• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 25
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Bio-prospecting of Plants and Marine Organisms in Saudi Arabia for New Potential Bioactivity

Hajjar, Dina A. 08 December 2016 (has links)
The natural resources offer a unique opportunity for the discovery of active compounds, due to the complexity and biodiversity of their chemical structures. Natural resources have been used as medicines throughout human history. Saudi Arabia’s natural resources, for instance its terrestrial medicinal plants and the Red Sea sponges, have not been extensively investigated with regard to their biological activities. To better identify the diversity of compounds with bioactive potential, new techniques are also necessary in order to improve the drug discovery path. This study comprises three sections. The first section examines Juniperus phoenicea (Arar), Anastatica hierochuntica (Kaff Maryam) and Citrullus colocynthis (Hanzal); these herbal plants were screened for potential bioactivity using a newly developed pipeline based on a high-content screening technique. We report a new cell-based high-throughput phenotypic screening for the bio-prospecting of unknown natural products from Saudi Arabian plants, in order to reveal their biological activities. The second section investigates Avicennia marina plants, screened for reverse transcriptase anti-HIV bioactivity using biochemical assay. Image-based high-content screening with a set of cellular stains was used to investigate the phenotypic results of toxicity and cell cycle arrest. The third section considers the isolation of Actinomycetes from Red Sea Sponges. Actinomycetes bacterial isolates were tested for bioactivity against West Nile Virus NS3 Protease. Analytical chemical techniques such as liquid chromatography–mass spectrometry (LC-MS), gas chromatography–mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) were used to gain more understanding of the possible chemical compounds responsible for this bioactivity. Overall, the aim of this work is to investigate the potential bioactive effect of several Saudi Arabian plants and Red Sea sponges against cancer cells and viral infections. Our study demonstrates the efficiency of the newly developed pipeline using cell-based phenotypic screening. Anti-cancer potential activity was detected in Juniperus phoenicea. Bioactive potential against the reverse transcriptase enzyme of HIV virus was confirmed in Avicennia marina leaves. The organic extracts of Actinomycetes bacterial isolates were found active against West Nile Virus NS3 Protease. Here, promising starting point for the potential of drug discovery of plants and marine organism of Saudi Arabia.
22

Hydroxypropyl Cyclodextrin Improves Amiodarone-Induced Aberrant Lipid Homeostasis of Alveolar Cells / ヒドロシキプロピルシクロデキストリンは、アミオダロンが誘導する肺胞上皮細胞の脂質異常を改善する

Kanagaki, Shuhei 23 March 2022 (has links)
京都大学 / 新制・論文博士 / 博士(医学) / 乙第13481号 / 論医博第2256号 / 新制||医||1059(附属図書館) / (主査)教授 平井 豊博, 教授 岩田 想, 教授 秋山 芳展 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
23

Planejamento de ligantes da tubulina com propriedades antitumorais / Design of tubulin ligands with antitumor properties

Salum, Lívia de Barros 03 October 2011 (has links)
O planejamento de moduladores da dinâmica dos microtúbulos, a partir da ligação à αβ-tubulina, constitui importante estratégia para a terapia do câncer. Os efeitos de inibição da polimerização da tubulina ou de estabilização dos microtúbulos são promovidos pela interação de compostos em cavidades específicas da proteína alvo. A interferência com a dinâmica dos microtúbulos nas células em rápida multiplicação provoca o bloqueio do ciclo celular, disparando sinais bioquímicos que culminam em apoptose. Os taxanos são os agentes antimitóticos mais importantes dentre os estabilizadores de microtúbulos, ao passo que os alcalóides da vinca e a colchicina são membros representativos dos inibidores da polimerização. Entretanto, o aparecimento de resistência, baixa biodisponibilidade e reações adversas graves são fatores que têm impulsionado a pesquisa por novos agentes anticâncer. Dentre os ligantes identificados recentemente para o sítio do taxol, o discodermolídeo e a dictiostatina, produtos naturais de origem marinha, são potentes estabilizadores de microtúbulos que apresentam maior solubilidade que o taxol e atividade contra células de câncer resistentes aos taxanos. Por essa razão, o modo de ligação desses compostos à cavidade de interação da β-tubulina tem sido objeto de investigação. Modelos preditivos de HQSAR foram desenvolvidos para derivados sintéticos do discodermolídeo e utilizados em conjunto com estudos baseados na estrutura do receptor, em concordância com evidências experimentais, para a proposição de modelos de interação para os análogos na cavidade do taxol. Os modelos de conformação bioativa foram utilizados no alinhamento estrutural do conjunto de dados para estudos de QSAR 3D CoMFA e comparação com o alinhamento baseado nas estruturas minimizadas dos ligantes. A caracterização de padrões de reconhecimento molecular foi útil para a proposição de um modelo farmacofórico baseado nas estruturas dos produtos naturais estabilizadores de microtúbulos. Um modelo farmacofórico simplificado foi integrado ao processo de triagem virtual consistindo na aplicação de filtros hierárquicos sucessivos para a identificação de novos estabilizadores de microtúbulos. Caseobliquinas foram ensaiadas como estabilizadoras de microtúbulos, enquanto que intermediários sintéticos da dictiostatina foram avaliados quanto aos seus efeitos na polimerização da tubulina. Nos últimos anos, tem sido intensificada a busca por novos ligantes do sítio da colchicina, dentre os quais os indóis estão entre os mais relevantes. Para quatro conjuntos de dados totalizando 170 derivados de indóis, modelos de HQSAR foram desenvolvidos para a avaliação virtual de uma base de dados. Estudos de QSAR 3D CoMFA e CoMSIA baseados nos farmacóforos foram comparados para 3 conjuntos de dados. Os resultados sugerem que o núcleo indólico pode interagir de maneiras diferentes na cavidade de interação da proteína. Chalconas do tipo 1, inspiradas em ligantes clássicos do sítio da colchicina, foram avaliadas em ensaios celulares e de polimerização da tubulina, levando a síntese e avaliação de uma nova série de chalconas com propriedade antiproliferativa significativa. Por outro lado, derivados de N-acil-hidrazonas apresentaram atividade antimitótica semelhante à colchicina, enquanto as tiosemicarbazonas citotóxicas não interagiram diretamente com a tubulina. / Inhibition of microtubule function is one of the most important approaches to anticancer therapy. Two main effects can be elicited by tubulin/microtubule-interactive agents: inhibition of tubulin assembly or microtubule stabilization. Interference with either the assembly or disassembly of microtubules within the mitotic spindle in rapidly dividing cells disrupts the normal process of cell division and provokes chemical signals that induce apoptosis. On one hand, taxanes are the most prominent among the microtubule-stabilizing antimitotic agents, while on the other hand, colchicine and the vinca alkaloids are representative members of the tubulin polymerization inhibitors. However, due to poor pharmacokinetic properties, high toxicity and resistance, their clinical utility has been limited, generating new opportunities for the development of novel anticancer agents. In recent years, structurally diverse taxoid-site ligands have been identified, including the potent microtubule-stabilizers discodermolide and dictyostatin. These marine sponge-derived natural products have higher water solubility than taxol and exhibit activity against taxane-resistant cell lines. Therefore, the elucidation of their binding modes is important in drug design. Predictive conformation-independent hologram QSAR models were developed for a series of synthetic discodermolide analogs as antiproliferative agents. Receptor-based studies were integrated with molecular recognition patterns, in agreement with experimental evidences, leading to ligand-binding conformations for discodermolide analogs in the taxol-site. The bioactive conformation models were used to the structural alignment of the data set for the development of 3D QSAR CoMFA models, and for comparison with the models constructed with the rigid-body alignment based on minimized structures of the ligands. A set of structural features related to the interaction with the taxol cavity was identified and the molecular recognition patterns were employed to the construction of pharmacophore models based on the microtubule-stabilizing natural products. A final simplified pharmacophore model was integrated in a virtual screening procedure consisting of consecutive hierarchical filters targeting the identification of novel microtubule-stabilizers. Caseobliquins were screened as microtubule-stabilizers, while intermediates for the synthesis of dictyostatin were evaluated by their effects on tubulin assembly. Recently, the search for more simple anti-tubulin agents has renewed the interest in the development of colchicine analogs, often discarded for their high toxicity. Considering the structurally diverse ligands of the colchicine site, the indole derivatives are among the most important ones. Hologram QSAR models were developed for four data sets consisting of 170 indole derivatives, and used to evaluate a data set of commercially available compounds. Pharmacophore-based 3D QSAR CoMFA and CoMSIA models were constructed and compared to three of the individual data sets. The results indicated that the indole nucleus bind to the protein cavity in different ways. Type 1 chalcones, designed based on classical colchicine site ligands, have been screened for their anti-proliferative activity and tubulin assembly inhibition, leading to the synthesis and assessment of a novel series of chalcone analogs with substantial antiproliferative properties. Some N-acylhydrazone derivatives behaved as mitotic arresters in a way similar to that of colchicine, while cytotoxic thiosemicarbazones did not exhibit tubulin-interacting properties.
24

A Phenomic Assessment of Yeast DNA Damage Foci using Synthetic Genetic Array Analysis and High-content Screening

Founk, Karen Joanna 24 August 2011 (has links)
Aberrant DNA synthesis and maintenance have been implicated in numerous human diseases. I describe here a novel strategy for systematically identifying budding yeast mutants with elevated levels of DNA damage foci, which represent hubs of DNA damage and repair. A previous study manually scored foci in single mutants but was limited in its ability to survey many conditions in large populations. I developed an automated and statistically robust method for identifying aberrant foci phenotypes by combining synthetic genetic array (SGA) and high-content screening (HCS) methodology. Using this approach, I scored thousands of essential and non-essential gene mutants subjected to environmental and genetic perturbations, including the DNA damaging agent, phleomycin, and deletions of DNA repair genes, SGS1 and YKU80. Collectively, I identified a functionally enriched set of 367 mutants that had increased frequencies of DNA damage foci and established SGA-HCS as a powerful tool for investigating the yeast DNA damage response.
25

A Phenomic Assessment of Yeast DNA Damage Foci using Synthetic Genetic Array Analysis and High-content Screening

Founk, Karen Joanna 24 August 2011 (has links)
Aberrant DNA synthesis and maintenance have been implicated in numerous human diseases. I describe here a novel strategy for systematically identifying budding yeast mutants with elevated levels of DNA damage foci, which represent hubs of DNA damage and repair. A previous study manually scored foci in single mutants but was limited in its ability to survey many conditions in large populations. I developed an automated and statistically robust method for identifying aberrant foci phenotypes by combining synthetic genetic array (SGA) and high-content screening (HCS) methodology. Using this approach, I scored thousands of essential and non-essential gene mutants subjected to environmental and genetic perturbations, including the DNA damaging agent, phleomycin, and deletions of DNA repair genes, SGS1 and YKU80. Collectively, I identified a functionally enriched set of 367 mutants that had increased frequencies of DNA damage foci and established SGA-HCS as a powerful tool for investigating the yeast DNA damage response.
26

Planejamento de ligantes da tubulina com propriedades antitumorais / Design of tubulin ligands with antitumor properties

Lívia de Barros Salum 03 October 2011 (has links)
O planejamento de moduladores da dinâmica dos microtúbulos, a partir da ligação à αβ-tubulina, constitui importante estratégia para a terapia do câncer. Os efeitos de inibição da polimerização da tubulina ou de estabilização dos microtúbulos são promovidos pela interação de compostos em cavidades específicas da proteína alvo. A interferência com a dinâmica dos microtúbulos nas células em rápida multiplicação provoca o bloqueio do ciclo celular, disparando sinais bioquímicos que culminam em apoptose. Os taxanos são os agentes antimitóticos mais importantes dentre os estabilizadores de microtúbulos, ao passo que os alcalóides da vinca e a colchicina são membros representativos dos inibidores da polimerização. Entretanto, o aparecimento de resistência, baixa biodisponibilidade e reações adversas graves são fatores que têm impulsionado a pesquisa por novos agentes anticâncer. Dentre os ligantes identificados recentemente para o sítio do taxol, o discodermolídeo e a dictiostatina, produtos naturais de origem marinha, são potentes estabilizadores de microtúbulos que apresentam maior solubilidade que o taxol e atividade contra células de câncer resistentes aos taxanos. Por essa razão, o modo de ligação desses compostos à cavidade de interação da β-tubulina tem sido objeto de investigação. Modelos preditivos de HQSAR foram desenvolvidos para derivados sintéticos do discodermolídeo e utilizados em conjunto com estudos baseados na estrutura do receptor, em concordância com evidências experimentais, para a proposição de modelos de interação para os análogos na cavidade do taxol. Os modelos de conformação bioativa foram utilizados no alinhamento estrutural do conjunto de dados para estudos de QSAR 3D CoMFA e comparação com o alinhamento baseado nas estruturas minimizadas dos ligantes. A caracterização de padrões de reconhecimento molecular foi útil para a proposição de um modelo farmacofórico baseado nas estruturas dos produtos naturais estabilizadores de microtúbulos. Um modelo farmacofórico simplificado foi integrado ao processo de triagem virtual consistindo na aplicação de filtros hierárquicos sucessivos para a identificação de novos estabilizadores de microtúbulos. Caseobliquinas foram ensaiadas como estabilizadoras de microtúbulos, enquanto que intermediários sintéticos da dictiostatina foram avaliados quanto aos seus efeitos na polimerização da tubulina. Nos últimos anos, tem sido intensificada a busca por novos ligantes do sítio da colchicina, dentre os quais os indóis estão entre os mais relevantes. Para quatro conjuntos de dados totalizando 170 derivados de indóis, modelos de HQSAR foram desenvolvidos para a avaliação virtual de uma base de dados. Estudos de QSAR 3D CoMFA e CoMSIA baseados nos farmacóforos foram comparados para 3 conjuntos de dados. Os resultados sugerem que o núcleo indólico pode interagir de maneiras diferentes na cavidade de interação da proteína. Chalconas do tipo 1, inspiradas em ligantes clássicos do sítio da colchicina, foram avaliadas em ensaios celulares e de polimerização da tubulina, levando a síntese e avaliação de uma nova série de chalconas com propriedade antiproliferativa significativa. Por outro lado, derivados de N-acil-hidrazonas apresentaram atividade antimitótica semelhante à colchicina, enquanto as tiosemicarbazonas citotóxicas não interagiram diretamente com a tubulina. / Inhibition of microtubule function is one of the most important approaches to anticancer therapy. Two main effects can be elicited by tubulin/microtubule-interactive agents: inhibition of tubulin assembly or microtubule stabilization. Interference with either the assembly or disassembly of microtubules within the mitotic spindle in rapidly dividing cells disrupts the normal process of cell division and provokes chemical signals that induce apoptosis. On one hand, taxanes are the most prominent among the microtubule-stabilizing antimitotic agents, while on the other hand, colchicine and the vinca alkaloids are representative members of the tubulin polymerization inhibitors. However, due to poor pharmacokinetic properties, high toxicity and resistance, their clinical utility has been limited, generating new opportunities for the development of novel anticancer agents. In recent years, structurally diverse taxoid-site ligands have been identified, including the potent microtubule-stabilizers discodermolide and dictyostatin. These marine sponge-derived natural products have higher water solubility than taxol and exhibit activity against taxane-resistant cell lines. Therefore, the elucidation of their binding modes is important in drug design. Predictive conformation-independent hologram QSAR models were developed for a series of synthetic discodermolide analogs as antiproliferative agents. Receptor-based studies were integrated with molecular recognition patterns, in agreement with experimental evidences, leading to ligand-binding conformations for discodermolide analogs in the taxol-site. The bioactive conformation models were used to the structural alignment of the data set for the development of 3D QSAR CoMFA models, and for comparison with the models constructed with the rigid-body alignment based on minimized structures of the ligands. A set of structural features related to the interaction with the taxol cavity was identified and the molecular recognition patterns were employed to the construction of pharmacophore models based on the microtubule-stabilizing natural products. A final simplified pharmacophore model was integrated in a virtual screening procedure consisting of consecutive hierarchical filters targeting the identification of novel microtubule-stabilizers. Caseobliquins were screened as microtubule-stabilizers, while intermediates for the synthesis of dictyostatin were evaluated by their effects on tubulin assembly. Recently, the search for more simple anti-tubulin agents has renewed the interest in the development of colchicine analogs, often discarded for their high toxicity. Considering the structurally diverse ligands of the colchicine site, the indole derivatives are among the most important ones. Hologram QSAR models were developed for four data sets consisting of 170 indole derivatives, and used to evaluate a data set of commercially available compounds. Pharmacophore-based 3D QSAR CoMFA and CoMSIA models were constructed and compared to three of the individual data sets. The results indicated that the indole nucleus bind to the protein cavity in different ways. Type 1 chalcones, designed based on classical colchicine site ligands, have been screened for their anti-proliferative activity and tubulin assembly inhibition, leading to the synthesis and assessment of a novel series of chalcone analogs with substantial antiproliferative properties. Some N-acylhydrazone derivatives behaved as mitotic arresters in a way similar to that of colchicine, while cytotoxic thiosemicarbazones did not exhibit tubulin-interacting properties.
27

Three-Dimensional Human Neural Stem Cell Culture for High-Throughput Assessment of Developmental Neurotoxicity

Joshi, Pranav 04 June 2019 (has links)
No description available.
28

Development of a multifocal confocal fluorescence lifetime imaging microscope for high-content screening applications

Tsikouras, Anthony January 2017 (has links)
Fluorescence lifetime imaging microscopy (FLIM) is an imaging modality that is able to provide key insights into subcellular processes. When used to measure Förster resonance energy transfer (FRET), for instance, it can discern protein-protein interactions and conformational changes. This kind of information is highly useful in the drug screening process in order to determine the effectiveness of drug leads and their mechanisms of action. FLIM has yet to be successfully translated to high-content screening (HCS) platforms due to the high throughput and fine temporal and spatial resolution requirements of HCS. Our prototype HCS FLIM system uses a time-resolving instrument called a streak camera to multiplex the FLIM scanning process, allowing for 100 confocal spots to be simultaneously scanned across a sample. There have been a few major advancements to the prototype. First the fiber array used to connect the fluorescence channels to the streak camera was characterized. Its alternating fiber delay scheme was successful in greatly reducing optical crosstalk between adjacent channels. Next, an optical beam scanner for parallel excitation beams was designed and implemented, greatly improving the possible scan speeds of the system. The streak camera was upgraded to a higher repetition rate sweep, and modifications to system components and reconstruction procedures were made to accommodate the new sweep unit. A single-photon avalanche diode array was also tested as a possible replacement for the streak camera, and was found to offer photon detection efficiency advantages. Finally, improvements were made to the excitation power and optical throughput of the system in order to reduce the required exposure time. These advances to the prototype system bring it closer to realizing the requirements of HCS FLIM, and provide a clear picture for future improvements and research directions. / Thesis / Doctor of Philosophy (PhD) / Fluorescent proteins are commonly used to tag subcellular targets so that they can easily be distinguished with a fluorescence microscope. While this can help visualize where different organelles and proteins are located in the cell, a great deal more information can be gained by measuring the fluorescence lifetime at each point in the sample, which is highly sensitive to the microenvironment. Fluorescence lifetime imaging microscopy (FLIM) has the potential to be a powerful technique for testing drug leads in the drug discovery process, although current FLIM systems are not able to provide the high throughput speeds and high temporal resolution required for drug screening. This thesis project has succeeded in improving a highly parallel FLIM microscope by reducing inter-channel crosstalk, implementing an optical scanner, improving power and optical throughput, and investigating future time-resolving instruments. This progress has brought the prototype setup closer to being used in a drug screening environment.
29

High Content Analysis of Proteins and Protein Interactions by Proximity Ligation

Leuchowius, Karl-Johan January 2010 (has links)
Fundamental to all biological processes is the interplay between biomolecules such as proteins and nucleic acids. Studies of interactions should therefore be more informative than mere detection of expressed proteins. Preferably, such studies should be performed in material that is as biologically and clinically relevant as possible, i.e. in primary cells and tissues. In addition, to be able to take into account the heterogeneity of such samples, the analyses should be performed in situ to retain information on the sub-cellular localization where the interactions occur, enabling determination of the activity status of individual cells and allowing discrimination between e.g. tumor cells and surrounding stroma. This requires assays with an utmost level of sensitivity and selectivity. Taking these issues into consideration, the in situ proximity-ligation assay (in situ PLA) was developed, providing localized detection of proteins, protein-protein interactions and post-translational modifications in fixed cells and tissues. The high sensitivity and selectivity afforded by the assay's requirement for dual target recognition in combination with powerful signal amplification enables visualization of single protein molecules in intact single cells and tissue sections. To further increase the usefulness and application of in situ PLA, the assay was adapted to high content analysis techniques such as flow cytometry and high content screening. The use of in situ PLA in flow cytometry offers the possibility for high-throughput analysis of cells in solution with the unique characteristics offered by the assay. For high content screening, it was demonstrated that in situ PLA can enable cell-based drug screening of compounds affecting post-translational modifications and protein-protein interactions in primary cells, offering superior abilities over current assays. The methods presented in this thesis provide powerful new tools to study proteins in genetically unmodified cells and tissues, and should offer exciting new possibilities for molecular biology, diagnostics and drug discovery. 
30

Towards High-Throughput Phenotypic and Systemic Profiling of in vitro Growing Cell Populations using Label-Free Microscopy and Spectroscopy : Applications in Cancer Pharmacology

Aftab, Obaid January 2014 (has links)
Modern techniques like automated microscopy and spectroscopy now make it possible to study quantitatively, across multiple phenotypic and molecular parameters, how cell populations are affected by different treatments and/or environmental disturbances. As the technology development at the instrument level often is ahead of the data analytical tools and the scientific questions, there is a large and growing need for computational algorithms enabling desired data analysis. These algorithms must have capacity to extract and process quantitative dynamic information about how the cell population is affected by different stimuli with the final goal to transform this information into development of new powerful therapeutic strategies. In particular, there is a great need for automated systems that can facilitate the analysis of massive data streams for label-free methods such as phase contrast microscopy (PCM) imaging and spectroscopy (NMR). Therefore, in this thesis, algorithms for quantitative high-throughput phenotypic and systemic profiling of in vitro growing cell populations via label-free microscopy and spectroscopy are developed and evaluated. First a two-dimensional filter approach for high-throughput screening for drugs inducing autophagy and apoptosis from phase contrast time-lapse microscopy images is studied. Then new methods and applications are presented for label-free extraction and comparison of time-evolving morphological features in phase-contrast time-lapse microscopy images recorded from in vitro growing cell populations. Finally, the use of dynamic morphology and NMR/MS spectra for implementation of a reference database of drug induced changes, analogous to the outstanding mRNA gene expression based Connectivity Map database, is explored. In conclusion, relatively simple computational methods are useful for extraction of very valuable biological and pharmacological information from time-lapse microscopy images and NMR spectroscopy data offering great potential for biomedical applications in general and cancer pharmacology in particular.

Page generated in 0.1031 seconds