• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 199
  • 129
  • 54
  • 14
  • 8
  • 7
  • 6
  • 6
  • 5
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 492
  • 149
  • 122
  • 78
  • 73
  • 64
  • 57
  • 52
  • 43
  • 40
  • 39
  • 36
  • 34
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Effects of Feeding Endophyte-Infected Tall Fescue Seed on Beef Cattle Performance, Hepatic Enzyme Activity, Lipid Oxidation, Metmyoglobin Reductase Activity, and Mitochondrial Lipid Composition

McClenton, Brandon J 03 May 2019 (has links)
The objective of this study was to determine the effects of feeding endophyte-infected tall fescue seed to Angus steers on average daily gain, carcass characteristics, ergovaline concentration, lipid oxidation, hepatic enzyme activity, metmyoglobin reductase activity, and mitochondrial lipid composition. Animals were blocked into light, medium, and heavy body weight groups and were randomly assigned to either a KY31 seed treatment (6796 ppb ergovaline; 20 MUg/kg BW; E+; n = 6) or a KY32 control (< 100 ppb; E-; n = 6). There was a 2-way treatment × time interaction effect on ADG (P < 0.001). The E+ steers gained 0.56 kg/d less than the E- steers from d 0 to 14 (P < 0.001) until d 56 (ADG difference = 0.27 kg/d; P = 0.007) but both group had similar ADG from d 70 till the end of the feeding period 2 (ADG = 0.53 kg/d; P > 0.070). No difference in carcass characteristics were found between the E+ and E- steers by at the time of ultrasonography (P >= 0.120) or at harvest (P >= 0.199). In both period 1 and 2, there was a 2-way treatment × time interaction for ergovaline concentration in blood (P = 0.002 and 0.022, respectively). Infected tall fescue seed did not change d-3 hepatic enzyme activity in both feeding periods (P = 0.149 to 0.645). In period 1, thiobarbituric acid reactive substances, primarily consisting of malondialdehyde (MDA), were greater in blood serum of E+ steers than E- steers (6.56 MUM vs. 2.56 MUM; P = 0.048). An overall increase in MDA from d 0 (2.39 MUM) to d 3 (7.59 MUM) was also observed (P = 0.049). There was no effect of endophyte infected tall fescue seed on metmyoglobin reductase in longissimus thoracis (4.82 MUM/min/g in E- muscle vs. 3.93 MUM/min/g in E+ muscle; P = 0.484. There was no treatment effect on mitochondrial lipid composition (P >= 0.094), including phospholipids and fatty acids.
202

Pyruvate Dehydrogenase Kinase 4 Deficiency and Hepatic Steatosis

Hwang, Byounghoon 23 June 2009 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Regulation of the pyruvate dehydrogenase complex (PDC) is important for glucose homeostasis and control of fuel selection by tissues. Knocking out pyruvate dehydrogenase kinase 4 (PDK4), one of four kinases responsible for regulation of PDC activity, lowers blood glucose levels by limiting the supply of three carbon compounds for gluconeogenesis. Down regulation of PDK4 expression is also important for control of blood glucose by insulin. The primary goal was to determine whether PDK4 should be considered a target for the treatment of diabetes. A major concern is that inhibition of fatty acid oxidation by PDK4 deficiency may promote fat accumulation in tissues and worsen insulin sensitivity. This was examined by feeding wild type and PDK4 knockout mice a diet rich in saturated fat. Fasting blood glucose levels were lower, glucose tolerance was better, insulin sensitivity was greater, and liver fat was reduced in PDK4 knockout mice. The reduction in liver fat is contradictory to the finding that fibrate drugs increase PDK4 expression but ameliorate hepatic steatosis in rodents. To investigate this phenomenon, wild type and PDK4 knockout mice were fed the high saturated fat diet with and without clofibric acid. The beneficial effect of clofibric acid on hepatic steatosis was greater in the PDK4 knockout mice, indicating up regulation of PDK4 is not necessary and likely opposes the effect of clofibric acid on hepatic steatosis. Clofibric acid dramatically lowered the amount of hepatic CD36, a plasma membrane translocase required for fatty acid import, suggesting a novel mechanism for prevention of hepatic steatosis by fibrates. PDK4 deficiency had no effect on CD36 expression but reduced the enzymatic capacity for fatty acid synthesis, suggesting clofibric acid and PDK4 deficiency ameliorate hepatic steatosis by independent mechanisms. Investigation of the mechanism by which insulin regulates PDK4 expression revealed a novel binding site for hepatic nuclear factor 4α (HNF4α) in the PDK4 promoter. The stimulatory effect of HNF4α was sensitive to inhibition by Akt which is activated by insulin. The findings suggest PDK4 is a viable target for the treatment of hepatic steatosis and type 2 diabetes.
203

Viscoelastic Monitoring in Major Hepatic Surgery: An Evidence-Based Practice Project

Kinietz, Randall January 2024 (has links)
No description available.
204

Hepatic capacitance reponses to changes in flow and hepatic venous pressure in dogs

Bennett, Tom D. January 1980 (has links)
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department (rlmlill@iu.edu).
205

Maternal nonalcoholic fatty liver disease: A driver of fetal hepatic steatosis?

Klepper, Corie 23 August 2022 (has links)
No description available.
206

Characterization and role of collagen gene expressing hepatic cells following partial hepatectomy in mice / マウス肝切除後のコラーゲン遺伝子発現細胞の特徴と役割について

Kimura, Yusuke 26 September 2022 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24197号 / 医博第4891号 / 新制||医||1060(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 平井 豊博, 教授 万代 昌紀, 教授 伊達 洋至 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DGAM
207

Regulation of Energy Mobilization in Rainbow Trout: Metabolic Fluxes and Signaling

Talarico, Giancarlo G. M. 03 January 2023 (has links)
Rainbow trout (Oncorhynchus mykiss) is an important freshwater fish whose glucose intolerance, white muscle lactate retention and high lipolytic inertia, have interested comparative physiologists for decades. Recent advancements in mammalian G-protein coupled receptor deorphanization research have identified many endogenous metabolites as regulators of energy metabolism, including lactate and long-chain fatty acids. In addition to being essential metabolic fuels, lactate and long-chain fatty acids regulate lipolysis and lipogenesis by binding to hydroxycarboxylic acid receptor 1 (HCAR1) and the free fatty acid receptors (FFAR1 and 4), respectively. Therefore, the goal of this thesis was to quantify the effects of exogenous lactate and lipids on glucose and fatty acid mobilization in rainbow trout and identify potential signaling mechanisms by monitoring the expression and activity of key glycolytic, gluconeogenic, lipolytic, lipogenic and β-oxidation targets in the liver, muscle and adipose tissue. In Chapter 2, in vivo measurements of metabolic fuel kinetics show that lactate (i) strongly reduced hepatic glucose production by substituting glucose for lactate and (ii) exhibited no lipolytic suppression suggesting HCAR1 signaling is weak in trout. In Chapter 3, in vivo measurements of energy mobilization show that Intralipid strongly induced lipolysis by saturating circulating lipases while transcriptional induction of gluconeogenesis compensates for the acute reduction in hepatic glucose production. Intralipid infusion increased total fatty acid concentration and altered fatty acid composition while suppressing lipid metabolism of trout liver and adipose tissue. In Chapter 4, I identify the presence (hcar1 and ffar1) and absence (ffar4) of these G-protein coupled receptor genes in the rainbow trout genome and describe their evolutionary origins, using in silico approaches of microsynteny, amino acid sequence similarity and critical residue conservation. However, their importance in fish physiology remains relatively unknown, thus future studies are warranted to further investigate such metabolic signals.
208

Retrograde Labelling and Visualization of the Intrinsic Autonomic Ganglia of the Rat Liver

Negrete, Kennan J 01 January 2020 (has links)
The purpose of this study was to use retrograde tracing techniques to examine hepatic neuroanatomy in the rat model, with special emphasis upon the identification of previously undiscovered intrahepatic parasympathetic ganglia. Retrograde analysis was performed using Fluoro-Gold (FG) tracer injections of both male and female Sprague-Dawley rats. To accurately examine the neural connectivity of both the vasculature and the parenchyma, the FG-labelled livers were divided into two groups. In the first, vessel trees were extracted via dissection and whole-mounted for bright field and confocal visualization. Left lateral lobes taken from the male and female liver that constituted the second group were sectioned, and slices from various layers of tissue were fixed to slides and visualized. The results indicated the presence of several large, fluorescent structures bearing a strong resemblance to parasympathetic ganglia. However, the images were not detailed enough to properly differentiate true ganglia from similar paraganglia. Regardless, the importance of this experiment lies in its attempt to revisit an understudied field in neuroscience, and the findings of this study could potentially provide a starting point for further inquiry.
209

Relative rates of hepatic and pulmonary enzyme systems involved in the metabolic fate of nicotine

Flammang, Ann Marie January 1994 (has links)
No description available.
210

Hepatic CEACAM1 Protects Against Metabolic Abnormalities Associated with Metabolic Syndrome

Bowman, Thomas A. 19 May 2010 (has links)
No description available.

Page generated in 0.0546 seconds