• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 26
  • 22
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 102
  • 42
  • 28
  • 20
  • 15
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ionized regions and star formation in the galaxy / Régions d'hydrogène ionisé et formation stellaire de la galaxie

Figueira Sebastiao, Miguel 20 September 2017 (has links)
Ma thèse est centrée sur l'étude de l'interaction entre les étoiles massives et le milieu environnant. Je suis particulièrement intéressé par l'effet qu'ont ces étoiles sur les jeunes objets stellaires observés autour d'elles. Les étoiles massives forment des régions d'hydrogène ionisé (HII) dont l'expansion supersonique conduit à la formation d'une couche de gaz et de poussières où les conditions paraissent favoriser la formation stellaire. Mon travail consiste à étudier les propriétés des jeunes objets stellaires autour de ces régions HII et à savoir si la région HII a influencé positivement la formation de ces sources.En utilisant les données Herschel, issues des programmes HOBYS et Hi-GAL, complétées par d'autres observations, j'ai étudié deux régions HII galactiques (RCW~79 et RCW~120) afin de caractériser la formation stellaire observée à leurs frontières. Pour étudier l'impact de la photoionisation, j'ai calculé le taux de formation stellaire (SFR) pour ces deux régions. Cette grandeur suggère que RCW~79 et RCW~120 sont des régions de formation stellaire actives malgré leur relative faible densité surfacique de gaz. Une nouvelle étude de la région G345 est en cours. Cette région HII est située au-dessus du plan galactique et forme activement des étoiles. Avec les données disponibles, les propriétés de la formation stellaire seront discutées. Cette étude nous donne l'opportunité de mieux comprendre les effets de la photoionisation en dehors du plan galactique. Cette région viendra augmenter notre échantillon de régions HII, ce qui est nécessaire pour avoir une vision globale des mécanismes en jeu et pour mieux comprendre l'efficacité de la formation stellaire. / My PhD thesis deals with the study of the interaction between high mass stars and their surrounding medium. I am particularly interested in the way high-mass stars affect the young stars observed around them. Massive stars form ionized (HII) regions which, during their supersonic expansion, lead to the formation of a layer of gas and dust where the conditions seem to favor star formation. My work aims at understanding the properties of star formation around Galactic HII regions.Using \herschel\, data (HOBYS and Hi-GAL programs) complemented with ancillary data, I studied two Galactic \HII\, regions (RCW~79 and RCW~120) to characterize the star formation observed at their edges. To study the impact of the ionization pressure, I computed the Star Formation Rate (SFR), which suggests that RCW~79 and RCW~120 are active star-forming regions despite their low gas surface density.A new study about the G345 region is in progress. This HII region is located above the Galactic plane and is actively forming stars. With the data available, the star formation's properties is being derived such as the spatial distribution of clumps, their stellar content, the SFR and CFE. This new study offers another opportunity to better understand the photoionization feedback out of the Galactic plane. Moreover, this will complete the sample of detailed studies of \HII\, regions, allowing us to obtain a global view of the mechanisms at play and of the efficiency of star formation in these regions.
12

Étude statistique et multi-longueurs-d'onde de la formation d'étoiles dans les galaxies / A statistical and multi-wavelength study of star formation in galaxies

Schreiber, Corentin 07 October 2015 (has links)
Le but global de cette thèse est de caractériser les processus qui régulent la formation d'étoiles à grande échelle dans les galaxies. Durant les quinze dernières années, le développement de l'astronomie infrarouge, portée par les satellites ISO, IRAS, Spitzer et Herschel, a révolutionné notre conception de l'évolution des galaxies. En observant le rayonnement émis par la poussière interstellaire, ces observatoires permettent de détecter l'énergie et la matière qui reste désespérément invisible aux télescopes optiques, et ont découvert ainsi une part conséquente et pourtant insoupçonnée de l'activité des galaxies. Les travaux de ma thèse reposent donc en grande partie sur les données acquises par le satellite Herschel, qui permet pour la première fois de détecter l'émission infrarouge des galaxies "normales" à de grandes distances (z=2). En m'appuyant sur ces nouvelles données, j'étudie statistiquement plusieurs milliers de galaxies à différentes époques de l'Univers. En particulier, j'apporte les meilleures contraintes disponibles à ce jour sur les propriétés de la "Séquence Principale" des galaxies. L'existence de cette séquence (la corrélation entre la masse stellaire, M* et le taux de formation d'étoile, SFR) s'est trouvée être un outil formidable pour comprendre l'évolution des galaxies. La faible dispersion observée autour de cette séquence suggère que la majorité des galaxies grandi par des épisodes de formation d'étoile longs et réguliers, et non par des processus violents comme ceux qui résultent de la collision (ou fusion) de deux galaxies. En développant une nouvelle technique d'analyse d'image, je montre en particulier que plus des deux tiers de la masse des étoiles observée aujourd'hui dans l'Univers ont été formées au sein de la Séquence Principale, et qu'il s'agit donc du mode dominant de croissance des galaxies. Dans un deuxième temps, je m'intéresse à caractériser l'évolution de la forme de cette séquence avec le temps, c'est à dire principalement la pente de la corrélation SFR-M*. Conformément aux résultats d'autres études publiées indépendamment, je trouve que cette pente évolue et décroit avec le temps, de sorte que les galaxies les plus massives forment relativement moins d'étoiles aujourd'hui que dans le passé. J'étudie les origines possibles de cette évolution, en quantifiant par exemple l'évolution morphologique des galaxies et la croissance des bulbes, ainsi que l'évolution du contenu en gaz d'hydrogène, le carburant de la formation d'étoile. J'en déduis que le changement de pente de la Séquence Principale peut être principalement expliqué par une variation de l'efficacité de formation d'étoile, et non par un processus morphologique ou par un manque de gaz. Les différentes observations que j'ai effectuées dans les travaux sus-cités me permettent d'établir des relations simples pour simuler les propriétés observables des galaxies, en particulier leurs spectres. J'utilise ces recettes pour créer une simulation réaliste d'un champ profond qui me sert à tester mes méthodes d'analyse, et qui reproduit correctement le fond diffus infrarouge. Enfin, j'introduis des résultats préliminaires sur la formation d'étoile dans l'Univers jeune (z=4) obtenus grâce à de nouvelles données acquises par le télescope ALMA. Je décris en particulier les contraintes apportées sur la Séquence Principale à cette époque, et j'étudie plus en détail deux galaxies extrêmement distantes que j'ai découvert par chance dans ces données. Ces galaxies sont parmi les plus lointaines connues à ce jour, et sont probablement les plus massives et poussiéreuses jamais détectées dans un Univers âgé de moins d'un milliard d'années. / The main goal of this thesis is to characterize the processes that regulate large-scale star formation in galaxies. During the last fifteen years, the development of infrared astronomy through the satellites ISO, IRAS, Spitzer and Herschel has revolutionized our conception of galaxy evolution. By observing the light emitted by the interstellar dust, these observatories allow us to detect the energy and matter that remain elusive to the best optical telescopes, and have thereby discovered a substantial yet unexpected part of the star formation activity of galaxies. The work of my thesis hence rely heavily on the data acquired by the Herschel satellite, which allow for the first time the detection in the infrared of "normal" galaxies at great distances (z=2).Taking advantage of these new data, I perform a statistical study of several thousands of galaxies at different epochs of the Universe. In particular, I bring forward the best constraints available today on the properties of the "Main Sequence" of galaxies. The existence of this sequence (the correlation between the stellar mass, M*, and the star formation rate, SFR) turned out to be a incredibly useful tool to understand galaxy evolution. The small dispersion that is observed around this sequence suggests that the majority of galaxies are growing through long and steady episodes of star formation, rather than intense bursts like those triggered by the collision (of merger) of two galaxies. By developing a new image analysis technique, I show in particular that more than two thirds of the mass of stars present in the Universe today has been formed within Main Sequence galaxies, hence that this is the dominant mode of galaxy growth.Then I approach another aspect of the Main Sequence, that is the characterization of the evolution of its shape, i.e., the slope of the SFR-M* correlation. In agreement with other studies that were published independently, I find that this slope evolves and decreases with time, so that the most massive galaxies are forming relatively fewer stars per year today than they used to in the past. I study the various possible causes for this evolution, by quantifying for example the morphological evolution of these galaxies and the growth of bulges, as well as the evolution in their hydrogen gas content, which is the fuel for star formation. I deduce from these observations that the change of slope of the Main Sequence can be mainly attributed to a decrease of the star formation efficiency, rather than by a morphological process or a lack of gas.The various observations I have made throughout the work described above allow me to establish simple prescriptions to simulate the observable properties of galaxies, in particular their spectrum. I use these recipes to create a realistic simulation of a deep field, that I use to test my analysis methods and that reproduces consistently the cosmic infrared background.Lastly, I introduce some preliminary results on star formation in the young Universe (z=4) obtained thanks to new data acquired with the ALMA telescope. I describe in particular the resulting new constraints on the Main Sequence at this epoch, and study in more detail two extremely distant galaxies that I have discovered by chance in these data. These two galaxies are among the most distant known today, and are probably the most massive and most dusty ever detected in a Universe that is less than a billion years old.
13

Evolution des poussières interstellaires : apport des données de l'observatoire spatial Herschel / Evolution of interstellar dust in light of Herschel Space Observatory data

Arab, Heddy 28 September 2012 (has links)
Les poussières interstellaires sont des particules solides dont les tailles sont comprises entre le nanomètre et le micron. Bien que représentant une faible proportion en masse du milieu interstellaire, elles jouent un rôle essentiel dans son évolution et de façon générale dans l'évolution des galaxies. Les poussières interstellaires sont observables dans les domaines UV et visible en extinction et de l'infrarouge au submillimétrique en émission. La conduite d'observations astrophysiques conjuguée au développement de modèles numériques de poussières et à l'étude d'analogues de grains en laboratoire permet d'affiner notre connaissance de ces particules solides. En particulier, il existe aujourd'hui de nombreuses preuves d'une évolution des grains dans le milieu interstellaire. Cependant, les processus physiques responsables de cette évolution sont aujourd'hui encore mal connus. Afin de comprendre comment évoluent les grains avec les propriétés physiques, il est nécessaire d'observer les poussières dans différents environnements. Les régions de photodissociation (PDR) sont des zones du milieu interstellaire présentant l'avantage de voir leur champ de rayonnement et leur densité locale varier sur de faibles échelles spatiales (~10- 20 arcsec). De plus, la grande variété de traceurs du gaz permet de contraindre efficacement les conditions physiques dans les PDR. Toutefois, l'émission des grains à l'équilibre thermique dans les PDR, qui domine l’émission dans l’infrarouge lointain, n'était que rarement résolue spatialement. Les instruments PACS et SPIRE, à bord de l'observatoire spatial Herschel, permettent aujourd'hui de disposer d'observations spectro-photométriques entre 70 et 500 µm, dont la résolution spatiale (comprise entre 5 et 35 arcsec) en fait des données idéales pour l'étude de l'évolution des poussières dans les PDR. Nous présentons l'analyse des observations Herschel de trois PDR, la Barre d'Orion, la Tête de Cheval et la NGC 7023 Est, caractérisées par des conditions physiques différentes. En combinant ces données aux observations Spitzer, nous pouvons étudier simultanément l'émission des poussières entre 3.6 et 500 µm à différentes positions de la PDR. Pour cela, des profils d'intensité reliant l'étoile à la PDR sont extraits à chaque longueur d'onde puis comparés spatialement. Un décalage de la position du pic d’émission dû au transfert radiatif est observé : plus la longueur d'onde est grande, plus le pic est éloigné de l'étoile excitatrice. Par contre, la comparaison entre les profils d'intensité observés et ceux calculés à partir d'un code de transfert de rayonnement couplé à un modèle de poussières correspondant aux propriétés du milieu interstellaire diffus révèle des différences liées à une évolution des grains pour chaque PDR étudiée. A la vue des écarts, nous concluons que l'abondance des PAH, plus petite composante de grains interstellaires, est plus faible dans les PDR que dans le milieu diffus suggérant la présence d'un phénomène de photo-destruction et/ou d'agrégation des PAH sur les gros grains dans les PDR. Ceci pourrait être accompagné d'une augmentation d'émissivité des gros grains liée à un mécanisme de coagulation. Les observations Herschel des PDR nous offrent également l'opportunité de nous intéresser aux variations du spectre des grains à l'équilibre thermique avec le rayonnement au travers des PDR. Un ajustement d'une loi de corps noir modifié permet d'extraire une épaisseur optique, une température et un indice spectral des grains. L'étude de ces deux derniers paramètres révèle une anticorrélation confirmant ainsi des travaux précédents. Cependant, la comparaison de la dépendance de la température et de l'indice spectral dans différentes régions montre différents comportements et exclut une dépendance universelle entre ces deux paramètres. Ce résultat ouvre de nouvelles perspectives quant à l'étude de l'évolution des poussières dans le milieu interstellaire. / Interstellar dust grains are nanometre to micrometer-sized particles. Although a weak proportion of the total interstellar mass is at solid state, dust plays a fundamental role in the evolution of the interstellar medium (ISM) and of the galaxy itself. Grains can be observed in the UV and visible wavelength through extinction whereas their emission is in the infrared to sub-millimetre range. Astrophysical observations combined to numerical models and laboratory studies of dust analogues improve our comprehension of the nature and the physics of interstellar grains. For example, evidence of dust evolution in the interstellar medium are now numerous, even if the physical processes responsible of this evolution are still poorly understood. Understanding how grains evolve with physical conditions requires observations of various environments. Photodissociation regions (PDRs) are zones of the ISM where the radiation field and the local density vary on short spatial scales (~10- 20 arcsec). Moreover the many gas tracers offer the opportunity to constraint efficiently the physical conditions within PDRs. Past missions such as ISO and Spitzer allow to study the evolution of dust in the near-Infrared range. At longer wavelengths, where the grains at thermal equilibrium with the radiation dominate the emission, instruments rarely resolved the spatial emission in PDRs. PACS and SPIRE instruments onboard Herschel Space Observatory provide spectro-photometric data between 70 and 500 µm. Their high spatial resolution (from 5 to 35 arcmin) makes these observations ideal for the study of dust evolution in PDRs. We present here an analysis of Herschel observations of three PDRs: the Orion Bar, the Horsehead and NGC 7023 East, characterized by different physical conditions. By combining these data with shorter wavelength observations from Spitzer, we can study the dust emission spectrum from 3.6 to 500 µm at different positions within the PDR. Intensity profiles are extracted along the PDR at each wavelength and spatially compared. We highlight a shift between the position of the emission peak: the longest the wavelength, the furthest the peak from the exciting star. This is a consequence of the radiative transfer in the PDR as shown from a plane parallel transfer code coupled with a dust model. The comparison between the observed and the modelled profiles computed with typical diffuse dust abundances and properties shows differences linked to dust evolution in each studied PDR. These discrepancies between the data and the model indicate a lower Polycyclic Aromatic Hydrocarbon (PAH, the smallest dust component) abundance in the PDR than in the diffuse medium suggesting photo-destruction and/or PAH sticking on larger grains. This could be accompanied by an increase of big grain emissivity linked to coagulation. Herschel's observations of PDR also offer the chance to probe the variations of the grains at thermal equilibrium with the radiation through PDRs. A modified blackbody fit allows to compute an optical depth, a temperature and a dust spectral emissivity index. Those two last parameters are clearly anticorrelated, which confirms previous works. However, comparing the temperature and emissivity index dependence in different regions shows various behaviours, which excludes a universal law between these parameters. This result opens new perspectives in the study of the dust evolution in the interstellar medium.
14

Une étude expérimentale de l'injection de fluides d'Herschel-Bulkley en milieu poreux

Clain, Xavier 04 October 2010 (has links) (PDF)
L'écoulement à travers un milieu poreux d'un fluide non newtonien, est un problème récurrent rencontré dans de nombreux domaines de l'industrie et dont la difficulté réside à la fois dans la géométrie complexe du milieu poreux et dans le caractère non-linéaire des matériaux utilisés. Dans cette thèse, nous adoptons une approche différente de celle menée dans les travaux antérieurs, en nous basant principalement sur l'expérimentation. En procédant à des essais systématiques d'injection dans un milieu poreux dont nous pouvons contrôler les données géométriques, nous montrons qu'un gradient de pression seuil, étant proportionnel au seuil du fluide et inversement proportionnel à la taille typique des pores, doit systématiquement être dépassé pour mettre le fluide en écoulement.En outre, nous étudions la possibilité de regrouper, via un redimensionnement, l'ensemble des résultats sur une courbe maîtresse et établir ainsi une base pour l'établissement d'une loi générale d'écoulement
15

Physics and chemistry of gas in discs

Tilling, Ian January 2013 (has links)
Protoplanetary discs set the initial conditions for planet formation. By combining observations with detailed modelling, it is possible to constrain the physics and chemistry in such discs. I have used the detailed thermo-chemical disc model ProDiMo to explore the characteristics of the gas in protoplanetary discs, particularly in Herbig Ae objects. I have assessed the ability of various observational data to trace the disc properties. This has involved a number of different approaches. Firstly I compute a series of disc models with increasing mass, in order to test the diagnostic powers of various emission lines, in particular as gas mass tracers. This approach is then expanded to a large multiparameter grid of ~ 10 5 disc models. I have helped to develop a tool for analysing and plotting the huge quantity of data presented by such a model grid. Following this approach I move on to a detailed study of the Herbig Ae star HD 163296, attempting to fit the large wealth of available observations simultaneously. These include new Herschel observations of the far-infrared emission lines, as well as interferometric CO observations and a large number of continuum data. This study addresses the topical issues of the disc gas/dust ratio, and the treatment of the disc outer edge. It explores the effects of dust settling, UV variability and stellar X-ray emission on the disc chemistry and line emission. There is possible evidence for gas-depletion in the disc of HD 163296, with the line emission enhanced by dust settling, which would indicate a later evolutionary stage for this disc than suggested by other studies. Finally, I work to improve the treatment of the gas heating/cooling balance in ProDiMo, by introducing a non-LTE treatment of the atomic hydrogen line transitions and bound-free continuum transitions. I explore the effects of this on the disc chemical and thermal structure, and assess its impact in terms of the observable quantities.
16

Identification et modélisation des galaxies distantes dans les relevés cosmologiques du satellite Herschel / Detection and characterisation of distant, dusty star-forming galaxies in Herschel cosmological surveys

Donevski, Darko 21 September 2018 (has links)
La population de galaxies poussiéreuses ayant un fort taux de formation stellaire (Dusty Star Forming Galaxies, DSFGs) joue un rôle très important dans l’histoire de l’univers, avec des taux de formation d’étoiles allant de quelques centaines à quelques milliers de masses solaires par an. Les sondages infrarouges, comme ceux entrepris à l’aide du satellite Herschel, nous offrent l’opportunité de recenser de manière approfondie ces DSFGs jusqu’à de grands décalages spectraux. Cependant, jusqu’à présent seul un petit nombre de DSFG détecté par Herschel ont été confirmés pour être à des décalages spectraux supérieurs à 4. Les modèles de formation et d’évolution des galaxies stipulent généralement que la population de DSFG à z > 4 sont les progéniteurs des galaxies elliptiques, observées dans les amas les plus massifs de l’univers local. L’abondance des DSFGs à z > 4 se révèle donc être décisive pour contraindre ces modèles ainsi que pour vérifier notre compréhension globale de l’univers lointain. Le premier objectif de mon travail de recherche est d’identifier les candidates galaxies à z > 4 détectées sur des champs les plus larges possibles observés par Herschel et l’instrument SPIRE et d’examiner les propriétés statistiques de celles-ci. A cette fin, j’ai créé un nouvel algorithme de sélection dans le but d’augmenter substantiellement le nombre de candidates et de comprendre leur nature. / Over the last few decades, great progress has been made in our understanding of the star formation history of the Universe. With the discovery of distant, dusty star-forming galaxies (DSFGs) it has become apparent that observing at rest-frame UV and optical wavelengths is insufficient as a large fraction of the star formation is dust obscured. Thanks to the extensive observational studies carried out during the last two decades, we learn that DSFGs have a redshift peak at z ∼ 2, matching the cosmic time where galaxies have formed most of their young, massive stars. However, it remains extremely challenging to use the Herschel space observatory for identifying a tail extending towards much higher redshifts (z > 4). As a result, until recently only a small number of infrared-selected DSFGs at z > 4 were known, most of them strongly gravitationally lensed. One of the main goals of this Thesis is to assemble candidate z > 4 galaxies detected in a large area survey observed by Herschel-SPIRE and to examine the statistical properties and environments of these systems.
17

Etalonnage d'un nouveau type de détecteur bolométrique pour l'instrument PACS de l'Observatoire Spatial Herschel

Billot, Nicolas 19 December 2007 (has links) (PDF)
La mission Herschel est un des projets phare du programme scientifique de l'agence spatiale européenne (ESA). Son objectif est d'explorer le ciel dans l'une des régions du spectre électromagnétique les moins connues à ce jour : l'infrarouge lointain. Sa résolution, sa sensibilité mais aussi son domaine spectral font de Herschel un observatoire unique et parfaitement adapté à l'étude des mécanismes de formation d'étoiles et d'évolution des galaxies. Parmi les autres thµemes scientifiques qui bénéficieront des observations Herschel se trouvent les noyaux actifs de galaxie, les disques circumstellaires ou encore les comµetes de notre systµeme solaire.<br />De nombreux instituts de recherche ont participé à l'élaboration de ce projet ambitieux, notamment le CEA qui a développé un nouveau type de détecteur bolométrique pour le photomµetre de l'instrument Herschel/PACS.<br />Ce manuscrit rend compte du travail de recherche que j'ai effectué au Service d'Astrophysique du CEA dans le cadre de ma thµese de doctorat. Ma tâche a consisté d'une part à développer une procédure de caractérisation adaptée aux nouvelles matrices de bolomµetres du CEA, et d'autre part à réaliser l'étalonnage du photomµetre PACS et à optimiser ses performances dans les différents modes d'observation ouverts à la communauté astronomique.<br />Dans ce manuscrit, je présenterai les grandes lignes de l'astronomie infrarouge de la découverte du rayonnement infrarouge par William Herschel à la réalisation de l'Observatoire Spatial Herschel. Je décrirai également les développements d'hier et d'aujourd'hui dans le domaine de la bolométrie refroidie afin de mettre en perspective les innovations apportées par le CEA, à savoir la fabrication collective de bolomµetres, la thermométrie haute impédance, le multiplexage à froid et l'absorption du rayonnement par cavité résonante. J'exposerai ensuite le principe de fonctionnement des matrices de bolomµetres, étape nécessaire pour comprendre la problématique de la procédure de caractérisation que nous avons mise au point. Puis je présenterai et analyserai en détail les résultats obtenus lors de la campagne d'étalonnage du Photomµetre PACS qui s'est achevée en Juin 2007. Enfin, je traduirai les mesures réalisées en laboratoire en terme de performances "observationnelles" du Photomµetre PACS.
18

Observational Methods for the Study of Debris Disks: Gemini Planet Imager and Herschel Space Observatory

Draper, Zachary Harrison 03 December 2014 (has links)
There are many observational methods for studying debris disks because of constraints imposed on observing their predominately infrared wavelength emission close to the host star. Two methods which are discussed here are ground-based high contrast imaging and space-based far-IR emission. The Gemini Planet Imager (GPI) is a high contrast near-IR instrument designed to directly image planets and debris disks around other stars by suppressing star light to bring out faint sources nearby. Because debris disks are intrinsically polarized, polarimetry offers a useful way to enhance the scattered light from them while suppressing the diffracted, unpolarized noise. I discuss the characterization of GPI's microlens point spread function (PSF) in polarization mode to try to improve the quality of the processed data cubes. I also develop an improved flux extraction method which takes advantage of an empirically derived high-resolution PSF for both spectral and polarization modes. To address the instrumental effects of flexure, which affect data quality, I develop methods to counteract the effect by using the science images themselves without having to take additional calibrations. By reducing the number of calibrations, the Gemini Planet Imager Exoplanet Survey (GPIES) can stand to gain ~66 hours of additional on-sky time, which can lead to the discovery of more exoplanetary systems. The Herschel Space Observatory offers another method for observing debris disks which is ideally suited to measure the peak dust emission in the far-IR. Through a careful analysis, we look at 100/160 μm excess emission around λ Boo stars, to differentiate whether the emission is from a debris disk or a bowshock with the interstellar medium. It has been proposed that the stars' unusual surface abundances are due to external accretion of gas from those sources. We find that the 3/8 stars observed are well resolved debris disks and the remaining 5/8 were inconsistent with bowshocks. To provide a causal explanation of the phenomenon based on what we now know of their debris disks, I explore Poynting-Robertson (PR) drag as a mechanism for secondary accretion via a debris disk. However, I find that the accretion rates are too low to cause the surface abundance anomaly. Further study into the debris disks in relation to stellar abundances and surfaces are required to rule out or explain the λ Boo phenomenon through external accretion. / Graduate / 0606 / zhd@uvic.ca
19

Characterizing the Star Forming Properties of Herschel-Detected Gravitationally Lensed Galaxies

Walth, Gregory Lee January 2015 (has links)
Dusty star forming galaxies (DSFGs), characterized by their far-infrared (far-IR) emission, undergo the largest starbursts in the Universe, contributing to the majority of the cosmic star formation rate density at z = 1−4. The Herschel Space Observatory for the first time was able observe the full far-IR dust emission for a large population of high-redshift DSFGs, thereby accurately measuring their star formation rates. With gravitational lensing, we are able to surpass the Herschel confusion limit and probe intrinsically less luminous and therefore more normal star-forming galaxies. With this goal in mind, we have conducted a large Herschel survey, the Herschel Lensing Survey, of the cores of almost 600 massive galaxy clusters, where the effects of gravitational lensing are the strongest. In this thesis, I present follow-up studies of gravitationally lensed Herschel-detected DSFGs by utilizing multi-wavelength data from optical to radio. Specifically, I characterize the star forming properties of gravitationally lensed DSFGs by using these three subsamples: (1) A gravitationally lensed DSFG galaxy at z = 0.6 in one of the most massive galaxy clusters, Abell S1063 (at z = 0.3), (2) One of the brightest sources in HLS, which is a system of two strongly gravitationally lensed galaxies, one at z = 2.0 (optically faint gravitational arc) and the other at z = 4.7 (triply-imaged galaxy), (3) A sample of the brightest sources in HLS at z = 1−4, in which we detect rest-frame optical nebular emission lines (e.g. Hα, Hβ, [OIII]λλ4959,5007) by utilizing near-IR spectroscopy. The main results from these studies are as follows: (1) In the cluster-lensed DSFG at z = 0.6, discovered in the core of Abell S1063, we identify a luminous (SFR = 10 M⊙/yr) giant (D~1 kpc) HII region similar to those typically found at higher redshift (z~2). We show that the HII region is embedded in a rotating disk and likely formed in isolation, rather than through galaxy interaction, which is observed in local galaxies. We can use this source as a nearby laboratory for star forming regions at z ~ 2, in which more detailed follow-up of this source can help us to understand their origin/properties. (2) We discovered that one of the brightest sources in HLS is a blend of two cluster-lensed DSFGs, one at z = 2.0 (an optically faint arc) and the other at z = 4.7 (triply-imaged galaxy), implying that a sample of bright Herschel sources may have such multiplicity. In the z = 2.0 arc, the sub-arcsecond clumps detected in the SMA image surprisingly do not correspond to the clumps in the JVLA CO(1-0) image. When investigating the CO(1-0) velocity structure, there is a substantial amount of molecular gas (likely a molecular wind/outflow) we find that we find is not associated with star formation. This suggests that the CO morphology in DSFGs could be strongly influenced by molecular outflows resulting in the over-prediction of the amount of the molecular gas available for star formation. In the z = 2.0 arc, we also constrain αCO~4. While this value is normal for galaxies like the Milky Way, it is quite unusual for ULIRGs. This hints that the physical conditions may be much different in the arc from other ULIRGs, which usually have αCO ≈ 0.8.(3) We successfully detect rest-frame optical emission lines in 8 gravitationally lensed DSFGs at z = 1−4 using ground-based near-IR spectroscopy with Keck, LBT and Magellan. The luminosities of these lines are substantially less than what the far-IR derived star formation rates predict, suggesting that these DSFGs have large dust attenuations. The difference in the star formation rates is a factor of 30 x (AV= 4), which is larger than previously reported for DSFGs at z > 1. One galaxy (z = 1.5) in the sample showed the largest suppression with a factor of 550x (AV = 7), which is similar to local ULIRGs. Future prospects: Herschel provided a glimpse into the star formation of DSFGs, but only the brightest at z > 2 could be studied in detail without gravitational lensing. ALMA will revolutionize the study of DSFGs with its high spatial resolution submm/mm imaging of their dust continuum and molecular gas, and it will begin to unravel their physical properties. In order to detect nebular emission lines in fainter higher redshift sources, 20-30 meter class telescopes, with next generation near-IR spectrographs, will be necessary. JWST will play a significant role as it will target rest-frame optical nebular emission lines in DSFGs unobtainable from the ground as well as weaker Hydrogen series lines (such as Paschen and Brackett series) to better understand their instantaneous star formation and dust attenuation.
20

A love of light : Herschel, Talbot & photography

Schaaf, Larry J. January 1992 (has links)
William Henry Fox Talbot (1800-1877), the inventor of photography on paper, was given crucial support by his colleague Sir John Herschel (1792- 1871). Fellows of The Royal Society, the two men made fundamental contributions to optics, chemistry, light, and mathematics. Both were humanists of diverse interests and had strong role models in women. For Talbot, it was his mother, Lady Elisabeth Feilding. Herschel learned some of his earliest science from his Aunt, Caroline Herschel; his wife, Margaret, was an active participant in his work. During the pre-history of photography, Mrs. Fulhame, Thomas Wedgwood, Sir Humphry Davy, and Nicephore Niepce demonstrated its potential. The question is why, rather than how, was photography invented and announced in 1839? The camera and the chemistry necessary for the art's invention co-existed for many decades. Frustrated in trying to sketch with Wollaston's camera lucida, Talbot conceived of photography; Herschel avoided making photographs because he was an expert draughtsman adept with the camera lucida. Herschel, following inductive reasoning, made seminal contributions to the field of photochemistry; he invented the cyanotype process and was the first to apply hypo to fix photographs. Talbot learned from his own photographs and grew into being the first photographic artist. Talbot and his rival, Louis Daguerre, mirrored the competitive economic race and differences in support of science and art between France and Great Britain. By the Great Exhibition in 1851, Herschel and Talbot had been forcefully removed from work in photography. Herschel's health was broken in service as Master of the Mint. He remained an important influence on other photographers, including Anna Atkins, Charles Piazzi Smyth, and Julia Margaret Cameron. Talbot learned from experience in photographic book publishing that silver photographs could never be made permanent. He applied his efforts to perfecting photoglyphic engraving, a forerunner of photogravure; he also invented the photographic halftone.

Page generated in 0.0393 seconds