• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 144
  • 15
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 200
  • 200
  • 200
  • 25
  • 23
  • 22
  • 21
  • 21
  • 18
  • 17
  • 17
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Design and implementation of HTS technology for cellular base stations : an investigation into improving cellular communication : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering at Massey University, Palmerston North, New Zealand, and James Cook University, Townsville, Australia

Knack, Adrian Unknown Date (has links)
When placed between the antenna and receiver electronics of a cellular base transceiver station, a Cryogenic Receiver Front End (CRFE), consisting of a High Temperature Superconducting (HTS) filter and modern Low Noise Amplifier (LNA), can significantly improve the base stations' coverage and capacity. Due to CRFEs being hurried to the telecommunications industry in a competitive market, the development of CRFEs and their performance have been classified. This left it to be pondered whether HTS filters could really have been beneficial or if they were always just of academic interest. It is the main objective of this thesis to investigate if and under what circumstances high temperature RF-superconductivity can prove to be an important technological contribution to current and future wireless communications. This dissertation presents the analysis of an existing CRFE developed by Cryoelectra GmbH and its performance characteristics measured in a field trial held in rural China. With the aid of a CDMA Uplink Model developed by the author, the data was analysed and several novel engineering improvements were made to create an advanced CRFE which was economical to deploy. The analysis of results from a field trial in Beijing city using the CDMA Uplink Model led to the exploration of alternative filter technologies which could achieve similar results to the HTS filter technology. This culminated in the development of dielectric resonators filters which could be used as an alternative and as a supplement to the HTS filters used in the CRFE. The design of two novel dielectric resonator duplexers and two advanced multioperator combiner antenna sharing solutions followed the successful implementation of a high performance dielectric resonator filter. The performed investigation and development described in this thesis suggest that HTS filter technology for terrestrial wireless communications can be beneficial in current cellular networks, but due to its high cost is economical for use only under certain conditions. However, HTS filter technology may be of great importance in the design and implementation of spectrum friendly wireless communications systems in the future.
182

Transport Properties Of Polycrystalline Bi-Sr-Ca-Cu-O And Bi-Pb-Sr-Ca-Cu-O High Temperature Superconductors

Vishnubhotla, Prasad 07 1900 (has links) (PDF)
No description available.
183

C axis optical property of a family of a high temperature superconductors LaSrCuO

Yazdani, Maryam, Yazdani January 2016 (has links)
No description available.
184

Theoretical approach to Direct Resonant Inelastic X-Ray Scattering on Magnets and Superconductors

Marra, Pasquale 02 November 2015 (has links) (PDF)
The capability to probe the dispersion of elementary spin, charge, orbital, and lattice excitations has positioned resonant inelastic x-ray scattering (RIXS) at the forefront of photon science. In this work, we will investigate how RIXS can contribute to a deeper understanding of the orbital properties and of the pairing mechanism in unconventional high-temperature superconductors. In particular, we will show how direct RIXS spectra of magnetic excitations can reveal long-range orbital correlations in transition metal compounds, by discriminating different kind of orbital order in magnetic and antiferromagnetic systems. Moreover, we will show how RIXS spectra of quasiparticle excitations in superconductors can measure the superconducting gap magnitude, and reveal the presence of nodal points and phase differences of the superconducting order parameter on the Fermi surface. This can reveal the properties of the underlying pairing mechanism in unconventional superconductors, in particular cuprates and iron pnictides, discriminating between different superconducting order parameter symmetries, such as s, d (singlet pairing) and p wave (triplet pairing).
185

Modélisation tridimensionnelle des matériaux supraconducteurs / Tridimentionnal modeling of superconductors materials

Alloui, Lotfi 27 September 2012 (has links)
Nous présentons une contribution à la modélisation tridimensionnelle des phénomènes électromagnétiques et thermiques couplés dans les matériaux supraconducteurs à haute température critique. La méthode des volumes finis est adoptée comme méthode de résolution des équations aux dérivées partielles caractéristiques aux phénomènes physiques traités. Le couplage électromagnétique thermique est assuré par un algorithme alterné. L’ensemble des modèles mathématico-numériques ainsi développés et implémentés sous Matlab, sont appliqués pour étudié le comportement des supraconducteurs dans le cadre des paliers magnétiques et pour étudier le comportement des supraconducteurs durant le processus d’aimantation. Les résultats à caractère magnétique et ceux à caractère thermique sont largement présentés. La validité du travail proposé est atteinte par comparaison des résultats ainsi obtenus à ceux donnés par l’expérimentation. / We present a contribution for three-dimensional modeling of coupled electromagnetic and thermal phenomena in high temperature superconductor. The control volume method is used for the resolution of the partial derivative equations characterising of the treated physical phenomena. The electromagnetic and thermal coupling is ensured by an alternate algorithm. All mathematical and numerical models thus developed and implemented in Matlab software, are used for the simulation. The results in magnetic term and those in thermal term are largely presented. The validity of the suggested work is reached by the comparison of the results so obtained to those given by the experiment.
186

On the Zero and Low Field Vortex Dynamics : An Experimental Study of Type-II Superconductors

Festin, Örjan January 2003 (has links)
<p>Dynamic properties of type-II superconductors have been experimentally studied in zero and low magnetic fields using SQUID magnetometry and <i>I–V</i> measurements.</p><p>In zero magnetic field close to the critical temperature, the physical properties of type-II superconductors are dominated by spontaneously created vortices. In three dimensions (3D) such vortices take the form of vortex loops and in two dimensions (2D) as vortex-antivortex pairs.</p><p>The 2D vortex dynamics has been probed using mutual inductance and flux noise measurements on YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7</sub> (YBCO) and MgB<sub>2</sub> thin films in zero and low magnetic fields. In such measurements, information about vortex correlations is obtained through a temperature dependent characteristic frequency, below (above) which the vortex movements are uncorrelated (correlated). The results obtained in zero magnetic field indicate that sample heterogeneities influence the vortex physics and hinder the divergence of the vortex-antivortex correlation length.</p><p>In low magnetic fields the vortex dynamics is strongly dependent on the applied magnetic field and a power law dependence of the characteristic frequency with respect to the magnetic field is observed. The results indicate that there is a co-existence of thermally and field generated vortices.</p><p>The <i>I–V</i> characteristics of untwinned YBCO single crystals show that only a small broadening of the transition region influences the length scale over which the vortex movements are correlated. The dynamic and static critical exponents therefore exhibit values being larger in magnitude as compared to values predicted by relevant theoretical models. The results also suggest that the copper oxide planes in YBCO decouple slightly below the mean field critical temperature and hence, the system has a crossover from 3D to 2D behaviour as the temperature is increased. </p><p>From temperature dependent DC-magnetisation measurements performed on untwinned YBCO single crystals in weak applied fields, detailed information about the critical current density and the irreversibility line is obtained.</p>
187

On the Zero and Low Field Vortex Dynamics : An Experimental Study of Type-II Superconductors

Festin, Örjan January 2003 (has links)
Dynamic properties of type-II superconductors have been experimentally studied in zero and low magnetic fields using SQUID magnetometry and I–V measurements. In zero magnetic field close to the critical temperature, the physical properties of type-II superconductors are dominated by spontaneously created vortices. In three dimensions (3D) such vortices take the form of vortex loops and in two dimensions (2D) as vortex-antivortex pairs. The 2D vortex dynamics has been probed using mutual inductance and flux noise measurements on YBa2Cu3O7 (YBCO) and MgB2 thin films in zero and low magnetic fields. In such measurements, information about vortex correlations is obtained through a temperature dependent characteristic frequency, below (above) which the vortex movements are uncorrelated (correlated). The results obtained in zero magnetic field indicate that sample heterogeneities influence the vortex physics and hinder the divergence of the vortex-antivortex correlation length. In low magnetic fields the vortex dynamics is strongly dependent on the applied magnetic field and a power law dependence of the characteristic frequency with respect to the magnetic field is observed. The results indicate that there is a co-existence of thermally and field generated vortices. The I–V characteristics of untwinned YBCO single crystals show that only a small broadening of the transition region influences the length scale over which the vortex movements are correlated. The dynamic and static critical exponents therefore exhibit values being larger in magnitude as compared to values predicted by relevant theoretical models. The results also suggest that the copper oxide planes in YBCO decouple slightly below the mean field critical temperature and hence, the system has a crossover from 3D to 2D behaviour as the temperature is increased. From temperature dependent DC-magnetisation measurements performed on untwinned YBCO single crystals in weak applied fields, detailed information about the critical current density and the irreversibility line is obtained.
188

Studies On AC Losses In Certain Type II Superconductors

Chockalingam, S P 09 1900 (has links)
Studies on ac losses in superconductors have been a subject of great interest for a long time not only as an important topic in fundamental science, but also as a basic requirement for the application of superconductors. A proper understanding of the mechanisms of ac losses and their quantitative knowledge is an essential requirement for any application. Such studies not only yield information on the material parameters crucial for applications but can also provide a test for any possible microscopic theory of superconductivity. The main focus of the current thesis is to understand the mechanisms of ac losses in superconductors and to gain more knowledge on the ac dissipative behavior of type II superconductors. In this thesis we report our investigations on the ac losses in certain type II superconductors at different ranges of frequency through different experimental techniques. We have investigated the ac losses that arise in high Tc superconducting single crystals at rf frequency (8 MHz) using a simple LC oscillator technique. The result shows a surprising ac dissipation behavior in which the loss in the superconducting state is more than the normal state loss. Even though the superconducting state is defined as the zero resistive state, this is true only for dc transport. The ac resistivity studies have been made also on high Tc polycrystalline samples using the standard four-probe technique using a lock-in amplifier (100 kHz). The result shows different ac resistive behavior for samples with different microstructures. Non-resonant microwave absorption (NRMA) studies in MgB2 thin films is reported for the first time. The experiment has been performed using a continuous wave X band EPR spectrometer. The recorded signals give information on the ac losses that occurs at microwave frequency (9.43 GHz). The effects of ac magnetic field on the superconductors have been investigated through a dc four-probe resistivity measurements in the presence of an ac field of different magnitudes applied at different frequencies. Also a simple experimental technique based on the concept of kinetic inductance designed to study the ac losses that arise due to vortex motion is reported. In the following a chapter-wise summary of the thesis is presented.m Chapter 1 surveys the related literature on experimental and theoretical reports on ac losses in superconductors. In this chapter a brief introduction to superconductors is given with an emphasis on the high Tc superconductors. The superconducting materials studied in the thesis are described in detail along with their superconducting parameters and the form of the specimen. The origins of ac losses are discussed with various models proposed so far to explain the ac losses in superconductors. Since most of the ac losses reported in this thesis arise due to the Josephson junctions and vortex motion, they are discussed in detail. The occurrence of Josephson junctions and the various models used to describe the junctions’ characteristics are discussed. The formation of vortices their various forms in layered superconductors and the mechanisms of flux flow and flux creep are discussed. Chapter 2 describes the studies on ac losses in superconducting Bi2Sr2CaCu2O8 single crystals [1,2]. Generally in the superconducting state the dissipation is expected to be less compared with that in the normal state. However, we observe that the ac losses in the superconducting state are larger than the normal state losses. In this chapter we report on the ac losses in superconducting Bi2Sr2CaCu2O8 single crystals at radio frequencies determined from direct measurement of the absorbed power using an rf oscillator [3]. The ac response of Bi2Sr2CaCu2O8 single crystals is investigated as a function of temperature from the measured shift in current and the frequency of the oscillator. The studies are carried out at different rf amplitudes by varying the supply voltage to the oscillator circuit. To understand the magnetic field dependent behavior of ac losses, studies have been performed in the presence of magnetic field of various magnitudes applied parallel to the c-axis of the crystal. In the presence of the magnetic field two peaks are observed in ac losses in the superconducting state as a function of temperature. The presence of the peaks and their behavior are studied in detail by varying the orientation of the applied field with respect to the c-axis of the crystal. The results are discussed in terms of a new model proposed recently by us [4], which explains ac losses as a consequence of cumulative effect of the energy spent in repetitive decoupling of the Josephson junctions and in terms of Lorentz force driven motion of vortices. In Chapter 3, we discuss the ac resistivity behavior of the polycrystalline superconducting samples with different microstructures. Measurement of resistivity is the basic characterization method not only for superconductors but for any material. The superconducting state is defined as the zero resistive state; but this statement is true only for dc and not for ac. The presence of ac resistance in superconductors leads to losses. In the present work we report on the behavior of ac resistance in the superconductors. The application of a magnetic field and the variation of temperature alter the AC penetration depth of the superconducting sample, which in turn changes the AC impedance associated with it. In this chapter we report the results on the complex AC conductivity that has been measured in two types of polycrystalline YBa2Cu3O7 samples at frequencies starting from 100 Hz to 100 kHz and at temperatures from 10 K to 300 K. In the first pellet which is sintered, the possibility of presence of extrinsic Josephson junctions is less, but a large number of Josephson junctions is present in the second non-sintered pellet. In general it is expected that the AC or the DC resistivity in superconductors should decrease below Tc. In the case of DC resistivity the value of resistance goes exactly to zero and in the case of AC resistivity it keeps on decreasing towards zero with decreasing temperature. But surprisingly we find that in superconducting samples with Josephson junctions, the AC resistivity drops very close to zero at the critical temperature and instead of decreasing it increases slowly with decreasing temperature below the critical temperature. This property is also strongly dependent on the applied AC frequency. Investigation of the above phenomenon gives information regarding the contribution of JJ decoupling towards the AC resistivity of superconducting samples. The observed ac resistive behavior is well fitted with the Ambegaokar-Baratoff model for temperature dependence of critical current in the Josephson junction. In Chapter 4, the possibility of the presence of weak links in the intermetallic superconductor MgB2 is reported. The role of weak links in superconductors has been studied for a long time. Understanding the behavior of weak links has great importance for the applications of superconductors. Presence of weak links in high Tc materials due to its insulating grain boundaries limits the application potential of those materials. These weak links lead to lower critical current density and lower critical field of superconductors and lead to losses. The discovery of superconductivity in the simple intermetallic compound MgB2 has created a lot of interest from both application aspects and of fundamental science. MgB2 differs from high Tc materials and is considered as a potential candidate for applications, because of its high critical current density which arises due to the absence of weak links in MgB2. Absence of weak links is reported in most of the MgB2 literature and only in a very few studies possibility of the presence of weak links is reported. Here, our NRMA studies on the MgB2 thin films show the presence of weak links [5]. NRMA is a highly sensitive, non-invasive technique, which has proven to be a valuable tool for detecting weak links in superconductors and their characterization [6]. In this technique the sample is studied using a continuous wave electron paramagnetic resonance (EPR) spectrometer, by recording the magnetic field dependence of the power absorption. The NRMA studies on the MgB2 thin film shows the presence of weak links and hysteresis in the signal. The origin of weak links is discussed as being due to the presence of oxygen in the grain boundaries. The hysteresis appears because of remnant magnetization and due to the pinning of flux lines when there is a change in the sweeping field direction. The NRMA studies are carried out as a function of temperature, modulation field, microwave power and the scan range and the results are reported in this Chapter. In chapter 5 we report on the resistive behavior of superconducting MgB2 film in the presence of an ac field using a novel technique. In this simple technique the resistive measurements are done using the general four-probe method, but a coil is wound over the sample and connected to an ac source to generate the ac field. The resistivity measurements are carried out as a function of temperature, amplitude and the frequency of ac field. The ac field shifts the Tc towards lower temperature and increases the broadening in transition from normal to superconducting state. In the absence of Lorentz force due to the parallel orientation of ac field with the transport current, we find that Josephson junction decoupling is one of the main origins of resistivity. The results are compared with the resistive behavior of YBCO film. The epitaxial YBCO film which is free from weak links shows a different frequency dependent resistive behavior, which is explained in terms of flux-creep. In the MgB2 film the studies are carried out in the presence of a dc field that is applied perpendicular to direction of transport current in the film along with the presence and the absence of the ac field. The studies show that in superconductors the presence of ac field leads to more loss than that of dc field. Chapter 6 describes a simple experimental technique using the property of kinetic inductance to measure the vortex resistivity arising from the ac current. Since the discovery of the superconductors much attention has been given to the dynamics of the vortices because of their importance from both scientific and application point of view. When a magnetic field of amplitude more than Hc1 is applied the type II superconductors enter in to the ‘mixed state’ due to the presence of vortices. In the presence of a current, the vortices experience Lorentz force of magnitude F = J x B normal to the current and the field. The vortices move under the influence of the Lorentz force along its direction which leads to resistivity. The electric field generated by the vortex movement has two components, one acting along the current direction and the other normal to the current direction. But most of the vortex resistivity measurements are carried out either in the presence of high magnetic field or at temperatures closer to Tc due to the limitation of experimental techniques. In this chapter we are reporting a simple experimental technique to measure vortex resistivity with very high resolution even at low temperatures and fields based on the concept of kinetic inductance. Kinetic inductance is the property which arises mostly in superconductors due to the inertial mass of the charge carriers. In our measurement kinetic inductance is measured through a simple four-probe ac impedance technique, which is more commonly used for measuring resistivity. The penetration depth due to vortices is related to their resistivity and from the relation between the measured kinetic inductance and penetration depth vortex resistivity is calculated. In this report we discuss the experimental setup, principle of the method and present the results of our measurements carried out on YBa2Cu3O7 thin films.
189

Resistivity and the solid-to-liquid transition in high-temperature superconductors

Espinosa Arronte, Beatriz January 2006 (has links)
<p>In high-temperature superconductors a large region of the magnetic phase diagram is occupied by a vortex phase that displays a number of exciting phenomena. At low temperatures, vortices form a truly superconducting solid phase which at high temperatures turns into a dissipative vortex liquid. The character of the transition between these two phases depends on the amount and type of disorder present in the system. For weak point disorder the vortex solid-to-liquid transition is a first-order melting. In the presence of strong point disorder the solid is thought to be a vortex-glass and the transition into the liquid is instead of second order. When the disorder is correlated, like twin boundaries or artificially introduced columnar defects, the transition is also second order, but has essentially different properties. In this work, the transition between the solid and liquid phases of the vortex state has been studied by resistive transport measurements in mainly YBa2Cu3O7-[delta](YBCO) single crystals with different types of disorder.</p><p>The vortex-glass transition has been investigated in an extended model for the vortex-liquid resistivity close to the transition that takes into account both the temperature and magnetic field dependence of the transition line. The resistivity of samples with different properties was measured with various contact configurations at several magnetic fields and analyzed within this model. For each sample, attempts were made to scale the transition curves to one curve according to a suitable scaling variable predicted by the model. Good scaling was found in a number of different situations. The influence of increasing anisotropy and angular dependence of the magnetic field in the model were also considered.</p><p>The vortex solid-to-liquid transition was also studied in heavy-ion irradiated YBCO single crystals. The ions create columnar defects in the sample that act as correlated disorder. A magnetic field was applied at a tilt angle with respect to the direction of the columns. At the transition the resistance disappears as a power law with different exponents in the three orthogonal directions considered. This provides evidence for a new type of critical behavior with fully anisotropic critical scaling properties not previously found in any physical system.</p><p>The effect on the vortex solid-to-liquid transition of high magnetic fields applied parallel to the superconducting layers of underdoped YBCO single crystals was also studied. Some novel features were observed: a sharp kink appearing close to Tc at high magnetic fields and a triple dip in the angular dependence of the resistivity close to B||ab in some regions of the phase diagram.</p> / <p>I högtemperatursupraledare består en stor del av det magnetiska fasdiagrammet av en vortexfas som uppvisar ett flertal spännande fenomen. Vid låga temperaturer bildar vortexarna en fast vortexfas utan elektriskt motstånd. Vid högre temperatur övergår denna fas till en dissipativ vortexvätska. Egenskaperna hos denna fasövergång beror på oordningen i form av defekter. Vid svag punktoordning är fasomvandlingen mellan det fasta och flytande vortextillståndet en första ordningens smältövergång. Vid stark punktoordning anses den fasta fasen vara ett vortexglas och övergången till vortexvätskan är istället av andra ordningen. När oordningen är korrelerad, som för tvillinggränser eller artificiellt skapade kolumndefekter, är övergången också av andra ordningen men med väsentligt annorlunda egenskaper. I detta arbete har övergången mellan det fasta och det flytande vortextillståndet studerats med resistiva transportmätningar i framförallt enkristaller av YBa2Cu3O7-[delta] (YBCO) med olika typer av oordning.</p><p>Vortexglasövergången har undersökts i en utvidgad modell för resistansen i vortexvätskan nära fasövergången där hänsyn tas till såväl temperatur- som fältberoendet. Resistansen hos prover med olika egenskaper mättes i varierande magnetfält och i flera kontaktkonfigurationer och analyserades inom denna modell. Övergångskurvorna skalades till en kurva med en skalningsvariabel som givits av modellen. God skalning uppnåddes i flera olika fall. Effekten av ökande anisotropi och vinkelberoendet i modellen undersöktes också.</p><p>Vortexövergången mellan det fasta och det flytande vortextillståndet undersöktes även i enkristaller av YBCO bestrålade med tunga joner. Jonerna skapade kolumndefekter som fungerar som korrelerad oordning. Vinkeln mellan pålagt magnetfält och dessa kolumndefekter varierades. Vid fasövergången avtar resistansen som en potenslag med olika exponenter i de tre undersökta ortogonala riktningarna. Detta ger experimentell belägg för en ny typ av kritiskt beteende med fullständigt anisotropa kritiska skalningsegenskaper.</p><p>Egenskaparna hos på vortexövergången mellan fast och flytande fas vid höga magnetfält parallella med de supraledande lagren hos underdopade YBCO enkristaller undersöktes också. Några nya effekter observerades: en skarp knyck uppstod nära Tc vid höga magnetfält och en tredubbel dipp i den vinkelberoende resistiviteten nära B||ab i några regioner av fasdiagrammet.</p>
190

Resistivity and the solid-to-liquid transition in high-temperature superconductors

Espinosa Arronte, Beatriz January 2006 (has links)
In high-temperature superconductors a large region of the magnetic phase diagram is occupied by a vortex phase that displays a number of exciting phenomena. At low temperatures, vortices form a truly superconducting solid phase which at high temperatures turns into a dissipative vortex liquid. The character of the transition between these two phases depends on the amount and type of disorder present in the system. For weak point disorder the vortex solid-to-liquid transition is a first-order melting. In the presence of strong point disorder the solid is thought to be a vortex-glass and the transition into the liquid is instead of second order. When the disorder is correlated, like twin boundaries or artificially introduced columnar defects, the transition is also second order, but has essentially different properties. In this work, the transition between the solid and liquid phases of the vortex state has been studied by resistive transport measurements in mainly YBa2Cu3O7-[delta](YBCO) single crystals with different types of disorder. The vortex-glass transition has been investigated in an extended model for the vortex-liquid resistivity close to the transition that takes into account both the temperature and magnetic field dependence of the transition line. The resistivity of samples with different properties was measured with various contact configurations at several magnetic fields and analyzed within this model. For each sample, attempts were made to scale the transition curves to one curve according to a suitable scaling variable predicted by the model. Good scaling was found in a number of different situations. The influence of increasing anisotropy and angular dependence of the magnetic field in the model were also considered. The vortex solid-to-liquid transition was also studied in heavy-ion irradiated YBCO single crystals. The ions create columnar defects in the sample that act as correlated disorder. A magnetic field was applied at a tilt angle with respect to the direction of the columns. At the transition the resistance disappears as a power law with different exponents in the three orthogonal directions considered. This provides evidence for a new type of critical behavior with fully anisotropic critical scaling properties not previously found in any physical system. The effect on the vortex solid-to-liquid transition of high magnetic fields applied parallel to the superconducting layers of underdoped YBCO single crystals was also studied. Some novel features were observed: a sharp kink appearing close to Tc at high magnetic fields and a triple dip in the angular dependence of the resistivity close to B||ab in some regions of the phase diagram. / I högtemperatursupraledare består en stor del av det magnetiska fasdiagrammet av en vortexfas som uppvisar ett flertal spännande fenomen. Vid låga temperaturer bildar vortexarna en fast vortexfas utan elektriskt motstånd. Vid högre temperatur övergår denna fas till en dissipativ vortexvätska. Egenskaperna hos denna fasövergång beror på oordningen i form av defekter. Vid svag punktoordning är fasomvandlingen mellan det fasta och flytande vortextillståndet en första ordningens smältövergång. Vid stark punktoordning anses den fasta fasen vara ett vortexglas och övergången till vortexvätskan är istället av andra ordningen. När oordningen är korrelerad, som för tvillinggränser eller artificiellt skapade kolumndefekter, är övergången också av andra ordningen men med väsentligt annorlunda egenskaper. I detta arbete har övergången mellan det fasta och det flytande vortextillståndet studerats med resistiva transportmätningar i framförallt enkristaller av YBa2Cu3O7-[delta] (YBCO) med olika typer av oordning. Vortexglasövergången har undersökts i en utvidgad modell för resistansen i vortexvätskan nära fasövergången där hänsyn tas till såväl temperatur- som fältberoendet. Resistansen hos prover med olika egenskaper mättes i varierande magnetfält och i flera kontaktkonfigurationer och analyserades inom denna modell. Övergångskurvorna skalades till en kurva med en skalningsvariabel som givits av modellen. God skalning uppnåddes i flera olika fall. Effekten av ökande anisotropi och vinkelberoendet i modellen undersöktes också. Vortexövergången mellan det fasta och det flytande vortextillståndet undersöktes även i enkristaller av YBCO bestrålade med tunga joner. Jonerna skapade kolumndefekter som fungerar som korrelerad oordning. Vinkeln mellan pålagt magnetfält och dessa kolumndefekter varierades. Vid fasövergången avtar resistansen som en potenslag med olika exponenter i de tre undersökta ortogonala riktningarna. Detta ger experimentell belägg för en ny typ av kritiskt beteende med fullständigt anisotropa kritiska skalningsegenskaper. Egenskaparna hos på vortexövergången mellan fast och flytande fas vid höga magnetfält parallella med de supraledande lagren hos underdopade YBCO enkristaller undersöktes också. Några nya effekter observerades: en skarp knyck uppstod nära Tc vid höga magnetfält och en tredubbel dipp i den vinkelberoende resistiviteten nära B||ab i några regioner av fasdiagrammet. / QC 20110125

Page generated in 0.0825 seconds