31 |
[en] FORECASTING IN HIGH-DIMENSION: INFLATION AND OTHER ECONOMIC VARIABLES / [pt] PREVISÃO EM ALTA DIMENSÃO: INFLAÇÃO E OUTRAS VARIÁVEIS ECONÔMICASGABRIEL FILIPE RODRIGUES VASCONCELOS 26 September 2018 (has links)
[pt] Esta tese é composta de quatro artigos e um pacote de R. Todos os artigos têm como foco previsão de variáveis econômicas em alta dimensão. O primeiro artigo mostra que modelos LASSO são muito precisos para prever a inflação brasileira em horizontes curtos de previsão. O segundo artigo utiliza vários métodos de Machine Learning para prever um grupo de variáveis macroeconomicas americanas. Os resultados mostram que uma adaptação no LASSO melhora as previsões com um alto custo computacional. O terceiro artigo também trata da previsão da inflação brasileira, mas em tempo real. Os principais resultados mostram que uma combinação de modelos de Machine Learning é mais precisa do que a previsão do especialista (FOCUS). Finalmente, o último artigo trata da previsão da inflação americana utilizando um grande conjunto de modelos. O modelo vencedor é o Random Forest, que levanta a questão da não-linearidade na inflação americana. Os resultados mostram que tanto a não-linearidade quanto a seleção de variáveis são importantes para os bons resultados do Random Forest. / [en] This thesis is made of four articles and an R package. The articles are all focused on forecasting economic variables on high-dimension. The first article shows that LASSO models are very accurate to forecast the Brazilian inflation in small horizons. The second article uses several Machine Learning models to forecast a set o US macroeconomic variables. The results show that a small adaptation in the LASSO improves the forecasts but with high computational costs. The third article is also on forecasting the Brazilian inflation, but in real-time. The main results show that a combination of Machine Learning models is more accurate than the FOCUS specialist forecasts. Finally, the last article is about forecasting the US inflation using a very large set of models. The winning model is the Random Forest, which opens the discussion of nonlinearity in the US inflation. The results show that both nonlinearity and variable selection are important features for the
Random Forest performance.
|
32 |
Ecological monitoring of semi-natural grasslands : statistical analysis of dense satellite image time series with high spatial resolution / Suivi écologique des prairies semi-naturelles : analyse statistique de séries temporelles denses d'images satellite à haute résolution spatialeLopes, Maïlys 24 November 2017 (has links)
Les prairies représentent une source importante de biodiversité dans les paysages agricoles qu’il est important de surveiller. Les satellites de nouvelle génération tels que Sentinel-2 offrent de nouvelles opportunités pour le suivi des prairies grâce à leurs hautes résolutions spatiale et temporelle combinées. Cependant, le nouveau type de données fourni par ces satellites implique des problèmes liés au big data et à la grande dimension des données en raison du nombre croissant de pixels à traiter et du nombre élevé de variables spectro-temporelles. Cette thèse explore le potentiel des satellites de nouvelle génération pour le suivi de la biodiversité et des facteurs qui influencent la biodiversité dans les prairies semi-naturelles. Des outils adaptés à l’analyse statistique des prairies à partir de séries temporelles d’images satellites (STIS) denses à haute résolution spatiale sont proposés. Tout d’abord, nous montrons que la réponse spectrotemporelle des prairies est caractérisée par sa variabilité au sein des prairies et parmi les prairies. Puis, pour les analyses statistiques, les prairies sont modélisées à l’échelle de l’objet pour être cohérent avec les modèles écologiques qui représentent les prairies à l’échelle de la parcelle. Nous proposons de modéliser la distribution des pixels dans une prairie par une loi gaussienne. A partir de cette modélisation, des mesures de similarité entre deux lois gaussiennes robustes à la grande dimension sont développées pour la classification des prairies en utilisant des STIS denses: High-Dimensional Kullback-Leibler Divergence et -Gaussian Mean Kernel. Cette dernière est plus performante que les méthodes conventionnelles utilisées avec les machines à vecteur de support (SVM) pour la classification du mode de gestion et de l’âge des prairies. Enfin, des indicateurs de biodiversité des prairies issus de STIS denses sont proposés à travers des mesures d’hétérogénéité spectro-temporelle dérivées du clustering non supervisé des prairies. Leur corrélation avec l’indice de Shannon est significative mais faible. Les résultats suggèrent que les variations spectro-temporelles mesurées à partir de STIS à 10 mètres de résolution spatiale et qui couvrent la période où ont lieu les pratiques agricoles sont plus liées à l’intensité des pratiques qu’à la diversité en espèces. Ainsi, bien que les propriétés spatiales et temporelles de Sentinel-2 semblent limitées pour estimer directement la diversité en espèces des prairies, ce satellite devrait permettre le suivi continu des facteurs influençant la biodiversité dans les prairies. Dans cette thèse, nous avons proposé des méthodes qui prennent en compte l’hétérogénéité au sein des prairies et qui permettent l’utilisation de toute l’information spectrale et temporelle fournie par les satellites de nouvelle génération. / Grasslands are a significant source of biodiversity in farmed landscapes that is important to monitor. New generation satellites such as Sentinel-2 offer new opportunities for grassland’s monitoring thanks to their combined high spatial and temporal resolutions. Conversely, the new type of data provided by these sensors involves big data and high dimensional issues because of the increasing number of pixels to process and the large number of spectro-temporal variables. This thesis explores the potential of the new generation satellites to monitor biodiversity and factors that influence biodiversity in semi-natural grasslands. Tools suitable for the statistical analysis of grasslands using dense satellite image time series (SITS) with high spatial resolution are provided. First, we show that the spectro-temporal response of grasslands is characterized by its variability within and among the grasslands. Then, for the statistical analysis, grasslands are modeled at the object level to be consistent with ecological models that represent grasslands at the field scale. We propose to model the distribution of pixels in a grassland by a Gaussian distribution. Following this modeling, similarity measures between two Gaussian distributions robust to the high dimension are developed for the lassification of grasslands using dense SITS: the High-Dimensional Kullback-Leibler Divergence and the -Gaussian Mean Kernel. The latter outperforms conventional methods used with Support Vector Machines for the classification of grasslands according to their management practices and to their age. Finally, indicators of grassland biodiversity issued from dense SITS are proposed through spectro-temporal heterogeneity measures derived from the unsupervised clustering of grasslands. Their correlation with the Shannon index is significant but low. The results suggest that the spectro-temporal variations measured from SITS at a spatial resolution of 10 meters covering the period when the practices occur are more related to the intensity of management practices than to the species diversity. Therefore, although the spatial and spectral properties of Sentinel-2 seem limited to assess the species diversity in grasslands directly, this satellite should make possible the continuous monitoring of factors influencing biodiversity in grasslands. In this thesis, we provided methods that account for the heterogeneity within grasslands and enable the use of all the spectral and temporal information provided by new generation satellites.
|
33 |
Estimation non paramétrique de densités conditionnelles : grande dimension, parcimonie et algorithmes gloutons. / Nonparametric estimation of sparse conditional densities in moderately large dimensions by greedy algorithms.Nguyen, Minh-Lien Jeanne 08 July 2019 (has links)
Nous considérons le problème d’estimation de densités conditionnelles en modérément grandes dimensions. Beaucoup plus informatives que les fonctions de régression, les densités condi- tionnelles sont d’un intérêt majeur dans les méthodes récentes, notamment dans le cadre bayésien (étude de la distribution postérieure, recherche de ses modes...). Après avoir rappelé les problèmes liés à l’estimation en grande dimension dans l’introduction, les deux chapitres suivants développent deux méthodes qui s’attaquent au fléau de la dimension en demandant : d’être efficace computation- nellement grâce à une procédure itérative gloutonne, de détecter les variables pertinentes sous une hypothèse de parcimonie, et converger à vitesse minimax quasi-optimale. Plus précisément, les deux méthodes considèrent des estimateurs à noyau bien adaptés à l’estimation de densités conditionnelles et sélectionnent une fenêtre multivariée ponctuelle en revisitant l’algorithme glouton RODEO (Re- gularisation Of Derivative Expectation Operator). La première méthode ayant des problèmes d’ini- tialisation et des facteurs logarithmiques supplémentaires dans la vitesse de convergence, la seconde méthode résout ces problèmes, tout en ajoutant l’adaptation à la régularité. Dans l’avant-dernier cha- pitre, on traite de la calibration et des performances numériques de ces deux procédures, avant de donner quelques commentaires et perspectives dans le dernier chapitre. / We consider the problem of conditional density estimation in moderately large dimen- sions. Much more informative than regression functions, conditional densities are of main interest in recent methods, particularly in the Bayesian framework (studying the posterior distribution, find- ing its modes...). After recalling the estimation issues in high dimension in the introduction, the two following chapters develop on two methods which address the issues of the curse of dimensionality: being computationally efficient by a greedy iterative procedure, detecting under some suitably defined sparsity conditions the relevant variables, while converging at a quasi-optimal minimax rate. More precisely, the two methods consider kernel estimators well-adapted for conditional density estimation and select a pointwise multivariate bandwidth by revisiting the greedy algorithm RODEO (Regular- isation Of Derivative Expectation Operator). The first method having some initialization problems and extra logarithmic factors in its convergence rate, the second method solves these problems, while adding adaptation to the smoothness. In the penultimate chapter, we discuss the calibration and nu- merical performance of these two procedures, before giving some comments and perspectives in the last chapter.
|
34 |
Algorithms for the resolution of stochastic control problems in high dimension by using probabilistic and max-plus methods / Algorithmes de résolution de problèmes de contrôle stochastique en grande dimension par une association de méthodes probabilistes et max-plus.Fodjo, Eric 13 July 2018 (has links)
Les problèmes de contrôle stochastique optimal à horizon fini forment une classe de problèmes de contrôle optimal où interviennent des processus stochastiques considérés sur un intervalle de temps borné. Tout comme beaucoup de problème de contrôle optimal, ces problèmes sont résolus en utilisant le principe de la programmation dynamique qui induit une équation aux dérivées partielles (EDP) appelée équation d'Hamilton-Jacobi-Bellman. Les méthodes basées sur la discrétisation de l’espace sous forme de grille, les méthodes probabilistes ou plus récemment les méthodes max-plus peuvent alors être utilisées pour résoudre cette équation. Cependant, le premier type de méthode est mis en défaut quand un espace à dimension grande est considéré à cause de la malédiction de la dimension tandis que le deuxième type de méthode ne permettait jusqu'ici que de résoudre des problèmes où la non linéarité de l'équation aux dérivées partielles par rapport à la Hessienne n'est pas trop forte. Quant au troisième type de méthode, il entraine une explosion de la complexité de la fonction valeur. Nous introduisons dans cette thèse deux nouveaux schémas probabilistes permettant d'agrandir la classe des problèmes pouvant être résolus par les méthodes probabilistes. L'une est adaptée aux EDP à coefficients bornés tandis que l'autre peut être appliqué aux EDP à coefficients bornés ou non bornés. Nous prouvons la convergence des deux schémas probabilistes et obtenons des estimées de l'erreur de convergence dans le cas d'EDP à coefficients bornés. Nous donnons également quelques résultats sur le comportement du deuxième schéma dans le cas d'EDP à coefficients non bornés. Ensuite, nous introduisons une méthode complètement nouvelle pour résoudre les problèmes de contrôle stochastique optimal à horizon fini que nous appelons la méthode max-plus probabiliste. Elle permet d'utiliser le caractère non linéaire des méthodes max-plus dans un contexte probabiliste tout en contrôlant la complexité de la fonction valeur. Une application au calcul du prix de sur-réplication d'une option dans un modèle de corrélation incertaine est donnée dans le cas d’un espace à dimension 2 et 5. / Stochastic optimal control problems with finite horizon are a class of optimal control problems where intervene stochastic processes in a bounded time. As many optimal control problems, they are often solved using a dynamic programming approach which results in a second order Partial Differential Equation (PDE) called the Hamilton-Jacobi-Bellman equation. Grid-based methods, probabilistic methods or more recently max-plus methods can be used then to solve this PDE. However, the first type of methods default in a space of high dimension because of the curse of dimensionality while the second type of methods allowed till now to solve only problems where the nonlinearity of the PDE with respect to the second order derivatives is not very high. As for the third type of method, it results in an explosion of the complexity of the value function. We introduce two new probabilistic schemes in order to enlarge the class of problems that can be solved with probabilistic methods. One is adapted to PDE with bounded coefficients while the other can be applied to PDE with bounded or unbounded coefficients. We prove the convergence of the two probabilistic scheme and obtain error estimates in the case of a PDE with bounded coefficients. We also give some results about the behavior of the second probabilistic scheme in the case of a PDE with unbounded coefficients. After that, we introduce a completely new type of method to solve stochastic optimal control problems with finite horizon that we call the max-plus probabilistic method. It allows to add the non linearity feature of max-plus methods to a probabilistic method while controlling the complexity of the value function. An application to the computation of the optimal super replication price of an option in an uncertain correlation model is given in a 5 dimensional space.
|
35 |
Odhad varianční matice pro filtraci ve vysoké dimenzi / Covariance estimation for filtering in high dimensionTurčičová, Marie January 2021 (has links)
Estimating large covariance matrices from small samples is an important problem in many fields. Among others, this includes spatial statistics and data assimilation. In this thesis, we deal with several methods of covariance estimation with emphasis on regula- rization and covariance models useful in filtering problems. We prove several properties of estimators and propose a new filtering method. After a brief summary of basic esti- mating methods used in data assimilation, the attention is shifted to covariance models. We show a distinct type of hierarchy in nested models applied to the spectral diagonal covariance matrix: explicit estimators of parameters are computed by the maximum like- lihood method and asymptotic variance of these estimators is shown to decrease when the maximization is restricted to a subspace that contains the true parameter value. A similar result is obtained for general M-estimators. For more complex covariance mo- dels, maximum likelihood method cannot provide explicit parameter estimates. In the case of a linear model for a precision matrix, however, consistent estimator in a closed form can be computed by the score matching method. Modelling of the precision ma- trix is particularly beneficial in Gaussian Markov random fields (GMRF), which possess a sparse precision matrix. The...
|
36 |
HIGH-DIMENSIONAL INFERENCE OVER NETWORKS: STATISTICAL AND COMPUTATIONAL GUARANTEESYao Ji (19697335) 19 September 2024 (has links)
<p dir="ltr">Distributed optimization problems defined over mesh networks are ubiquitous in signal processing, machine learning, and control. In contrast to centralized approaches where all information and computation resources are available at a centralized server, agents on a distributed system can only use locally available information. As a result, efforts have been put into the design of efficient distributed algorithms that take into account the communication constraints and make coordinated decisions in a fully distributed manner from a pure optimization perspective. Given the massive sample size and high-dimensionality generated by distributed systems such as social media, sensor networks, and cloud-based databases, it is essential to understand the statistical and computational guarantees of distributed algorithms to solve such high-dimensional problems over a mesh network.</p><p dir="ltr">A goal of this thesis is a first attempt at studying the behavior of distributed methods in the high-dimensional regime. It consists of two parts: (I) distributed LASSO and (II) distributed stochastic sparse recovery.</p><p dir="ltr">In Part (I), we start by studying linear regression from data distributed over a network of agents (with no master node) by means of LASSO estimation, in high-dimension, which allows the ambient dimension to grow faster than the sample size. While there is a vast literature of distributed algorithms applicable to the problem, statistical and computational guarantees of most of them remain unclear in high dimensions. This thesis provides a first statistical study of the Distributed Gradient Descent (DGD) in the Adapt-Then-Combine (ATC) form. Our theory shows that, under standard notions of restricted strong convexity and smoothness of the loss functions--which hold with high probability for standard data generation models--suitable conditions on the network connectivity and algorithm tuning, DGD-ATC converges globally at a linear rate to an estimate that is within the centralized statistical precision of the model. In the worst-case scenario, the total number of communications to statistical optimality grows logarithmically with the ambient dimension, which improves on the communication complexity of DGD in the Combine-Then-Adapt (CTA) form, scaling linearly with the dimension. This reveals that mixing gradient information among agents, as DGD-ATC does, is critical in high-dimensions to obtain favorable rate scalings. </p><p dir="ltr">In Part (II), we focus on addressing the problem of distributed stochastic sparse recovery through stochastic optimization. We develop and analyze stochastic optimization algorithms for problems over a network, modeled as an undirected graph (with no centralized node), where the expected loss is strongly convex with respect to the Euclidean norm, and the optimum is sparse. Assuming agents only have access to unbiased estimates of the gradients of the underlying expected objective, and stochastic gradients are sub-Gaussian, we use distributed stochastic dual averaging (DSDA) as a building block to develop a fully decentralized restarting procedure for recovery of sparse solutions over a network. We show that with high probability, the iterates generated by all agents linearly converge to an approximate solution, eliminating fast the initial error; and then converge sublinearly to the exact sparse solution in the steady-state stages owing to observation noise. The algorithm asymptotically achieves the optimal convergence rate and favorable dimension dependence enjoyed by a non-Euclidean centralized scheme. Further, we precisely identify its non-asymptotic convergence rate as a function of characteristics of the objective functions and the network, and we characterize the transient time needed for the algorithm to approach the optimal rate of convergence. We illustrate the performance of the algorithm in application to classical problems of sparse linear regression, sparse logistic regression and low rank matrix recovery. Numerical experiments demonstrate the tightness of the theoretical results.</p>
|
37 |
Sélection de variables pour la classification non supervisée en grande dimension / Variable selection in model-based clustering for high-dimensional dataMeynet, Caroline 09 November 2012 (has links)
Il existe des situations de modélisation statistique pour lesquelles le problème classique de classification non supervisée (c'est-à-dire sans information a priori sur la nature ou le nombre de classes à constituer) se double d'un problème d'identification des variables réellement pertinentes pour déterminer la classification. Cette problématique est d'autant plus essentielle que les données dites de grande dimension, comportant bien plus de variables que d'observations, se multiplient ces dernières années : données d'expression de gènes, classification de courbes... Nous proposons une procédure de sélection de variables pour la classification non supervisée adaptée aux problèmes de grande dimension. Nous envisageons une approche par modèles de mélange gaussien, ce qui nous permet de reformuler le problème de sélection des variables et du choix du nombre de classes en un problème global de sélection de modèle. Nous exploitons les propriétés de sélection de variables de la régularisation l1 pour construire efficacement, à partir des données, une collection de modèles qui reste de taille raisonnable même en grande dimension. Nous nous démarquons des procédures classiques de sélection de variables par régularisation l1 en ce qui concerne l'estimation des paramètres : dans chaque modèle, au lieu de considérer l'estimateur Lasso, nous calculons l'estimateur du maximum de vraisemblance. Ensuite, nous sélectionnons l'un des ces estimateurs du maximum de vraisemblance par un critère pénalisé non asymptotique basé sur l'heuristique de pente introduite par Birgé et Massart. D'un point de vue théorique, nous établissons un théorème de sélection de modèle pour l'estimation d'une densité par maximum de vraisemblance pour une collection aléatoire de modèles. Nous l'appliquons dans notre contexte pour trouver une forme de pénalité minimale pour notre critère pénalisé. D'un point de vue pratique, des simulations sont effectuées pour valider notre procédure, en particulier dans le cadre de la classification non supervisée de courbes. L'idée clé de notre procédure est de n'utiliser la régularisation l1 que pour constituer une collection restreinte de modèles et non pas aussi pour estimer les paramètres des modèles. Cette étape d'estimation est réalisée par maximum de vraisemblance. Cette procédure hybride nous est inspirée par une étude théorique menée dans une première partie dans laquelle nous établissons des inégalités oracle l1 pour le Lasso dans les cadres de régression gaussienne et de mélange de régressions gaussiennes, qui se démarquent des inégalités oracle l0 traditionnellement établies par leur absence totale d'hypothèse. / This thesis deals with variable selection for clustering. This problem has become all the more challenging since the recent increase in high-dimensional data where the number of variables can largely exceeds the number of observations (DNA analysis, functional data clustering...). We propose a variable selection procedure for clustering suited to high-dimensional contexts. We consider clustering based on finite Gaussian mixture models in order to recast both the variable selection and the choice of the number of clusters into a global model selection problem. We use the variable selection property of l1-regularization to build a data-driven model collection in a efficient way. Our procedure differs from classical procedures using l1-regularization as regards the estimation of the mixture parameters: in each model of the collection, rather than considering the Lasso estimator, we calculate the maximum likelihood estimator. Then, we select one of these maximum likelihood estimators by a non-asymptotic penalized criterion. From a theoretical viewpoint, we establish a model selection theorem for maximum likelihood estimators in a density estimation framework with a random model collection. We apply it in our context to determine a convenient penalty shape for our criterion. From a practical viewpoint, we carry out simulations to validate our procedure, for instance in the functional data clustering framework. The basic idea of our procedure, which consists in variable selection by l1-regularization but estimation by maximum likelihood estimators, comes from theoretical results we establish in the first part of this thesis: we provide l1-oracle inequalities for the Lasso in the regression framework, which are valid with no assumption at all contrary to the usual l0-oracle inequalities in the literature, thus suggesting a gap between l1-regularization and l0-regularization.
|
38 |
Modèles de mélange pour la régression en grande dimension, application aux données fonctionnelles / High-dimensional mixture regression models, application to functional dataDevijver, Emilie 02 July 2015 (has links)
Les modèles de mélange pour la régression sont utilisés pour modéliser la relation entre la réponse et les prédicteurs, pour des données issues de différentes sous-populations. Dans cette thèse, on étudie des prédicteurs de grande dimension et une réponse de grande dimension. Tout d’abord, on obtient une inégalité oracle ℓ1 satisfaite par l’estimateur du Lasso. On s’intéresse à cet estimateur pour ses propriétés de régularisation ℓ1. On propose aussi deux procédures pour pallier ce problème de classification en grande dimension. La première procédure utilise l’estimateur du maximum de vraisemblance pour estimer la densité conditionnelle inconnue, en se restreignant aux variables actives sélectionnées par un estimateur de type Lasso. La seconde procédure considère la sélection de variables et la réduction de rang pour diminuer la dimension. Pour chaque procédure, on obtient une inégalité oracle, qui explicite la pénalité nécessaire pour sélectionner un modèle proche de l’oracle. On étend ces procédures au cas des données fonctionnelles, où les prédicteurs et la réponse peuvent être des fonctions. Dans ce but, on utilise une approche par ondelettes. Pour chaque procédure, on fournit des algorithmes, et on applique et évalue nos méthodes sur des simulations et des données réelles. En particulier, on illustre la première méthode par des données de consommation électrique. / Finite mixture regression models are useful for modeling the relationship between a response and predictors, arising from different subpopulations. In this thesis, we focus on high-dimensional predictors and a high-dimensional response. First of all, we provide an ℓ1-oracle inequality satisfied by the Lasso estimator. We focus on this estimator for its ℓ1-regularization properties rather than for the variable selection procedure. We also propose two procedures to deal with this issue. The first procedure leads to estimate the unknown conditional mixture density by a maximum likelihood estimator, restricted to the relevant variables selected by an ℓ1-penalized maximum likelihood estimator. The second procedure considers jointly predictor selection and rank reduction for obtaining lower-dimensional approximations of parameters matrices. For each procedure, we get an oracle inequality, which derives the penalty shape of the criterion, depending on the complexity of the random model collection. We extend these procedures to the functional case, where predictors and responses are functions. For this purpose, we use a wavelet-based approach. For each situation, we provide algorithms, apply and evaluate our methods both on simulations and real datasets. In particular, we illustrate the first procedure on an electricity load consumption dataset.
|
39 |
Développement des méthodes AK pour l'analyse de fiabilité. Focus sur les évènements rares et la grande dimension / Development of AK-based method for reliability analyses. Focus on rare events and high dimensionLelièvre, Nicolas 13 December 2018 (has links)
Les ingénieurs utilisent de plus en plus de modèles numériques leur permettant de diminuer les expérimentations physiques nécessaires à la conception de nouveaux produits. Avec l’augmentation des performances informatiques et numériques, ces modèles sont de plus en plus complexes et coûteux en temps de calcul pour une meilleure représentation de la réalité. Les problèmes réels de mécanique sont sujets en pratique à des incertitudes qui peuvent impliquer des difficultés lorsque des solutions de conception admissibles et/ou optimales sont recherchées. La fiabilité est une mesure intéressante des risques de défaillance du produit conçu dus aux incertitudes. L’estimation de la mesure de fiabilité, la probabilité de défaillance, nécessite un grand nombre d’appels aux modèles coûteux et deviennent donc inutilisable en pratique. Pour pallier ce problème, la métamodélisation est utilisée ici, et plus particulièrement les méthodes AK qui permettent la construction d’un modèle mathématique représentatif du modèle coûteux avec un temps d’évaluation beaucoup plus faible. Le premier objectif de ces travaux de thèses est de discuter des formulations mathématiques des problèmes de conception sous incertitudes. Cette formulation est un point crucial de la conception de nouveaux produits puisqu’elle permet de comprendre les résultats obtenus. Une définition des deux concepts de fiabilité et de robustesse est aussi proposée. Ces travaux ont abouti à une publication dans la revue internationale Structural and Multidisciplinary Optimization (Lelièvre, et al. 2016). Le second objectif est de proposer une nouvelle méthode AK pour l’estimation de probabilités de défaillance associées à des évènements rares. Cette nouvelle méthode, nommée AK-MCSi, présente trois améliorations de la méthode AK-MCS : des simulations séquentielles de Monte Carlo pour diminuer le temps d’évaluation du métamodèle, un nouveau critère d’arrêt sur l’apprentissage plus stricte permettant d’assurer le bon classement de la population de Monte Carlo et un enrichissement multipoints permettant la parallélisation des calculs du modèle coûteux. Ce travail a été publié dans la revue Structural Safety (Lelièvre, et al. 2018). Le dernier objectif est de proposer de nouvelles méthodes pour l’estimation de probabilités de défaillance en grande dimension, c’est-à-dire un problème défini à la fois par un modèle coûteux et un très grand nombre de variables aléatoires d’entrée. Deux nouvelles méthodes, AK-HDMR1 et AK-PCA, sont proposées pour faire face à ce problème et sont basées respectivement sur une décomposition fonctionnelle et une technique de réduction de dimension. La méthode AK-HDMR1 fait l’objet d’une publication soumise à la revue Reliability Engineering and Structural Safety le 1er octobre 2018. / Engineers increasingly use numerical model to replace the experimentations during the design of new products. With the increase of computer performance and numerical power, these models are more and more complex and time-consuming for a better representation of reality. In practice, optimization is very challenging when considering real mechanical problems since they exhibit uncertainties. Reliability is an interesting metric of the failure risks of design products due to uncertainties. The estimation of this metric, the failure probability, requires a high number of evaluations of the time-consuming model and thus becomes intractable in practice. To deal with this problem, surrogate modeling is used here and more specifically AK-based methods to enable the approximation of the physical model with much fewer time-consuming evaluations. The first objective of this thesis work is to discuss the mathematical formulations of design problems under uncertainties. This formulation has a considerable impact on the solution identified by the optimization during design process of new products. A definition of both concepts of reliability and robustness is also proposed. These works are presented in a publication in the international journal: Structural and Multidisciplinary Optimization (Lelièvre, et al. 2016). The second objective of this thesis is to propose a new AK-based method to estimate failure probabilities associated with rare events. This new method, named AK-MCSi, presents three enhancements of AK-MCS: (i) sequential Monte Carlo simulations to reduce the time associated with the evaluation of the surrogate model, (ii) a new stricter stopping criterion on learning evaluations to ensure the good classification of the Monte Carlo population and (iii) a multipoints enrichment permitting the parallelization of the evaluation of the time-consuming model. This work has been published in Structural Safety (Lelièvre, et al. 2018). The last objective of this thesis is to propose new AK-based methods to estimate the failure probability of a high-dimensional reliability problem, i.e. a problem defined by both a time-consuming model and a high number of input random variables. Two new methods, AK-HDMR1 and AK-PCA, are proposed to deal with this problem based on respectively a functional decomposition and a dimensional reduction technique. AK-HDMR1 has been submitted to Reliability Enginnering and Structural Safety on 1st October 2018.
|
40 |
Contrôle des fausses découvertes lors de la sélection de variables en grande dimension / Control of false discoveries in high-dimensional variable selectionBécu, Jean-Michel 10 March 2016 (has links)
Dans le cadre de la régression, de nombreuses études s’intéressent au problème dit de la grande dimension, où le nombre de variables explicatives mesurées sur chaque échantillon est beaucoup plus grand que le nombre d’échantillons. Si la sélection de variables est une question classique, les méthodes usuelles ne s’appliquent pas dans le cadre de la grande dimension. Ainsi, dans ce manuscrit, nous présentons la transposition de tests statistiques classiques à la grande dimension. Ces tests sont construits sur des estimateurs des coefficients de régression produits par des approches de régressions linéaires pénalisées, applicables dans le cadre de la grande dimension. L’objectif principal des tests que nous proposons consiste à contrôler le taux de fausses découvertes. La première contribution de ce manuscrit répond à un problème de quantification de l’incertitude sur les coefficients de régression réalisée sur la base de la régression Ridge, qui pénalise les coefficients de régression par leur norme l2, dans le cadre de la grande dimension. Nous y proposons un test statistique basé sur le rééchantillonage. La seconde contribution porte sur une approche de sélection en deux étapes : une première étape de criblage des variables, basée sur la régression parcimonieuse Lasso précède l’étape de sélection proprement dite, où la pertinence des variables pré-sélectionnées est testée. Les tests sont construits sur l’estimateur de la régression Ridge adaptive, dont la pénalité est construite à partir des coefficients de régression du Lasso. Une dernière contribution consiste à transposer cette approche à la sélection de groupes de variables. / In the regression framework, many studies are focused on the high-dimensional problem where the number of measured explanatory variables is very large compared to the sample size. If variable selection is a classical question, usual methods are not applicable in the high-dimensional case. So, in this manuscript, we develop the transposition of statistical tests to the high dimension. These tests operate on estimates of regression coefficients obtained by penalized linear regression, which is applicable in high-dimension. The main objective of these tests is the false discovery control. The first contribution of this manuscript provides a quantification of the uncertainty for regression coefficients estimated by ridge regression in high dimension. The Ridge regression penalizes the coefficients on their l2 norm. To do this, we devise a statistical test based on permutations. The second contribution is based on a two-step selection approach. A first step is dedicated to the screening of variables, based on parsimonious regression Lasso. The second step consists in cleaning the resulting set by testing the relevance of pre-selected variables. These tests are made on adaptive-ridge estimates, where the penalty is constructed on Lasso estimates learned during the screening step. A last contribution consists to the transposition of this approach to group-variables selection.
|
Page generated in 0.1034 seconds