called Norrin, which is best known for its role in angiogenesis and blood brain barrier (BBB) maintenance in the developing retina and cerebellum, respectively. Norrin mediates this effect by binding to its receptor Frizzled4 (Fzd4) and co-receptors LRP5/6 and Tpsan12 to activate the canonical, β-catenin-dependent Wnt signaling pathway in endothelial cells (ECs). We detected the expression of Ndp and all required receptors in mouse GNPs and MB samples. To investigate a potential role for Ndp in Hh-driven MB, we genetically and pharmacologically inactivated Ndp/Fzd4 signaling in Ptch+/- mice (a mouse model for human Gorlin syndrome), which dramatically increased the incidence and reduced the latency of MB. This accelerated rate of tumorigenesis was caused by an increase in the number of preneoplastic lesions (PNLs), the precursor lesions to MB, and a faster conversion of these lesions to MB. We showed that Ndp mediates this increase in tumorigenesis by signaling through endothelial cell receptor Fzd4 to alter the GNP stroma, which is characterised by 5 major alterations: 1) activated angiogenic program, 2) open BBB, 3) aberrant deposition of extracellular matrix, 4) aberrant lymphocyte recruitment and 5) reduction in meningeal lymphatic vasculature. We propose that these stromal alterations are associated with a pro-tumor microenvironment that promotes DNA damage in GNPs and leads to enhanced lesion formation and progression towards MB. This research highlights 1) an unanticipated role for Ndp/Fzd4 signaling in Shh-MB initiation and progression, 2) a role for stromal signaling in the regulation of MB development and 3) a previously undescribed role for Ndp signaling in maintaining meningeal cerebellum lymphatic vessels.
12

The role of Hedgehog signaling and its interaction with EGFR-pathway in cutaneous squamous cell carcinoma

Khizanishvili, Natalia 31 December 1100 (has links)
No description available.
13

FUNCTION OF PTEN IN STROMAL FIBROBLASTS IN REGULATING PACREATIC TUMORIGENESIS AND IN REGULATING AUTOPHAGY

Liu, Xin January 2016 (has links)
No description available.
14

Molecular mechanisms of the anti-cancer action of schweinfurthins

Zheng, Chaoqun 01 May 2015 (has links)
Schweinfurthins are a family of natural products with significant anti-cancer activities. They were originally identified in the National Cancer Institute (NCI) human 60 cancer cell line screening. The growth inhibition profile of schweinfurthins is distinct from other clinically used anti-cancer agents, indicating that they have a novel mechanism of action or have a previously unrecognized protein target. Previous studies showed that schweinfurthins affect multiple cellular processes in cancer cells. For example, schweinfurthins can alter cytoskeleton organization, induce ER stress and apoptosis, and inhibit the mevalonate pathway. The mevalonate pathway is responsible for the production of isoprenoids and cholesterol, which have been shown to play regulatory roles in the Hedgehog (Hh) signaling pathway. In this study, we found that the Hh signaling pathway in NIH-3T3 and SF-295 cells was inhibited by schweinfurthins. The supplementation of mevalonate and cholesterol partially restored Hh signaling, indicating that schweinfurthins inhibit Hh signaling partially by down-regulating the products from the mevalonate pathway. Interestingly, schweinfurthins in combination with cyclopamine, an inhibitor of the Hh singaling pathway, synergistically decreased cell viability. In order to better understand the underlying mechanism of the anti-cancer action of schweinfurthins, we attempted to identify the protein target of schweifnurthins. Affinity chromatography was performed to pull down the protein target. We found that schweinfurhtins bound to the M2 isoform of pyruvate kinase (PKM2) and inhibit its pyruvate kinase activity. Knockdown of PKM2 by siRNA increased the sensitivity of SF-295 cells to schweinfurthins. The inhibition of PKM2 by schweinfurthins led to a reduction in the rate of glycolysis in cancer cells. Fructose 1,6-bisphosphate (FBP), an activator of PKM2, could alleviate schweinfurthin-mediated inhibition on PKM2 and glycolysis. Notably, FBP could also partially reverse the reduction of cell viability in the presence of schweinfurthins. Taken together, these studies revealed the mechanism by which schweinfurthins inhibit Hh signaling. In addition, we uncovered PKM2 as a schwienfurthin target and highlighted the importance of glycolysis suppression as a mechanism of the anti-cancer action of schweinfurthins.
15

Patched-mediated regulation of Smoothened trafficking and activity by Lipophorin-derived lipids

Khaliullina-Skultety, Helena 17 February 2011 (has links) (PDF)
Hedgehog is a lipid-linked morphogen that is carried on lipoprotein particles and that regulates both patterning and proliferation in a wide variety of vertebrate and invertebrate tissues. Hyperactivity of Hedgehog signaling causes numerous forms of cancer. Hedgehog acts by binding to its receptor Patched, relieving the suppression of Smoothened and initiating Smoothened signaling. The mechanism by which Patched represses Smoothened has been unclear, but correlates with reduced Smoothened levels on the basolateral membrane. The structural homology of Patched with the Niemann-Pick-Type C1 protein and bacterial transmembrane transporters suggests that Patched might regulate lipid trafficking to repress Smoothened. However, no endogenous lipid regulators of Smoothened have yet been identified, nor has it ever been shown that Patched actually controls lipid trafficking. This work shows that, in Drosophila melanogaster, the Sterol-Sensing Domain of Patched regulates Smoothened trafficking from Patched-positive endosomes. Furthermore, it demonstrates that Patched recruits internalized lipoproteins to Patched-positive endosomes. Thereby, Patched regulates the efflux of specific lipoprotein-derived lipids from this compartment via its Sterol-Sensing Domain and utilizes these lipids to destabilize Smoothened on the basolateral membrane. We propose that Patched normally promotes Smoothened degradation and subsequently downregulates its activity by changing the lipid composition of endosomes through which Smoothened passes. For this purpose, Patched utilizes a specific lipid – possibly a modified sterol or sphingolipid – derived from lipoproteins. Further, we suggest that the presence of Hedgehog on lipoprotein particles inhibits utilization of their lipids by Patched.
16

ELUCIDATING THE ROLE OF PRIMARY CILIA AS PUTATIVE TUMOR SUPPRESSORS IN THE PROSTATE AND BREAST

Hassounah, Nadia January 2014 (has links)
Prostate and breast cancer are among the most commonly diagnosed cancers and leading causes of cancer-related deaths in men and women worldwide. It is therefore evident that enhanced understanding of tumorigenesis is required to improve diagnostic tools, improve prognostics and identify novel therapeutic targets. The goal of this dissertation was to elucidate the role of primary cilia in prostate and breast cancer. Little is known about the role primary cilia may play in these cancers. Primary cilia are microtubule-based organelles which aid in sensing the extracellular environment and participate in signal transduction. Important developmental signaling pathways, such as Hedgehog (Hh) and Wnt signaling pathways, involve cilia. These pathways have also been implicated in prostate and breast cancer. In this work, we demonstrate that cilia are lost through prostate cancer progression. The few remaining cilia on prostate cancers appeared to be dysfunctional, as assessed by quantifying cilia lengths, an indirect measure of functionality. We also investigated a link between the observed cilia loss and canonical Wnt signaling in prostate cancers. Primary cilia have been determined to have a suppressive role in Wnt signaling, therefore we predicted loss of cilia to correlate with increased Wnt signaling. A link between cilia loss or shortened cilia and activated Wnt signaling was suggested in a subset of prostate cancers. Our lab has established that cilia are similarly lost in breast cancer. These data suggested the hypothesis that cilia may act as tumor suppressor organelles in the prostate and breast. To test this hypothesis, we knocked down cilia in an oncogenic mammary mouse model and assessed changes in tumor growth and characteristics. We observed enhanced tumor growth with cilia loss. The data supports the hypothesis that primary cilia may be playing a tumor suppressor role in the prostate and breast, and provides promising avenues for identifying novel therapeutic approaches for cancer patients.
17

Cholesterol homeostasis in Development / Molecular cloning and functional characterisation of the Xenopus 7-dehydrocholesterol reductase (Xdhcr7) / Cholesterol-Homöostase in der Entwicklung / Isolation und Characterisierung des

Tadjuidje, Emmanuel 26 January 2005 (has links)
No description available.
18

Regulation of 7-Dehydrocholesterol Reductase by Vitamin D3

Zou, Ling 01 January 2013 (has links)
7-Dehydrocholesterol (7-DHC) is the substrate of 7-dehydrocholesterol reductase (DHCR7) in the cholesterol synthesis pathway. Keratinocytes in human skin possess the enzymes necessary for cholesterol synthesis but are also responsible for vitamin D3 synthesis from 7-DHC by exposure to UVB irradiation. It has been well established that DHCR7 is regulated by the SREBP pathway in the regulation of cholesterol synthesis, but little is known about the regulation of DHCR7 by the vitamin D pathway. In this study, the regulation of DHCR7 activity by vitamin D was explored. Treatment of adult human epidermal keratinocyte (HEKa) cells with vitamin D3 resulted in a rapid decrease in DHCR7 activity which was not due to changes in the amount of enzyme present. This suppression of activity was observed only in HEKa cells, a primary cell line cultured from normal human skin, and not in an immortalized skin cell line (HaCaT cells) nor in two liver-derived hepatoma cell lines. Because vitamin D3 treatment of HEKa cells did not change the content of lanosterol nor 7-DHC, these results suggest that vitamin D3 rapidly down-regulates the entire cholesterolgenesis pathway, presumably at a very early step in the pathway. 25-Hydroxyvitamin D3, the first metabolite and circulating form of vitamin D3, had a lesser effect on DHCR7 activity, while 1,25-dihydroxyvitamin D3, the activated form of the vitamin, had no effect on DHCR7, indicating that the vitamin D receptor is not involved. The decrease in DHCR7 activity was due neither to the dephosphorylation of the enzyme, an established mechanism of inactivation, nor to direct inhibition by vitamin D3. Vitamin D3 markedly inhibited proliferation and induced differentiation of HEKa cells, suggesting a possible role for hedgehog signaling in the decrease in DHCR7 activity.
19

Hedgehog signaling regulates mechanical tension along the anteroposterior compartment boundary in the developing Drosophila wing

Rudolf, Katrin 11 August 2014 (has links) (PDF)
The interplay between biochemical signals and mechanical processes during animal development is key for the formation of tissues and organs with distinct shapes and functions. An important step during the formation of many tissues is the formation of compartment boundaries which separate cells of different fates and functions. Compartment boundaries are lineage restrictions that are characterized by a straight morphology. Biochemical signaling across compartment boundaries induce the expression of morphogens in the cells along the boundaries. These morphogens then act at long-range to direct growth and patterning of the whole tissue. Compartment boundaries stabilize the position of morphogens and thereby contribute to proper tissue development. The straight morphology of compartment boundaries is challenged by cell rearrangements caused by cell division and tissue reshaping. Physical mechanisms are therefore required to maintain the straight morphology of compartment boundaries. The anteroposterior (A/P) compartment boundary in the developing Drosophila melanogaster wing is established by biochemical signals. Furthermore, mechanical processes are required to maintain the straight shape of the A/P boundary. Recent studies show that mechanical tension mediated by actomyosin motor proteins is increased along the A/P boundary. However, it was not understood how biochemical signals interact with mechanical processes to maintain the A/P boundary. Here I provide the first evidence that Hedgehog signaling regulates mechanical tension along the A/P boundary. I was able to show that differences in Hedgehog (Hh) signal transduction activity between the anterior and posterior compartments are necessary and sufficient to maintain the straight shape of the A/P boundary, which is crucial for patterning and growth of the adult wing. Moreover, differences in Hh signal transduction activity are necessary and sufficient for the increase in mechanical tension along the A/P boundary. In addition, differences in Hh signal transduction activity are sufficient to generate smooth borders and to increase mechanical tension along ectopic interfaces. Furthermore, the differential expression of the transmembrane protein Capricious is sufficient to increase mechanical tension along ectopic interfaces. It was previously suggested that mechanical tension is generated by an actomyosin-cable through which the increase in mechanical tension is transmitted between the junctions along the A/P boundary. Here I show that mechanical tension is generated locally at each cell bond and not transmitted between junctions by an actomyosin cable. My results provide new insights for our understanding of the interplay between biochemical signals and mechanical processes during animal development.
20

Die pharmakologische Beeinflussung des Hedgehog Signaltransduktionsweges in Kopf-Hals-Tumoren ex vivo

Stöhr, Matthäus 05 February 2015 (has links) (PDF)
Der Hedgehog Signaltransduktionsweg (HhP) ist in der Embryologie und für die Tumor-entstehung bedeutsam und kann durch den spezifischen Antagonisten Cyclopamin (Cyc) inhibiert werden. Simvastatin (Sim) kann die für den HhP essentielle Cholesterolsynthese blockieren. Die therapeutische Unterdrückung des HhP in Kopf-Hals-Plattenepithel-karzinomen (HNSCC) zu untersuchen erschien nach verschiedenen Literaturhinweisen lohnend. In den Experimenten, deren Ergebnisse bereits in Artikeln publiziert wurden, konnten antineoplastische Effekte von Cyc bzw. Sim allein und in Kombination mit den Leitlinientherapeutika Cisplatin (Cis) oder Docetaxel (DTX) an der epithelialen Zelllinie KB, den Kopf-Hals-Zelllinien FaDu und HN-5, sowie an primären HNSCC ex vivo nachgewiesen werden. Biopsien von 49 HNSCC wurden im FLAVINO-Assay mit Cyc bzw. Sim in steigenden Konzentrationen allein und kombiniert mit Cis oder DTX untersucht. In die Auswertung konnten gemäß den Einschlusskriterien (histopathologisch bestätigtes HNSCC und suffiziente Koloniebildung im FLAVINO-Assay) 18 HNSCC einbezogen werden. Bei den Voruntersuchungen führten sowohl Cyc als auch Sim zu einer signifikanten Zeit- und Dosis-abhängigen Reduktion der Lebensfähigkeit von KB, FaDu und HN-5. Ebenso unterdrückten sowohl Cyc als auch Sim die Koloniebildung epithelialer Zellen im FLAVINO-Assay hochsignifikant. Auch tolerierbare Cis- und DTX-Konzentrationen zeigten eine signifikante Wachstumshemmung. In der Analyse des Interaktionsmodus wurde in den untersuchten Kombinationen (Sim+Cis, Sim+DTX, Cyc+Cis und Cyc+DTX) in allen Fällen Additivität als prädominanter Interaktionstyp ermittelt. Die Ergebnisse dieser Arbeit weisen den HhP als potentielles Target in HNSCC aus. Potentere und human besser verträgliche HhP-Blocker sollten unsere Ergebnisse bestätigen und in klinischen Studien getestet werden. Auch die Wirksamkeit von Sim auf HNSCC sollte in prospektiven klinischen Studien weiter analysiert und bestätigt werden. Möglicherweise vermag Sim bzw. die HhP-Blockade zukünftig einen Beitrag zur Therapie von HNSCC im Rahmen multimodaler Therapiekonzepte zu leisten.

Page generated in 0.0601 seconds