Spelling suggestions: "subject:"hereditary"" "subject:"hereditaria""
1 |
A bipolar theorem for $L^0_+(\Om, \Cal F, \P)$Brannath, Werner, Schachermayer, Walter January 1999 (has links) (PDF)
A consequence of the Hahn-Banach theorem is the classical bipolar theorem which states that the bipolar of a subset of a locally convex vector pace equals its closed convex hull. The space $\L$ of real-valued random variables on a probability space $\OF$ equipped with the topology of convergence in measure fails to be locally convex so that - a priori - the classical bipolar theorem does not apply. In this note we show an analogue of the bipolar theorem for subsets of the positive orthant $\LO$, if we place $\LO$ in duality with itself, the scalar product now taking values in $[0, \infty]$. In this setting the order structure of $\L$ plays an important role and we obtain that the bipolar of a subset of $\LO$ equals its closed, convex and solid hull. In the course of the proof we show a decomposition lemma for convex subsets of $\LO$ into a "bounded" and "hereditarily unbounded" part, which seems interesting in its own right. (author's abstract) / Series: Working Papers SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
|
2 |
Optimal and Hereditarily Optimal Realizations of Metric Spaces / Optimala och ärftligt optimala realiseringar av metrikerLesser, Alice January 2007 (has links)
<p>This PhD thesis, consisting of an introduction, four papers, and some supplementary results, studies the problem of finding an <i>optimal realization</i> of a given finite metric space: a weighted graph which preserves the metric's distances and has minimal total edge weight. This problem is known to be NP-hard, and solutions are not necessarily unique.</p><p>It has been conjectured that <i>extremally weighted</i> optimal realizations may be found as subgraphs of the <i>hereditarily optimal realization</i> Γ<sub>d</sub>, a graph which in general has a higher total edge weight than the optimal realization but has the advantages of being unique, and possible to construct explicitly via the <i>tight span</i> of the metric.</p><p>In Paper I, we prove that the graph Γ<sub>d</sub> is equivalent to the 1-skeleton of the tight span precisely when the metric considered is <i>totally split-decomposable</i>. For the subset of totally split-decomposable metrics known as <i>consistent</i> metrics this implies that Γ<sub>d</sub> is isomorphic to the easily constructed <i>Buneman graph</i>.</p><p>In Paper II, we show that for any metric on at most five points, any optimal realization can be found as a subgraph of Γ<sub>d</sub>.</p><p>In Paper III we provide a series of counterexamples; metrics for which there exist extremally weighted optimal realizations which are not subgraphs of Γ<sub>d</sub>. However, for these examples there also exists at least one optimal realization which is a subgraph.</p><p>Finally, Paper IV examines a weakened conjecture suggested by the above counterexamples: can we always find some optimal realization as a subgraph in Γ<sub>d</sub>? Defining <i>extremal</i> optimal realizations as those having the maximum possible number of shortest paths, we prove that any embedding of the vertices of an extremal optimal realization into Γ<sub>d</sub> is injective. Moreover, we prove that this weakened conjecture holds for the subset of consistent metrics which have a 2-dimensional tight span</p>
|
3 |
Optimal and Hereditarily Optimal Realizations of Metric Spaces / Optimala och ärftligt optimala realiseringar av metrikerLesser, Alice January 2007 (has links)
This PhD thesis, consisting of an introduction, four papers, and some supplementary results, studies the problem of finding an optimal realization of a given finite metric space: a weighted graph which preserves the metric's distances and has minimal total edge weight. This problem is known to be NP-hard, and solutions are not necessarily unique. It has been conjectured that extremally weighted optimal realizations may be found as subgraphs of the hereditarily optimal realization Γd, a graph which in general has a higher total edge weight than the optimal realization but has the advantages of being unique, and possible to construct explicitly via the tight span of the metric. In Paper I, we prove that the graph Γd is equivalent to the 1-skeleton of the tight span precisely when the metric considered is totally split-decomposable. For the subset of totally split-decomposable metrics known as consistent metrics this implies that Γd is isomorphic to the easily constructed Buneman graph. In Paper II, we show that for any metric on at most five points, any optimal realization can be found as a subgraph of Γd. In Paper III we provide a series of counterexamples; metrics for which there exist extremally weighted optimal realizations which are not subgraphs of Γd. However, for these examples there also exists at least one optimal realization which is a subgraph. Finally, Paper IV examines a weakened conjecture suggested by the above counterexamples: can we always find some optimal realization as a subgraph in Γd? Defining extremal optimal realizations as those having the maximum possible number of shortest paths, we prove that any embedding of the vertices of an extremal optimal realization into Γd is injective. Moreover, we prove that this weakened conjecture holds for the subset of consistent metrics which have a 2-dimensional tight span
|
4 |
Extensões conexas e espaços de Banach C(K) com poucos operadores / Connected extensions and Banach spaces C(K) with few operatorsBarbeiro, André Santoleri Villa 26 March 2018 (has links)
Este trabalho tem dois objetivos principais. Primeiramente, analisamos a preservação de conexidade na extensão de espaços compactos por funções contínuas, técnica utilizada por Koszmider para obter $C(K)$ indecomponível com poucos operadores. Mostramos que para todo compacto metrizável $K$ existe um desconexo $L$ que é obtido a partir de $K$ por uma quantidade finita de extensões por funções contínuas. Em seguida, enfatizamos a construção de espaços de Banach da forma $C(K)$ com poucos operadores, com a propriedade de que $C(L)$ tem poucos operadores, para todo fechado $L \\subseteq K$. Assumindo o princípio diamante construímos uma família $(K_\\xi)_{\\xi < 2^{(2^\\omega)}}$ de espaços conexos e hereditariamente Koszmider tais que todo operador de $C(K_\\xi)$ em $C(K_\\eta)$ é fracamente compacto, para $\\xi$ diferente de $\\eta$. Em particular, $(C(K_\\xi))_{\\xi < 2^{(2^\\omega)}}$ é uma família de espaços de Banach indecomponíveis e dois a dois essencialmente incomparáveis, e cada espaço $K_\\xi$ responde positivamente ao problema de Efimov. Apresentamos também um método de construção via forcing de um espaço compacto e conexo $K$ hereditariamente fracamente Koszmider. / This work has two main objectives. First, we analyze the preservation of connectedness in the extension of compact spaces by continuous functions, a technique used by Koszmider to obtain an indecomposable Banach space $C(K)$ with few operators. We show that for any metrizable compactum $K$ there exists a disconnected $L$ which is obtained from $K$ by finitely many extensions by continuous functions. Next, we emphasize the construction of Banach spaces of the form $C(K)$ with the property that $C(L)$ has few operators, for every closed $L \\subseteq K$. Assuming the diamond principle we construct a family $(K_\\xi)_{\\xi < 2^{(2^\\omega)}}$ of connected and hereditarily Koszmider spaces such that every operator from $C(K_\\xi)$ into $C(K_\\eta)$ is weakly compact, for $\\xi$ different from $\\eta$. In particular, $(C(K_\\xi))_{\\xi < 2^{(2^\\omega)}}$ is a family of indecomposable and pairwise essentially incomparable Banach spaces, and each space $K_\\xi$ responds positively to the Efimov\'s problem. We also present a method of construction using forcing of a compact and connected hereditarily weakly Koszmider space $K$.
|
5 |
Extensões conexas e espaços de Banach C(K) com poucos operadores / Connected extensions and Banach spaces C(K) with few operatorsAndré Santoleri Villa Barbeiro 26 March 2018 (has links)
Este trabalho tem dois objetivos principais. Primeiramente, analisamos a preservação de conexidade na extensão de espaços compactos por funções contínuas, técnica utilizada por Koszmider para obter $C(K)$ indecomponível com poucos operadores. Mostramos que para todo compacto metrizável $K$ existe um desconexo $L$ que é obtido a partir de $K$ por uma quantidade finita de extensões por funções contínuas. Em seguida, enfatizamos a construção de espaços de Banach da forma $C(K)$ com poucos operadores, com a propriedade de que $C(L)$ tem poucos operadores, para todo fechado $L \\subseteq K$. Assumindo o princípio diamante construímos uma família $(K_\\xi)_{\\xi < 2^{(2^\\omega)}}$ de espaços conexos e hereditariamente Koszmider tais que todo operador de $C(K_\\xi)$ em $C(K_\\eta)$ é fracamente compacto, para $\\xi$ diferente de $\\eta$. Em particular, $(C(K_\\xi))_{\\xi < 2^{(2^\\omega)}}$ é uma família de espaços de Banach indecomponíveis e dois a dois essencialmente incomparáveis, e cada espaço $K_\\xi$ responde positivamente ao problema de Efimov. Apresentamos também um método de construção via forcing de um espaço compacto e conexo $K$ hereditariamente fracamente Koszmider. / This work has two main objectives. First, we analyze the preservation of connectedness in the extension of compact spaces by continuous functions, a technique used by Koszmider to obtain an indecomposable Banach space $C(K)$ with few operators. We show that for any metrizable compactum $K$ there exists a disconnected $L$ which is obtained from $K$ by finitely many extensions by continuous functions. Next, we emphasize the construction of Banach spaces of the form $C(K)$ with the property that $C(L)$ has few operators, for every closed $L \\subseteq K$. Assuming the diamond principle we construct a family $(K_\\xi)_{\\xi < 2^{(2^\\omega)}}$ of connected and hereditarily Koszmider spaces such that every operator from $C(K_\\xi)$ into $C(K_\\eta)$ is weakly compact, for $\\xi$ different from $\\eta$. In particular, $(C(K_\\xi))_{\\xi < 2^{(2^\\omega)}}$ is a family of indecomposable and pairwise essentially incomparable Banach spaces, and each space $K_\\xi$ responds positively to the Efimov\'s problem. We also present a method of construction using forcing of a compact and connected hereditarily weakly Koszmider space $K$.
|
6 |
Construções genéricas de espaços de Asplund C(K) / Generic constructions of Asplund spaces C(K)Brech, Christina 29 April 2008 (has links)
Neste trabalho consideramos um método de construções genéricas de espaços compactos e dispersos não-metrizáveis, desenvolvido por Baumgartner, Shelah, Rabus, Juhasz e Soukup. Introduzimos novas técnicas e obtemos novas aplicações relevantes tanto para a topologia dos espaços compactos quanto para a geometria dos espaços de Banach de funções contínuas. As novas técnicas dizem respeito a novas amalgamações de condições do forcing que adiciona os espaços dispersos, bem como a generalizações dos argumentos dos autores acima citados de pontos de um espaço compacto K para medidas de Radon sobre K. Como aplicações, obtemos dois novos espaços compactos e dispersos K_1 e K_2, com as propriedades abaixo. K_1 é um espaço hereditariamente separável de peso aleph_1 tal que C(K_1) possui a propriedade (C) de Corson e não possui a propriedade (E) de Efremov. K_2 é o primeiro exemplo de um espaço compacto disperso, hereditariamente separável, de altura omega_2. Segue que o grau de Lindelöf hereditário de K_2 é aleph_2, mostrando a consistência de que hL(K) é estritamente maior que o sucessor de hd(K) para espaços compactos K. C(K_2) é o primeiro exemplo consistente de um espaço de densidade aleph_2 que não possui um sistema biortogonal não-enumerável. / In this work we consider a method of generic constructions of compact scattered non-metrizable spaces developed by Baumgartner, Shelah, Rabus, Juhasz and Soukup. We introduce new techniques and obtain new applications both relevant to topology of compact spaces and the geometry of Banach spaces of continuous functions. The new techniques concern new amalgamations of conditions of forcing which add the dispersed spaces as well as the generalizations of arguments of the above-mentioned authors from points of a compact space K to Radon measures on K. As applications we obtain two compact scattered spaces K_1 and K_2 with the properties below. K_1 is a hereditarily separable space of weight aleph_1 such that C(K_1) has property (C) of Corson and does not have property (E) of Efremov. K_2 is the first (consistent) example of a compact scattered space which is hereditarily separable and whose height is omega_2. It follows that its hereditary Lindelöf degree is aleph_2, showing the consistency of hL(K) can me strictly greater than the successor of hd(K) for compact spaces K. C(K_2) is the first consistent example of a Banach space of density aleph_2 without uncountable biorthogonal systems.
|
7 |
Construções genéricas de espaços de Asplund C(K) / Generic constructions of Asplund spaces C(K)Christina Brech 29 April 2008 (has links)
Neste trabalho consideramos um método de construções genéricas de espaços compactos e dispersos não-metrizáveis, desenvolvido por Baumgartner, Shelah, Rabus, Juhasz e Soukup. Introduzimos novas técnicas e obtemos novas aplicações relevantes tanto para a topologia dos espaços compactos quanto para a geometria dos espaços de Banach de funções contínuas. As novas técnicas dizem respeito a novas amalgamações de condições do forcing que adiciona os espaços dispersos, bem como a generalizações dos argumentos dos autores acima citados de pontos de um espaço compacto K para medidas de Radon sobre K. Como aplicações, obtemos dois novos espaços compactos e dispersos K_1 e K_2, com as propriedades abaixo. K_1 é um espaço hereditariamente separável de peso aleph_1 tal que C(K_1) possui a propriedade (C) de Corson e não possui a propriedade (E) de Efremov. K_2 é o primeiro exemplo de um espaço compacto disperso, hereditariamente separável, de altura omega_2. Segue que o grau de Lindelöf hereditário de K_2 é aleph_2, mostrando a consistência de que hL(K) é estritamente maior que o sucessor de hd(K) para espaços compactos K. C(K_2) é o primeiro exemplo consistente de um espaço de densidade aleph_2 que não possui um sistema biortogonal não-enumerável. / In this work we consider a method of generic constructions of compact scattered non-metrizable spaces developed by Baumgartner, Shelah, Rabus, Juhasz and Soukup. We introduce new techniques and obtain new applications both relevant to topology of compact spaces and the geometry of Banach spaces of continuous functions. The new techniques concern new amalgamations of conditions of forcing which add the dispersed spaces as well as the generalizations of arguments of the above-mentioned authors from points of a compact space K to Radon measures on K. As applications we obtain two compact scattered spaces K_1 and K_2 with the properties below. K_1 is a hereditarily separable space of weight aleph_1 such that C(K_1) has property (C) of Corson and does not have property (E) of Efremov. K_2 is the first (consistent) example of a compact scattered space which is hereditarily separable and whose height is omega_2. It follows that its hereditary Lindelöf degree is aleph_2, showing the consistency of hL(K) can me strictly greater than the successor of hd(K) for compact spaces K. C(K_2) is the first consistent example of a Banach space of density aleph_2 without uncountable biorthogonal systems.
|
Page generated in 0.0558 seconds