• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • Tagged with
  • 28
  • 28
  • 28
  • 28
  • 20
  • 16
  • 16
  • 16
  • 16
  • 10
  • 10
  • 10
  • 10
  • 10
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Avaliação das condições do tratamento biológico de hidrolisados hemicelulósicos visando melhorar a produção de etanol por Scheffersomyces (Pichia) stipitis / Evaluation of biological treatment conditions of hemicellulosic hydrolysates aiming to improve ethanol production by Scheffersomyces (Pichia) stipitis

Bruno Guedes Fonseca 14 March 2014 (has links)
O presente estudo teve como principal objetivo avaliar a capacidade de Saccharomyces cerevisiae em metabolizar os compostos tóxicos presentes em hidrolisados hemicelulósicos de palha de arroz (HHPA) e de poda de oliveira (HHPO), visando a obtenção de hidrolisados com menor grau de toxicidade para Pichia stipitis. Após determinada a composição dos hidrolisados (açúcares e compostos tóxicos) foi avaliado o nível de concentração do HHPA capaz de inibir o metabolismo de P. stipitis. Em seguida, foi avaliado o efeito do tempo, concentração de S. cerevisiae, pH e aeração sobre a composição destes hidrolisados, tendo como resposta a fermentabilidade de P. stipitis. Nas condições otimizadas do biotratamento, as fermentações de P. stipitis foram conduzidas em frascos agitados e em biorreator, e as respostas avaliadas foram o consumo de D-xilose, fator de conversão de substrato em etanol (YP/S) e produtividade volumétrica em etanol (QP). Os ensaios de biotransformação destes hidrolisados, assim como do meio sintético (MS), o qual mimetizou o teor de açúcares e compostos tóxicos presentes no HHPA, mostraram que as modificações na composição destes meios foram dependentes do tempo de tratamento. Durante o tratamento, a levedura S. cerevisiae foi capaz de consumir apenas a D-glicose com baixas produções de etanol glicerol e ácido acético. Além disso, no HHPA e MS o 5-HMF e furfural foram quase que totalmente assimilados (> 90%), com formação de baixos teores de ácido furóico. Nestes meios, S. cerevisiae converteu parcialmente os ácidos ferúlico (15%) e p-cumárico (20%), sendo observado apenas produto de conversão do ácido ferúlico (álcool vanilil). A vanilina foi completamente assimilada em MS, porém, em HHPA foi constatado um residual do composto (42%), sendo o álcool vanilil o principal produto de conversão. Em relação ao HHPO foi observada assimilação de 47% de furanos totais e 11% de fenólicos totais, não sendo identificados produtos de conversão. Os resultados da fermentação de P. stipitis em HHPA mostraram que o tratamento biológico por 6 horas favoreceu o consumo de D-xilose e a produção de etanol, indicando que este parâmetro é um importante fator a ser considerado. Nestas condições, o consumo de D-xilose foi de 57% com produção de 9 g/L de etanol (YP/S = 0,18 g/g e QP = 0,086 g/L.h). Os resultados da fermentação do HHPO apresentaram valores inferiores de YP/S (0,14 g/g) e QP (0,060 g/L.h) quando comparados ao HHPA, o que indica um maior grau de toxicidade deste hidrolisado. Em relação ao MS, verificou-se que o biotratamento favoreceu em aproximadamente 40% o consumo de D-xilose e a produção de etanol por P. stipitis, quando comparado com o MS não-tratado. As melhores condições de concentração de S. cerevisiae (5 g/L), pH (3,0) e fator de aeração (6,5) definidas no HHPA através de um planejamento experimental, proporcionou um consumo de 67% de D-xilose por P. stipitis, com produção de 13,5 g/L de etanol (YP/S = 0,24 g/g e QP = 0,15 g/L.h). Na fermentação em biorreator, P. stipitis foi capaz de consumir totalmente a D-xilose, produzindo 23 g/L de etanol, após 44 horas. Com base nestes resultados, pode-se concluir que o tratamento dos hidrolisado hemicelulósicos com S. cerevisiae é uma técnica promissora capaz de diminuir o grau de toxicidade destes meios com consequente melhoria em sua fermentabilidade, especialmente na velocidade de produção de etanol. / The aim of this work was to study the ability of Saccharomyces cerevisiae to metabolize a variety of toxic compounds found in rice straw (RSHH) and olive tree pruning (OTHH) hemicellulosic hydrolysates, in order to obtain hydrolysates with lower toxicity for Pichia stipitis. After determined the hydrolysate composition (sugar and toxic compounds) was evaluated the RSHH concentration level able to inhibit the P. stipitis metabolism. Then, the effect of time, S. cerevisiae concentration, pH and aeration on the hydrolysates composition was evaluated, and the fermentation was used as response. Under optimized conditions of biotreatment, P. stipitis fermentations were conducted in shake flasks and in bioreactor. In relation to the biotransformation assays of these hydrolysates, as well as synthetic medium (SM), with the same sugar and toxic compounds concentrations found in RSHH, the results showed that changes in the media compositions were dependent on the treatment time. During the treatment, S. cerevisiae consumed only D-glucose with low ethanol, glycerol, and acetic acid production. Furthermore, in SM and RSHH media, 5-HMF and furfural were almost completely assimilated (> 90 %), with low levels of furoic acid formation. In these media, S. cerevisiae partially converted ferulic acid (15%) and p-coumaric acid (20%), being observed only the conversion product of ferulic acid (vanillyl alcohol). Vanillin was totally assimilated in SM, however a residual of this compound (42%) was observed in RSHH, being vanillyl alcohol the main conversion product. Regarding OTHH was observed the assimilation of total furans (47%) and total phenolic (11%), and no conversion products were identified. The results from the P. stipitis fermentation in RSHH showed that biotreatment for 6 hours favored D-xylose consumption and ethanol production, indicating that this parameter is an important factor to be considered. In these conditions, D-xylose consumption was 57% with 9 g/L ethanol production (YP/S = 0.18 g/g QP = 0.086 g/Lh). The results of OTHH fermentation showed lower YP/S (0.14 g/g) and QP (0.060 g/L.h ) compared to RSHH, which indicates a higher degree of toxicity in OTHH. Regarding SM, the biotreatment increased D-xylose consumption and ethanol production by P. stipitis in approximately 40%, when compared with untreated-SM. The most suitable conditions of S. cerevisiae concentration (5 g/ L), pH (3.0) and the aeration factor (6.5) defined in RSHH through an experimental design, provided 67% of D-xylose consumption, and 13.5 g/L ethanol production by P. stipitis (YP/S = 0.24 g/g QP = 0.15 g/L.h). In bioreactor, P. stipitis was able to completely consume D-xylose, producing 23 g/L ethanol after 44 hours. Based on these results, it can be concluded that previous treatment of hemicellulose hydrolysates with S. cerevisiae is a promising technique capable of reducing the toxicity degree of RSHH and OTHH, with consequent improvement in their fermentability, especially on ethanol production rate.
22

Produção de membranas a partir do bagaço de cana-de-açúcar e sua utilização na detoxificação do hidrolisado hemicelulósico / Production of membranes from sugarcane bagasse and its application in the detoxification of hemicellulosic hidrolizate

Candido, Rafael Garcia 17 March 2015 (has links)
Os processos de separação por membrana (PSM) vêm ganhando destaque em aplicações industriais por conta de suas vantagens, principalmente o baixo custo de implementação e o baixo consumo de energia para sua operação. A utilização de subprodutos agrícolas na obtenção de materiais é uma tendência crescente, sendo os seus maiores atrativos a grande disponibilidade desses subprodutos e por serem uma matéria-prima barata. O presente trabalho teve como principais objetivos a produção de membranas sua utilização na detoxificação do hidrolisado hemicelulósico originado do tratamento ácido do bagaço de cana-de-açúcar. Para tanto foram produzidos dois tipos de membranas a partir de três polímeros diferentes, o acetato de celulose obtido a partir do bagaço de cana, o acetato de celulose comercial e a poliamida 66. Na produção de acetato a partir do bagaço foi realizado um estudo exploratório para extrair a celulose, matéria-prima do acetato, de uma maneira que se obtivesse um material com alto grau de pureza e que as perdas de celulose durante o processo fossem minimizadas. Para a produção das membranas foi utilizada a técnica de inversão de fases. No caso das membranas de acetato de celulose, foi realizada uma variação dos parâmetros utilizados no processo de confecção das membranas (tempo de evaporação do solvente, temperatura do banho de coagulação e tratamento térmico), com o intuito de se estabelecer as melhores variáveis do processo, enquanto que para a poliamida 66, foram utilizadas condições previamente determinadas por outros estudos. Depois de prontas, as membranas foram caracterizadas fisicamente e pelas suas propriedades de fluxo de água pura, fluxo de vapor de água, rejeição de sais, rejeição de açúcares e rejeição de compostos tóxicos. Finalmente, as membranas foram aplicadas no processo de detoxificação do hidrolisado hemicelulósico para testar sua capacidade de remoção de furfural, hidroximetilfurfural (HMF), ácido acético e compostos fenólicos. No estudo de extração da celulose do bagaço, as melhores condições produziram uma celulose com pureza de 84,01%. O acetato produzido apresentou um grau de substituição de 2,52, podendo ser classificado como um triacetato de celulose. Em comparação, o acetato comercial apresentou um grau de substituição de 2,85. Fisicamente, todas as membranas apresentaram uma morfologia que intercalava a presença de poros com regiões nodulares. As membranas de bagaço de cana apresentaram uma considerável fragilidade, por isso nos testes de permeação sob pressão, elas foram suportadas por uma membrana de polissulfona comercial. Todas as membranas de acetato de bagaço e membrana de poliamida apresentaram fluxo de água pura, enquanto que apenas algumas membranas de acetato comercial conseguiram permear água pura. As membranas apresentaram diferentes resultados nos experimentos de rejeição de compostos, resultado das diferenças estruturais entre elas. No ensaio de detoxificação, a membrana que alcançou o melhor desempenho foi a membrana obtida a partir do acetato comercial. Essa membrana conseguiu remover 89,92% de HMF, 91,99% de furfural, 51,52% de ácido acético e 8,35% de compostos fenólicos. As membranas produzidas a partir do bagaço de cana alcançaram uma remoção de 71,66 de HMF, 60,87% de furfural, 91,79% de ácido acético e 10,86% de fenólicos. / Membrane separation processes (MSP) have been highlighted at industrial processes because of their advantages, mainly the low cost of implementation and the low energy consumption during their operation. The utilization of agriculture co-products for the obtainment of material is a increasing trend, wherein the main attractive are the high availability and the low cost of these co-products. The aims of this work were to produce membranes and to investigate their utilization in the detoxification of the hemicellulosic hydrolisate originated from the acid treatment of sugarcane bagasse. For that, two types of membranes were produced from three different types of polymers, cellulose acetate obtained from sugarcane bagasse, commercial cellulose acetate and polyamide 66. For the production of the sugarcane bagasse cellulose acetate it was conducted an exploratory study in order to extract cellulose, raw-material of the acetate, in a manner that the final material possessed high purity degree and the losses of cellulose during the process were minimized. The technique of phase inversion was utilized to produce the membranes. In the case of cellulose acetate membranes, the variation of the membrane production parameters (time of solvent evaporation, temperature of coagulation bath and thermical treatment) was performed for the purpose of establishing the best process parameters, whereas it was utilized previously established conditions found in the literature for the polyamide membrane production. The membranes were characterized physically and for their properties of pure water flux, vapor water flux, salt rejection, sugar rejection and toxic compound rejection. Finally, the membranes were applied in the process of hemicellulosic hydrolysate detoxification for testing their capacity of furfural, hydroxymethylfurfural (HMF), acetic acid and phenolic compound removal. The best conditions of cellulose extraction from sugarcane bagasse were able to produce cellulose with 84.01% of purity. The sugarcane cellulose acetate presented a substitution degree of 2.52, being classified as cellulose triacetate. In comparison, commercial cellulose acetate presented a substitution degree of 2,85. Physically, all membranes possessed a morphology that interspersed the presence of porous and nodular regions. Due to their fragility, sugarcane bagasse membranes were supported by a polysulfone commercial membrane in the tests of permeation under pressure. All sugarcane bagasse membranes and polyamide membrane achieved pure water flux. Nevertheless, just some commercial cellulose acetate membranes could permeate pure water. In the assays of compound rejection, the membranes reached different results, on behalf of their structural differences. The membrane that obtained the best performance in the detoxification process was the membrane produced form commercial cellulose acetate. This membrane was able to remove 89.92% of HMF, 91.99% of furfural, 51.52% of acetic acid and 8.35% of phenolic compounds. The membranes produced from sugarcane bagasse reached a removal of 71.66 of HMF, 60.87% of furfural, 91.79% of acetic acid and 10,86% of phenolics.
23

Imobilização celular de Scheffersomyces shehatae UFMG-HM 52.2 em gel de alginato de cálcio visando a produção de etanol a partir de hidrolisado hemicelulósico de bagaço de cana-de-açúcar em reator de leito fluidizado / Cell immobilization of Scheffersomyces shehatae UFMG-HM 52.2 in calcium alginate gel aiming ethanol production from sugarcane sugarcane bagasse hemicellulosic hydrolysate in fluidized bed reactor

Antunes, Felipe Antonio Fernandes 22 May 2015 (has links)
Importantes produtos úteis à sociedade podem ser obtidos a partir do bagaço de cana-deaçúcar, como por exemplo, o etanol de segunda geração. Para a produção deste álcool, reforçam-se estudos visando alternativas de processos diferenciados, como por exemplo, utilizando células imobilizadas em biorreatores. O presente trabalho teve como objetivos o estudo de condições de imobilização da levedura Scheffersomyces shehatae UFMG-HM 52.2, encapsulada em gel de alginato de cálcio, e a avaliação de condições de produção de etanol a partir de hidrolisado hemicelulósico de bagaço de cana-de-açúcar, com as células imobilizadas em processos operados em reator de leito fluidizado. Inicialmente, o bagaço de cana-de-açúcar foi submetido à hidrólise ácida seguida de concentração e destoxificação do hidrolisado hemicelulósico. Em ensaios fermentativos em frascos Erlenmeyer, com a nova e promissora levedura fermentadora de pentoses, Scheffersomyces shehatae UFMGHM 52.2 na forma livre, testou-se diferentes meios nutricionais para a seleção dos nutrientes importantes na suplementação do hidrolisado hemicelulósico. Após análise, escolheu-se o meio composto por 5 g/l de sulfato de amônio, 3 g/l de extrato de levedura e 3 g/l de extrato de malte para as fermentações subsequentes. Utilizando-se este meio, observou-se valores de fator de rendimento (YP/S) e produtividade volumétrica em etanol (QP) de 0,38 g/g e 0,19 g/l.h, respectivamente. Em uma primeira etapa, determinou-se as condições de imobilização celular da levedura por encapsulamento em gel de alginato de cálcio, utilizando um planejamento experimental 23 completo com três pontos centrais. Avaliou-se a influência da concentração de alginato de sódio, de cloreto de cálcio e tempo de cura, tendo como variáveis resposta YP/S e QP. Pela análise estatística e fermentativa, definiu-se o uso da concentração de 1% de alginato de sódio, 0,2 M de cloreto de cálcio e 12 h de tempo de cura para o processo de imobilização celular. Nesta condição, observou-se valores de YP/S e QP de 0,32 g/g e 0,14 g/l.h, respectivamente. Posteriormente, conduziuse fermentações utilizando células imobilizadas em modo de bateladas repetidas em frascos Erlenmeyer, verificando-se a estabilidade na produção de etanol em cinco ciclos fermentativos consecutivos. Em uma segunda etapa, avaliou-se as condições de produção de etanol utilizando células imobilizadas em reator de leito fluidizado, por meio de planejamento experimental 22 completo com três pontos centrais. Avaliou-se a influência da vazão de aeração e massa de suporte com células imobilizadas, tendo como variáveis resposta YP/S e QP. A partir da análise estatística e fermentativa, verificou-se como melhores condições para o processo, o uso de 200 g de suporte e 200 ml/min de vazão de aeração. Nestas condições, observou-se valores de YP/S e QP de 0,26 g/g e 0,17 g/l.h, respectivamente. Sob estas condições de processo, realizou-se também fermentações em modo de bateladas repetidas, verificando-se a estabilidade do sistema operacional de produção de etanol em sete ciclos fermentativos consecutivos. Por estes resultados, concluiu-se que esse processo fermentativo com células imobilizadas em reator de leito fluidizado apresenta destacada potencialidade, podendo servir como conhecimentos para estudos futuros visando a sua implementação em maiores escalas. / Important useful products to society can be obtained from sugarcane bagasse, e.g. secondgeneration ethanol. For the production of this alcohol, studies are focused on alternatives for different processes, e.g., using immobilized cells in bioreactors. This work had as objectives the study of immobilization conditions on the yeast Scheffersomyces shehatae UFMG-HM 52.2, encapsulated in gel of calcium alginate, and evaluating the conditions of ethanol production from sugarcane bagasse hemicellulosic hydrolysate, with the immobilized cells in the process carried out in a fluidized bed reactor. Initially, the sugarcane bagasse was subject to acid hydrolysis followed by concentration and detoxification of hemicellulosic hydrolysate. In fermentation tests in Erlenmeyer flasks, with the novel and promising pentose fermenting yeast, Scheffersomyces shehatae UFMGHM 52.2 in free form, different nutritional media were tested for the selection of important nutrients in the supplementation of hemicellulosic hydrolysate. After the analysis, the medium composed of 5 g/l of ammonium sulfate, 3 g/l of yeast extract and 3 g/l of malt extract was chosen for subsequent fermentations. By using this medium, it was observed values of etanol yield (YP/S) and volumetric productivity (QP) of 0.38 g/g and 0.19 g/l.h, respectively. In a first step, it was determined the yeast cells immobilization conditions by encapsulation in calcium alginate gel using a 23 full factorial design with three central points. The influence of the concentration of sodium alginate, calcium chloride and conditioning time was evaluated, with the response variables YP/S and QP. By statistical and fermentative analysis, it was chosen the concentrations of 1% for sodium alginate, 0.2 M for calcium chloride and 12 h for conditioning time in the immobilization process. In this condition, it was observed values of YP/S and QP of 0.32 g/g and 0.14 g/l.h, respectively. Thus, fermentations were performed applying immobilized cells in Erlenmeyer flasks in repeated batch, where the stability of ethanol production in five consecutive cycles was verified. In a second step, the conditions of ethanol production using immobilized cells in fluidized bed reactor were evaluated, by using a 22 full factorial design with three central points. In this investigation, the influence of aeration rate and mass of suport with immobilized cells was tested, and the response variable were YP/S and QP. By statistical and fermentative analysis, it was found that the best conditions for the process included the use of 200 g of support with immobilized cells and 200 ml/min for aeration rate. Under these conditions, it was observed values of YP/S and QP of 0.26 g/g and 0.17 g/l.h, respectively. Also, under the same conditions, repeated batch fermentations were carried out, where it was verified that ethanol production system stability in seven consecutive fermentation cycles. For these results, it was concluded that this fermentation with immobilized cells in fluidized bed reactor offers outstanding potential and could be used as basis for future studies aiming its implementation in large scales.
24

Produção de membranas a partir do bagaço de cana-de-açúcar e sua utilização na detoxificação do hidrolisado hemicelulósico / Production of membranes from sugarcane bagasse and its application in the detoxification of hemicellulosic hidrolizate

Rafael Garcia Candido 17 March 2015 (has links)
Os processos de separação por membrana (PSM) vêm ganhando destaque em aplicações industriais por conta de suas vantagens, principalmente o baixo custo de implementação e o baixo consumo de energia para sua operação. A utilização de subprodutos agrícolas na obtenção de materiais é uma tendência crescente, sendo os seus maiores atrativos a grande disponibilidade desses subprodutos e por serem uma matéria-prima barata. O presente trabalho teve como principais objetivos a produção de membranas sua utilização na detoxificação do hidrolisado hemicelulósico originado do tratamento ácido do bagaço de cana-de-açúcar. Para tanto foram produzidos dois tipos de membranas a partir de três polímeros diferentes, o acetato de celulose obtido a partir do bagaço de cana, o acetato de celulose comercial e a poliamida 66. Na produção de acetato a partir do bagaço foi realizado um estudo exploratório para extrair a celulose, matéria-prima do acetato, de uma maneira que se obtivesse um material com alto grau de pureza e que as perdas de celulose durante o processo fossem minimizadas. Para a produção das membranas foi utilizada a técnica de inversão de fases. No caso das membranas de acetato de celulose, foi realizada uma variação dos parâmetros utilizados no processo de confecção das membranas (tempo de evaporação do solvente, temperatura do banho de coagulação e tratamento térmico), com o intuito de se estabelecer as melhores variáveis do processo, enquanto que para a poliamida 66, foram utilizadas condições previamente determinadas por outros estudos. Depois de prontas, as membranas foram caracterizadas fisicamente e pelas suas propriedades de fluxo de água pura, fluxo de vapor de água, rejeição de sais, rejeição de açúcares e rejeição de compostos tóxicos. Finalmente, as membranas foram aplicadas no processo de detoxificação do hidrolisado hemicelulósico para testar sua capacidade de remoção de furfural, hidroximetilfurfural (HMF), ácido acético e compostos fenólicos. No estudo de extração da celulose do bagaço, as melhores condições produziram uma celulose com pureza de 84,01%. O acetato produzido apresentou um grau de substituição de 2,52, podendo ser classificado como um triacetato de celulose. Em comparação, o acetato comercial apresentou um grau de substituição de 2,85. Fisicamente, todas as membranas apresentaram uma morfologia que intercalava a presença de poros com regiões nodulares. As membranas de bagaço de cana apresentaram uma considerável fragilidade, por isso nos testes de permeação sob pressão, elas foram suportadas por uma membrana de polissulfona comercial. Todas as membranas de acetato de bagaço e membrana de poliamida apresentaram fluxo de água pura, enquanto que apenas algumas membranas de acetato comercial conseguiram permear água pura. As membranas apresentaram diferentes resultados nos experimentos de rejeição de compostos, resultado das diferenças estruturais entre elas. No ensaio de detoxificação, a membrana que alcançou o melhor desempenho foi a membrana obtida a partir do acetato comercial. Essa membrana conseguiu remover 89,92% de HMF, 91,99% de furfural, 51,52% de ácido acético e 8,35% de compostos fenólicos. As membranas produzidas a partir do bagaço de cana alcançaram uma remoção de 71,66 de HMF, 60,87% de furfural, 91,79% de ácido acético e 10,86% de fenólicos. / Membrane separation processes (MSP) have been highlighted at industrial processes because of their advantages, mainly the low cost of implementation and the low energy consumption during their operation. The utilization of agriculture co-products for the obtainment of material is a increasing trend, wherein the main attractive are the high availability and the low cost of these co-products. The aims of this work were to produce membranes and to investigate their utilization in the detoxification of the hemicellulosic hydrolisate originated from the acid treatment of sugarcane bagasse. For that, two types of membranes were produced from three different types of polymers, cellulose acetate obtained from sugarcane bagasse, commercial cellulose acetate and polyamide 66. For the production of the sugarcane bagasse cellulose acetate it was conducted an exploratory study in order to extract cellulose, raw-material of the acetate, in a manner that the final material possessed high purity degree and the losses of cellulose during the process were minimized. The technique of phase inversion was utilized to produce the membranes. In the case of cellulose acetate membranes, the variation of the membrane production parameters (time of solvent evaporation, temperature of coagulation bath and thermical treatment) was performed for the purpose of establishing the best process parameters, whereas it was utilized previously established conditions found in the literature for the polyamide membrane production. The membranes were characterized physically and for their properties of pure water flux, vapor water flux, salt rejection, sugar rejection and toxic compound rejection. Finally, the membranes were applied in the process of hemicellulosic hydrolysate detoxification for testing their capacity of furfural, hydroxymethylfurfural (HMF), acetic acid and phenolic compound removal. The best conditions of cellulose extraction from sugarcane bagasse were able to produce cellulose with 84.01% of purity. The sugarcane cellulose acetate presented a substitution degree of 2.52, being classified as cellulose triacetate. In comparison, commercial cellulose acetate presented a substitution degree of 2,85. Physically, all membranes possessed a morphology that interspersed the presence of porous and nodular regions. Due to their fragility, sugarcane bagasse membranes were supported by a polysulfone commercial membrane in the tests of permeation under pressure. All sugarcane bagasse membranes and polyamide membrane achieved pure water flux. Nevertheless, just some commercial cellulose acetate membranes could permeate pure water. In the assays of compound rejection, the membranes reached different results, on behalf of their structural differences. The membrane that obtained the best performance in the detoxification process was the membrane produced form commercial cellulose acetate. This membrane was able to remove 89.92% of HMF, 91.99% of furfural, 51.52% of acetic acid and 8.35% of phenolic compounds. The membranes produced from sugarcane bagasse reached a removal of 71.66 of HMF, 60.87% of furfural, 91.79% of acetic acid and 10,86% of phenolics.
25

Estudo da produção biotecnológica de xilitol em reator de leito fluidizado utilizando bagaço de cana-de-açúcar e células imobilizadas: Avaliação de parâmetros operacionais e viabilidade econômica / Study of the biotechnological production of xylitol in a fluidized bed reactor using sugarcane bagasse and immobilized cells: evaluation of operational parameters and economical viability

Boutros Sarrouh 21 August 2009 (has links)
O xilitol vem se destacando nas áreas alimentícia, odontológica, farmacêutica e médica, além de apresentar significativo potencial de aplicação em outros segmentos industriais (têxteis e químicos). Os benefícios do xilitol abriram as portas para novas áreas de venda além de crescimento no setor de póliols e adoçantes no mercado mundial. O presente trabalho teve como objetivo contribuir para o desenvolvimento de uma tecnologia tecnicamente e economicamente viável para a obtenção de xilitol a partir do hidrolisado hemicelulósico do bagaço de cana-de-açúcar, utilizando biorreator de leito fluidizado com células da levedura Candida guilliermondii FTI 20037 imobilizadas em suporte natural de alginato de cálcio. Para avaliar a viabilidade técnica deste processo biotecnológico, foram realizados fermentações em bateladas simples conforme um planejamento fatorial 23 com três pontos centrais. Em seguida, foi avaliada a influência das variáveis, fluxo de fluidização, fator de concentração do hidrolisado e vazão do ar no fator de rendimento (Yp/s) e na produtividade volumétrica (Qp). Segundo os resultados obtidos, observou-se que apenas o aumento no fluxo de fluidização exerceu uma influência positiva no fator de rendimento e na produtividade do processo. Tal fato é devido a uma melhor transferência de oxigênio do meio para o interior do suporte de imobilização, resultando em maior consumo de xilose e produção de xilitol. O processo biotecnológico utilizado neste trabalho resultou em, uma concentração final de xilitol de 34 g/L a partir de uma concentração inicial de xilose de 49 g/L, um fator de rendimento (Yp/s) de 0,7 g/g (equivalente a 76 % de eficiência de bioconversão) e uma produtividade volumétrica (Qp) de 0,44 g/L.h, após 72h de fermentação. Foram realizados também fermentações em bateladas repetidas com reciclo das células imobilizado, nas condições de fermentação otimizadas e indicadas pela análise estatística realizada. Verificou-se que, o fator de rendimento (Yp/s) e a produtividade volumétrica (Qp) do processo apresentaram pequenas variações ao longo das 6 bateladas repetidas (B1-B6), com uma produção final média de 31,5 g/L de xilitol. Entretanto, a partir da batelada B7 observou-se, uma diminuição de 44 % na concentração final do xilitol produzido (17 g/L) e de 28% no número final de células viáveis imobilizadas (3,4 x1010 mL/cel.) em comparação com as bateladas B1-B6 (valor médio de 4,7x1010 mL/cel.), após 72 h de fermentação. Esta redução no crescimento das células imobilizadas pode ser explicada pela possível difusão e acúmulo de materiais insolúvel proveniente do hidrolisado, ao longo das 7 bateladas remetidas, para o interior do suporte de imobilização propiciando assim limitações na transferência de xilose no meio de fermentação para o interior das células encapsuladas. Com o objetivo de avaliar o custo de produção de xilitol, foi realizado um estudo técnico-econômico para a produção de xarope de xilitol de 80% de pureza, utilizando hidrolisado hemicelulósico de bagaço de cana em uma planta piloto com capacidade de processar 1 tonelada de bagaço. Segundo os resultados obtidos deste estudo, observou-se que este processo biotecnológico para a produção de xilitol mostrou-se economicamente viável com um payback de 24 meses e uma TIR (Taxa interna de retorno) de 51,7%, sendo o preço estimado para a venda do xarope de xilitol no mercado de R$ 211,60. Visando reduzir o custo de venda deste xarope e aumentar a competitividade do xilitol em relação a outros póliols encontrados no mercado, foram sugeridas modificações em algumas etapas do processo realizado neste trabalho (aumento na eficiência da hidrólise para 80% e a utilização de resinas de troca iônica no tratamento do hidrolisado hemicelulósico). O processo modificado resultou em uma redução no preço de venda do xarope de xilitol, sendo este valor estimado a R$ 113,10, correspondendo a apenas 28 % do preço de venda do xilitol cristalizado no mercado interno (R$ 402,50). O processo biotecnológico para a produção de xilitol mostrou-se economicamente promissor para uma futura implantação em nível industrial. / Xylitol is being distinguished for its application in the industries of food, odontology and pharmacy; furthermore, it presents a potential use in other industrial segments (textiles and chemicals). The different benefits of xylitol will open doors for new selling areas which will lead to its growth in the international market of polyols and alternative sweeteners. The present work had as an objective the contribution in the development of a technically and economically viable technology for the production of xylitol starting from the hemicellulosic hydrolysate of sugarcane bagasse, using a fluidized bed bioreactor with yeast cells of Candida guilliermondii FTI 20037 immobilized in a natural support of calcium alginate. To evaluate the technical viability of this biotechnological process, they were realized simple batch fermentations according to a factorial design 23 with three central points. Furthermore, it was evaluated the influence of the variables, fluidization flux, hydrolysate concentration factor and air flux in the process yield (Yp/s) and volumetric productivity (Qp). According to the obtained results it was observed that, only an increase in the fluidizations flux exercised a positive influence in process yield and volumetric productivity. This fact is due to a better oxygen transfer to the inside of the immobilization support, resulting in a higher xylose consumption and xylitol production. The biotechnological process used in this work resulted in, a final concentration of xylitol of 34 g/L starting from an initial concentration of xylose of 49 g/L, a yield (Yp/s) of 0.7 g/g (corresponding to 76 % of bioconversion efficiency) and a volumetric productivity (Qp) of 0.44 g/L.h, after 72h of fermentation. Also they were realized repeated batch fermentations with the recycle of the immobilized cells, using the optimized fermentation conditions as indicated by the statistical analysis previously done. It was verified that, the yield (Yp/s) and the volumetric productivity (Qp) of the process have presented small variations throughout the 6 repeated batch fermentations (B1-B6), with an average final production of 31,5 g/L of xylitol. On the other hand, at the end of the batch fermentation B7 it was observed a decrease of 44% in the final concentration of the produced xylitol (17 g/L) and 28% in the final number of viable immobilized cells (3.4 x1010 mL/cells) in comparison with the batch fermentations B1-B6 (average value of 4.7x1010 mL/cells), after 72h of fermentation. This reduction in the growth rate of the immobilized cells can be explained by the possible diffusion and accumulation of insoluble substances originating from the hemicellulosic hydrolysate, during the 7 repeated batch fermentations, into the interior of the immobilization support resulting in limitations in xylose transference from the fermentation medium into the encapsulated cells. With the objective to evaluate the production cost of xylitol, it was realized a technicaleconomical study for the production of a xylitol syrup with 80% of purity, using hemicellulosic hydrolysate from sugarcane bagasse in a pilot plant with the capacity to process 1 tons of bagasse. According to the results obtained in this study, it was observed that the biotechnological process for xylitol production has shown to be economically viable with a payback period of 24 months and a TIR of 51. 7%, considering that the selling price of xylitol syrup (80% of purity) was estimated to be R$ 211.60 in the internal market. Aiming to reduce the selling cost of xylitol syrup and increase its competitiveness in relation to other polyols found in the market, they were suggested modifications in some stages of the process used in this work (increase in the hydrolysis efficiency to 80% and the utilization of ionic exchange resins in the treatment of the hemicellulosic hydrolysate). The modified process resulted in a reduction in the selling price of xylitol syrup, being this value estimated in R$ 113.10 corresponding to only 28% of the selling price of crystallized xylitol in the internal market (R$ 402.50). The biotechnological production of xylitol has shown to be economically promising for future implantation at industrial level.
26

Ampliação de escala da produção biotecnológica de xilitol a partir do bagaço de cana-de-açúcar / Evaluation of the biotechnological process for xylitol obtainment at different scales from the sugarcane bagasse hemicellulosic hydrolysate

Priscila Vaz de Arruda 15 July 2011 (has links)
A conversão de biomassa vegetal em produtos químicos e energia é essencial a fim de sustentar o nosso modo de vida atual. O bagaço de cana-de-açúcar, matériaprima disponível em abundância no Brasil, poderá tanto ajudar a suprir a crescente demanda pelo etanol combustível como ser empregado para obtenção de produtos de valor agregado, tais como xilitol, além de trazer vantagens econômicas para o setor sucroalcooleiro. O xilitol, um poliol com poder adoçante semelhante ao da sacarose e com propriedades peculiares, como metabolismo independente de insulina, anticariogenicidade e aplicações na área clínica, no tratamento de osteoporose e de doenças respiratórias, é obtido em escala comercial por catálise química de materiais lignocelulósicos. A produção biotecnológica de xilitol como alternativa ao processo químico vem sendo pesquisada e os resultados revelam que a presença de compostos tóxicos nos hidrolisados hemicelulósicos resultantes do processo de hidrólise ácida contribui para sua baixa fermentabilidade. Isto se deve à inibição do metabolismo microbiano causada principalmente por compostos tais como ácidos orgânicos, fenólicos e íons metálicos. No presente trabalho foi avaliado o efeito de diferentes fontes de carbono (xilose, glicose e mistura de xilose e glicose) empregadas no preparo do inóculo de Candida guilliermondii FTI 20037 sobre a bioconversão de xilose em xilitol a partir de fermentações em frascos Erlenmeyer de hidrolisados hemicelulósicos submetidos a procedimentos de destoxificação. A condição de favorecimento deste bioprocesso foi empregada para a avaliação da ampliação de escala em fermentadores de 2,4L para 16L, utilizando como critério de ampliação o KLa (igual a 15h-1). De acordo com os resultados, os máximos valores dos parâmetros fermentativos como fator de conversão de xilose em xilitol e produtividade em xilitol foram alcançados com a utilização de inóculo obtido em xilose durante fermentação do hidrolisado destoxificado por resinas (YP/S = 0,81 g g-1 e QP = 0,60 g L-1 h-1, respectivamente), embora o emprego de carvão ativado tenha gerado valores de rendimento próximos para as diferentes fontes de carbono (YP/S variando de 0,78 a 0,80 g g-1). Considerando o valor de fator de conversão e que o procedimento de destoxificação com carvão ativado é o de menor custo e de mais fácil manipulação em comparação ao processo com resinas, os experimentos de ampliação de escala da produção de xilitol por C. guilliermondii foram realizados nesta condição de destoxificação e empregando-se xilose como fonte de carbono para o inóculo. Nesta etapa ficou evidente a viabilidade de ampliação de escala de produção de xilitol de fermentador de 2,4L para 16L, já que os valores dos parâmetros fermentativos avaliados foram semelhantes entre os fermentadores (valores médios: YP/S ≈ 0,68 g g-1 e QP ≈ 0,28 g L-1 h-1). No entanto, tais valores foram inferiores aos obtidos em frascos Erlenmeyer, possivelmente devido às condições de disponibilidade de oxigênio diferirem nos fermentadores de bancada, uma vez que o oxigênio é o parâmetro mais crítico neste bioprocesso. / The conversion of vegetable biomass into chemicals and energy is essential to sustain our current style of life. Sugarcane bagasse, a raw material abundantly available in Brazil, greatly contributes to the supply of the evergrowing demand for ethanol. Furthermore, biomass can be employed for obtaining value-added products, such as xylitol, as well as bring economical advantages for the sugar-ethanol sector. Xylitol, a polyol with sweetener power similar to that of saccharose and peculiar properties such as insulin-independent metabolism, anticariogenic power, and applications in the clinical area, in the treatment of osteoporosis and respiratory diseases, is obtained on a commercial scale by chemical catalysis of lignocellulosic materials. The biotechnological production of xylitol as an alternative to the chemical process has been researched and the results reveal that the presence of toxic compounds in hemicelllosics hydrolysates resulting from acid hydrolysis process contributes to its low fermentability. Such toxicity could be due to the inhibition of microbial metabolism promoted mainly by compounds such as organic acids, phenols and metallic ions. In the present work, the effect of different carbon sources (xylose, glucose and a mixture of xylose and glucose) used in the inoculum preparation of Candida guilliermondii FTI 20037 for the xylose-to-xylitol bioconversion by fermentation of hemicellulosics hydrolysates submitted to detoxification procedures in Erlenmeyer flasks was evaluated. The best condition for this bioprocess was employed to evaluate the scale up from the 2.4L to 16L fermentors, using KLa (equal to 15h-1) as scale-up criteria. According to the results the highest values of fermentative parameters such as xylitol yield and productivity were achieved with the use of inoculum cultivated on xylose during the fermentation of hydrolysate detoxified with resins (YP/S = 0.81 g g-1 and QP = 0.60 g L-1 h-1, respectively), although with the use of charcoal the yield value was similar (YP/S ranging for 0.78 to 0.80 g g-1), regardless of the carbon source employed. Considering the value of xylitol yield and that detoxification with activated charcoal is less expensive and more easily manipulated when compared to detoxification procedure with resins, the experiments for scale up xylitol production by C. guilliermondii were performed in such detoxification condition with xylose as the carbon source for the inoculum. At this stage it was evident the scale up xylitol production from a fermenter of 2.4L to 16L was feasible, since the values of fermentative parameters evaluated were similar to those of the fermentors (medium values YP/S ≈ 0.68 g g-1 e QP ≈ 0.28 g L-1 h-1). However, these values were lower than those obtained in Erlenmeyer flasks, maybe due to conditions of oxygen availability for they differ from those in fermentors, since oxygen is the most critical parameter in this bioprocess.
27

Aproveitamento da fração hemicelulósica da plaha de cana-de-açúcar como matéria-prima na produção biotecnológica de xilitol: Estudo da atuação de co-substratos e permeabilizante de membrana celular / Utilization of sugarcane straw hemicellulosic fraction as feedstock for biotechnological production of xylitol: Study of effect of cosubstrates and cell membrane permeabilizer

Andres Felipe Hernandez Perez 15 April 2015 (has links)
A palha de cana-de-açúcar está se tornando uma biomassa lignocelulósica disponível a partir da progressiva introdução da colheita mecanizada da cana-deaçúcar no Brasil, situação que possibilita a utilização de uma parte desta como matéria-prima em processos de conversão termoquímica ou bioquímica. Além de pesquisas de uso da palha de cana para produção de bioenergia, a conversão bioquímica dos açúcares constituintes de sua fração hemicelulósica, particularmente a xilose, é uma rota potencial para seu aproveitamento na obtenção de produtos de alto valor agregado, como o xilitol. A importância deste poliol se deve às suas peculiares propriedades que permitem sua aplicação nas indústrias alimentícia, odontológica e farmacêutica, aliado ao fato do continuo e rápido crescimento de seu mercado mundial. No presente trabalho foi estudado o aproveitamento da fração hemicelulósica da palha de cana como matéria-prima na produção biotecnológica de xilitol, visando a valorização e incorporação desta biomassa em uma biorrefinaria de cana-de-açúcar. O elevado conteúdo de hemicelulose da palha de cana (27%), similar ao encontrado em outras biomassas lignocelulósicas avaliadas para produção de xilitol, e a maior proporção de xilose no hidrolisado hemicelulósico (71%) em relação aos outros açúcares constituintes, tornam esta biomassa potencial matéria-prima para este bioprocesso. A utilização do hidrolisado hemicelulósico de palha de cana concentrado e destoxificado como meio de fermentação para a bioconversão de xilose em xilitol por Candida guilliermondii FTI 20037 foi avaliada em diferentes fases da pesquisa. Na primeira, foi estudada a necessidade de suplementação nutricional do hidrolisado e a disponibilidade inicial de oxigênio, sendo realizadas fermentações em batelada em frascos Erlenmeyer de 125mL com 25mL ou 50mL de meio, 30oC, 200rpm e 48h. Foi demonstrado que a suplementação do hidrolisado com extrato de farelo de arroz, (NH4)2SO4 e CaCl2·2H2O resultou em aumento do valor da produtividade volumétrica de xilitol, enquanto que a menor disponibilidade inicial de oxigênio favoreceu a eficiência de bioconversão. A avaliação do efeito dos co-substratos maltose, sacarose, celobiose e glicerol sobre este bioprocesso revelou que o maior favorecimento foi obtido com sacarose (10gL-1), já que resultou nos máximos valores de concentração final de xilitol (41,36 ± 1,69 gL-1), eficiência de bioconversão (75,70 ± 0,73%) e produtividade volumétrica (0,61 ± 0,02 gL-1h-1), correspondentes a incrementos de 9,04%, 5,01% e 6,56%, respectivamente, em relação à condição ausente de cosubstratos. A adição ao hidrolisado hemicelulósico de palha de cana de Dimetilsulfóxido (DMSO), composto com capacidade de permeabilizante de membrana celular, não resultou no incremento da produção de xilitol, a qual, pelo contrário, foi reduzida em razão da diminuição no consumo de xilose e crescimento celular de C. guilliermondii FTI 20037. Os resultados obtidos no presente estudo indicam que a produção biotecnológica de xilitol a partir de hidrolisado hemicelulósico de palha de cana suplementado com sacarose pode ser considerada uma rota de conversão bioquímica promissora para a valorização e integração desta biomassa em uma biorrefinaria de cana-de-açúcar. / Sugarcane straw is becoming an available lignocellulosic biomass from the progressive introduction of non-burning harvest in Brazil, situation that enables the utilization of a portion of this material as feedstock in thermochemical and biochemical conversion processes. Besides the use of sugarcane straw for bioenergy production, biochemical conversion of the constituent sugars of its hemicellulosic fraction, particularly xylose, is a potential route for the use of this biomass to obtain high added value products, such as xylitol. The importance of this product is due to its particular properties that enable its application in food, dental and pharmaceutical industries, coupled with the fact of the continuous and rapid growth of its market. In the present work it was studied the utilization of sugarcane straw hemicellulosic fraction as feedstock for biotechnological production of xylitol, aiming at the valorization and integration of this biomass in a sugarcane biorefinery. The high hemicellulosic content of sugarcane straw (27%), similar to that found in other lignocellulosic biomasses evaluated for xylitol production, and the higher proportion of xylose in the hemicellulosic hydrolysate (71%) in relation to the other constituent sugars, make this biomass potential feedstock for this bioprocess. The utilization of the concentrated and detoxified sugarcane straw hemicellulosic hydrolysate as fermentation medium for xylose-toxylitol bioconversion by Candida guilliermondii FTI 20037 was evaluated in different stages. In the first one, it was studied the necessity of nutritional supplementation of the hydrolysate and initial oxygen availability, being carried out batch fermentations in 125mL Erlenmeyer flasks with 25mL or 50mL of medium, 30oC, 200rpm and 48h. It was demonstrated that the supplementation of the hydrolysate with rice bran extract, (NH4)2SO4 and CaCl2·2H2O resulted on the increment of the value of xylitol volumetric productivity, whereas the higher initial oxygen availability favored the bioconversion efficiency. The evaluation of the effect of the co-substrates maltose, sucrose, cellobiose and glycerol on this bioprocess revealed that the higher improvement was obtained with sucrose (10gL-1), since it resulted in the maximum values of final concentration of xylitol (41.36 ± 1.69 gL-1), bioconversion efficiency (75.70 ± 0.73%) and volumetric productivity (0.61 ± 0.02 gL-1h-1), corresponding to increments of 9.04%, 5.01% and 6.56%, respectively, in relation to the condition absent of co-substrates. The addition to the sugarcane straw hemicellulosic hydrolysate of Dimethyl-sulfoxide, a cell membrane permeabilizer, did not resulted on the increasing of the xylitol production, which, in fact, was reduced due to the diminution on xylose consumption and cell growth of C. guilliermondii FTI 20037. The results obtained in this study indicate that biotechnological production of xylitol from sugarcane straw hemicellulosic hydrolysate supplemented with sucrose can be considered a promissory biochemical conversion route for valorization and integration of this biomass in a sugarcane biorefinery.
28

Aproveitamento da fração hemicelulósica da plaha de cana-de-açúcar como matéria-prima na produção biotecnológica de xilitol: Estudo da atuação de co-substratos e permeabilizante de membrana celular / Utilization of sugarcane straw hemicellulosic fraction as feedstock for biotechnological production of xylitol: Study of effect of cosubstrates and cell membrane permeabilizer

Perez, Andres Felipe Hernandez 15 April 2015 (has links)
A palha de cana-de-açúcar está se tornando uma biomassa lignocelulósica disponível a partir da progressiva introdução da colheita mecanizada da cana-deaçúcar no Brasil, situação que possibilita a utilização de uma parte desta como matéria-prima em processos de conversão termoquímica ou bioquímica. Além de pesquisas de uso da palha de cana para produção de bioenergia, a conversão bioquímica dos açúcares constituintes de sua fração hemicelulósica, particularmente a xilose, é uma rota potencial para seu aproveitamento na obtenção de produtos de alto valor agregado, como o xilitol. A importância deste poliol se deve às suas peculiares propriedades que permitem sua aplicação nas indústrias alimentícia, odontológica e farmacêutica, aliado ao fato do continuo e rápido crescimento de seu mercado mundial. No presente trabalho foi estudado o aproveitamento da fração hemicelulósica da palha de cana como matéria-prima na produção biotecnológica de xilitol, visando a valorização e incorporação desta biomassa em uma biorrefinaria de cana-de-açúcar. O elevado conteúdo de hemicelulose da palha de cana (27%), similar ao encontrado em outras biomassas lignocelulósicas avaliadas para produção de xilitol, e a maior proporção de xilose no hidrolisado hemicelulósico (71%) em relação aos outros açúcares constituintes, tornam esta biomassa potencial matéria-prima para este bioprocesso. A utilização do hidrolisado hemicelulósico de palha de cana concentrado e destoxificado como meio de fermentação para a bioconversão de xilose em xilitol por Candida guilliermondii FTI 20037 foi avaliada em diferentes fases da pesquisa. Na primeira, foi estudada a necessidade de suplementação nutricional do hidrolisado e a disponibilidade inicial de oxigênio, sendo realizadas fermentações em batelada em frascos Erlenmeyer de 125mL com 25mL ou 50mL de meio, 30oC, 200rpm e 48h. Foi demonstrado que a suplementação do hidrolisado com extrato de farelo de arroz, (NH4)2SO4 e CaCl2·2H2O resultou em aumento do valor da produtividade volumétrica de xilitol, enquanto que a menor disponibilidade inicial de oxigênio favoreceu a eficiência de bioconversão. A avaliação do efeito dos co-substratos maltose, sacarose, celobiose e glicerol sobre este bioprocesso revelou que o maior favorecimento foi obtido com sacarose (10gL-1), já que resultou nos máximos valores de concentração final de xilitol (41,36 ± 1,69 gL-1), eficiência de bioconversão (75,70 ± 0,73%) e produtividade volumétrica (0,61 ± 0,02 gL-1h-1), correspondentes a incrementos de 9,04%, 5,01% e 6,56%, respectivamente, em relação à condição ausente de cosubstratos. A adição ao hidrolisado hemicelulósico de palha de cana de Dimetilsulfóxido (DMSO), composto com capacidade de permeabilizante de membrana celular, não resultou no incremento da produção de xilitol, a qual, pelo contrário, foi reduzida em razão da diminuição no consumo de xilose e crescimento celular de C. guilliermondii FTI 20037. Os resultados obtidos no presente estudo indicam que a produção biotecnológica de xilitol a partir de hidrolisado hemicelulósico de palha de cana suplementado com sacarose pode ser considerada uma rota de conversão bioquímica promissora para a valorização e integração desta biomassa em uma biorrefinaria de cana-de-açúcar. / Sugarcane straw is becoming an available lignocellulosic biomass from the progressive introduction of non-burning harvest in Brazil, situation that enables the utilization of a portion of this material as feedstock in thermochemical and biochemical conversion processes. Besides the use of sugarcane straw for bioenergy production, biochemical conversion of the constituent sugars of its hemicellulosic fraction, particularly xylose, is a potential route for the use of this biomass to obtain high added value products, such as xylitol. The importance of this product is due to its particular properties that enable its application in food, dental and pharmaceutical industries, coupled with the fact of the continuous and rapid growth of its market. In the present work it was studied the utilization of sugarcane straw hemicellulosic fraction as feedstock for biotechnological production of xylitol, aiming at the valorization and integration of this biomass in a sugarcane biorefinery. The high hemicellulosic content of sugarcane straw (27%), similar to that found in other lignocellulosic biomasses evaluated for xylitol production, and the higher proportion of xylose in the hemicellulosic hydrolysate (71%) in relation to the other constituent sugars, make this biomass potential feedstock for this bioprocess. The utilization of the concentrated and detoxified sugarcane straw hemicellulosic hydrolysate as fermentation medium for xylose-toxylitol bioconversion by Candida guilliermondii FTI 20037 was evaluated in different stages. In the first one, it was studied the necessity of nutritional supplementation of the hydrolysate and initial oxygen availability, being carried out batch fermentations in 125mL Erlenmeyer flasks with 25mL or 50mL of medium, 30oC, 200rpm and 48h. It was demonstrated that the supplementation of the hydrolysate with rice bran extract, (NH4)2SO4 and CaCl2·2H2O resulted on the increment of the value of xylitol volumetric productivity, whereas the higher initial oxygen availability favored the bioconversion efficiency. The evaluation of the effect of the co-substrates maltose, sucrose, cellobiose and glycerol on this bioprocess revealed that the higher improvement was obtained with sucrose (10gL-1), since it resulted in the maximum values of final concentration of xylitol (41.36 ± 1.69 gL-1), bioconversion efficiency (75.70 ± 0.73%) and volumetric productivity (0.61 ± 0.02 gL-1h-1), corresponding to increments of 9.04%, 5.01% and 6.56%, respectively, in relation to the condition absent of co-substrates. The addition to the sugarcane straw hemicellulosic hydrolysate of Dimethyl-sulfoxide, a cell membrane permeabilizer, did not resulted on the increasing of the xylitol production, which, in fact, was reduced due to the diminution on xylose consumption and cell growth of C. guilliermondii FTI 20037. The results obtained in this study indicate that biotechnological production of xylitol from sugarcane straw hemicellulosic hydrolysate supplemented with sucrose can be considered a promissory biochemical conversion route for valorization and integration of this biomass in a sugarcane biorefinery.

Page generated in 0.0693 seconds