• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • Tagged with
  • 13
  • 13
  • 13
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of swift heavy ion irradiation and annealing on the microstructure and migration behaviour of implanted Sr and Ag in SiC

Abdelbagi, Hesham Abdelbagi Ali 15 December 2019 (has links)
The effect of ion irradiation and annealing on the microstructure and migration behaviour of implanted Sr and Ag in SiC have been investigated. SiC is used as the main barrier for fission products in modern high temperature gas cooled reactors. An understanding of the transport behaviour of the implanted ions under irradiation by swift heavy ions (SHI) will shed some light into SiC’s effectiveness in the retention of fission products. The diffusion behaviour of silver (Ag) and strontium (Sr) implanted separately into SiC was investigated after irradiation by xenon ions and isochronal annealing methods from 1100 ˚C up to temperatures of 1500 ˚C in step of 100 ˚C for 5 hours. Ion implantation and ion irradiation were performed at room temperature. The implantation fluences in all cases were in the order of 2×10 16 ions per cm 2 . Some of the implanted samples were then irradiated by SHI at different fluences (i.e. 3.4×10 14 and 8.4×10 14 ions per cm 2 ). The implantation depth profiles before and after irradiation and annealing were determined by Rutherford backscattering spectroscopy (RBS). The microstructure of SiC individually implanted with Ag and Sr were investigated using Raman spectroscopy and scanning electron microscopy (SEM). Implantation of Ag and Sr amorphized the SiC, while SHIs irradiation of the as-implanted SiC resulted in limited recrystallization of the initially amorphized SiC. Annealing at 1100 °C caused more recrystallization on the un-irradiated but implanted samples compared to SHI irradiated samples. This poor recrystallization of the irradiated SiC samples was due to the amount of impurities (i.e. concentration of Ag or Sr atoms) retained after annealing at 1100 o C. Raman and SEM results showed that annealing of the un-irradiated but implanted samples at 1100 °C resulted in large average crystal size compared to the irradiated samples annealed in the same conditions. RBS results showed that SHI irradiation alone induced no change in the implanted Ag and Sr. However, annealing the SHI irradiated samples iscohonally up to 1500 ˚C showed a strong diffusion and release of Ag and Sr as compared to the un-irradiated but implanted samples. The differences in the migration behavior of Ag and Sr is due to the difference in SiC structure and recrystallization in the irradiated and un-irradiated but implanted samples. / Thesis (PhD (Physics))--University of Pretoria, 2019. / National Research Foundation (NRF) and The World Academy of Sciences (TWAS). / Physics / PhD (Physics) / Unrestricted
2

Swift heavy ion irradiation of polyester and polyolefin polymeric film for gas separation application

Adeniyi, Olushola Rotimi January 2015 (has links)
Philosophiae Doctor - PhD / The combination of ion track technology and chemical etching as a tool to enhance polymer gas properties such as permeability and selectivity is regarded as an avenue to establish technology commercialization and enhance applicability. Traditionally, permeability and selectivity of polymers have been major challenges especially for gas applications. However, it is important to understand the intrinsic polymer properties in order to be able to predict or identify their possible ion-polymer interactions thus facilitate the reorientation of existing polymer structural configurations. This in turn can enhance the gas permeability and selectivity properties of the polymers. Therefore, the choice of polymer is an important prerequisite. Polyethylene terephthalate (PET) belongs to the polyester group of polymers and has been extensively studied within the context of post-synthesis modification techniques using swift heavy ion irradiation and chemical treatment which is generally referred to as ‘track-etching’. The use of track-etched polymers in the form of symmetrical membranes structures to investigate gas permeability and selectivity properties has proved successful. However, the previous studies on track-etched polymers films have been mainly focused on the preparation of symmetrical membrane structure, especially in the case of polyesters such as PET polymer films. Also, polyolefins such as polymethyl pentene (PMP) have not been investigated using swift heavy ions and chemical etching procedures. In addition, the use of ‘shielded’ material on PET and PMP polymer films prior to swift heavy ion irradiation and chemical etching to prepare asymmetrical membrane structure have not been investigated. The gas permeability and selectivity of the asymmetrical membrane prepared from swift heavy ion irradiated etched 'shielded' PET and PMP polymer films have not been determined. These highlighted limitations will be addressed in this study. The overall objective of this study was to prepare asymmetric polymeric membranes with porous surface on dense layer from two classes of polymers; (PET and PMP) in order to improve their gas permeability and selectivity properties. The research approach in this study was to use a simple and novel method to prepare an asymmetric PET and PMP polymer membrane with porous surface and dense layer by mechanical attachment of ‘shielded’ material on the polymer film before swift heavy ion irradiation. This irradiation approach allowed for the control of swift heavy ion penetration depth into the PET and PMP polymer film during irradiation. The procedure used in this study is briefly described. Commercial PET and PMP polymer films were mechanically ‘shielded’ with aluminium and PET foils respectively. The ‘shielded’ PET polymer films were then irradiated with swift heavy ions of Xe source while ‘shielded’ PMP polymer films were irradiated with swift heavy ions Kr. The ion energy and fluence of Xe ions was 1.3 MeV and 106 respectively while the Kr ion energy was 3.57 MeV and ion fluence of 109. After swift heavy ion irradiation of ‘shielded’ PET and PMP polymer films, the attached ‘shielded’ materials were removed from PET and PMP polymer film and the irradiated PET and PMP polymer films were chemically etched in sodium hydroxide (NaOH) and acidified chromium trioxide (H2SO4 + CrO3) respectively. The chemical etching conditions of swift heavy ion irradiated ‘shielded’ PET was performed with 1 M NaOH at 80 ˚C under various etching times of 3, 6, 9 and 12 minutes. As for the swift heavy ion irradiated ‘shielded’ PMP polymer film, the chemical etching was performed with 7 M H2SO4 + 3 M CrO3 solution, etching temperature was varied between 40 ˚C and 80 ˚C while the etching time was between 40 minutes to 150 minutes. The SEM (surface and cross-section micrograph) morphology results of the swift heavy ion irradiated ‘shielded’ etched PET and PMP films showed that asymmetric membranes with a single-sided porous surface and dense layer was prepared and remained unchanged even after 12 minutes of etching with 1 M NaOH solution as in the case of PET and 2 hours 30 minutes of etching with 7 M H2SO4 + 3 M CrO3 as observed for PMP polymer film. Also, the swift heavy ion irradiated ‘shielded’ etched PET polymer film showed the presence of pores on the polymer film surface within 3 minutes of etching. After 12 minutes chemical etching with 1 M NaOH solution, the dense layer of swift heavy ion irradiated ‘shielded’ etched PET polymer film experienced significant reduction in thickness of about 40 % of the original thickness of as-received PET polymer film. The surface morphology of swift heavy ion irradiated ‘shielded’ etched PET polymer film by SEM analysis revealed finely distributed pores with spherical shapes for the swift heavy ion irradiated ‘shielded’ etched PET polymer film within 6 minutes of etching with 1 M NaOH solution. Also, after 9 minutes and 12 minutes of etching with 1 M NaOH solution of the swift heavy ion irradiated ‘shielded’ etched PET polymer film, the pore walls experienced complete collapse with intense surface roughness. Interestingly, the 12 minutes etched swift heavy ion ‘shielded’ irradiated PET did not lose its asymmetrical membrane structure despite the collapse of the pore walls. In the case of swift heavy ion irradiated ‘shielded’ etched PMP polymer film, SEM morphology analysis showed that the pores retained their shape with the presence of defined pores without intense surface roughness even after extended etching with 7 M H2SO4 + 3 M CrO3 for 2 hours 30 minutes. Also, the pores of swift heavy ion irradiated ‘shielded’ etched PMP polymer films were observed to be mono dispersed and not agglomerated or overlapped. The SEM cross-section morphology of the swift heavy ion irradiated ‘shielded’ etched PMP polymer film showed radially oriented pores with increased pore diameters in the PMP polymer film which indicated that etching was radial instead of lateral, and no through pores were observed showing that the dense asymmetrical structure was retained. The SEM results revealed that the pore morphology i.e. size and shape could be accurately controlled during chemical etching of swift heavy ion ‘shielded’ irradiated PET and PMP polymer films. The XRD results of swift heavy ion irradiated ‘shielded’ etched PET revealed a single diffraction peak for various times of chemical etching in 1 M NaOH solution at 3, 6, 9 and 12 minutes. The diffraction peak of swift heavy ion irradiated ‘shielded’ etched PET was observed to reduce in intensity and marginally shifted to lower angles from 25.95˚ 2 theta to 25.89˚ 2 theta and also became broad in shape. It was considered that the continuous broadening of diffraction peaks due to an increase in etching times could be attributed to disorderliness of the ordered region within the polymer matrix and thus decreases in crystallinity of the swift heavy ion irradiated ‘shielded’ etched PET polymer film. The XRD analysis of swift heavy ion irradiated ‘shielded’ etched PMP polymer films indicated the presence of the diffraction peak at 9.75˚ 2 theta with decrease in intensity while the diffraction peaks located at 13.34˚, 16.42˚, 18.54˚ and 21.46˚ 2 theta disappeared after chemical etching in acidified chromium trioxide (H2SO4 + CrO3) after 2 hours 30 minutes. The TGA thermal profile analysis of swift heavy ion irradiated ‘shielded’ etched PET did not show the evolution of volatile species or moisture at lower temperatures even after 12 minutes of etching in 1 M NaOH solution in comparison with commercial PET polymer film. Also, it was observed that the swift heavy ion irradiated layered’ etched PET polymer film started to undergo degradation at a higher temperature than untreated PET which resulted in an approximate increase of 50 ˚C in comparison with the commercial PET polymer film. The TGA results of swift heavy ion irradiated ‘shielded’ etched PMP polymer film revealed an improvement of about 50 ˚C in thermal stability before thermal degradation even after etching in acidified chromium trioxide for 2 hours 30 minutes at 80 ˚C. Spectroscopy (IR) analysis of the swift heavy ion irradiated ‘shielded’ etched PET and PMP polymer films showed the presence of characteristic functional groups associated with either PET or PMP structures. The variations of irradiation and chemical etching conditions revealed that the swift heavy ion ‘shielded’ irradiated etched PET polymer film experienced continuous degradation of available functional groups as a function of etching time and also with complete disappearance of some functional groups such as 1105 cm-1 and 1129 cm-1 compared with the as-received PET polymer film which are both associated with the para-substituted position of benzene rings. In the case of swift heavy ion irradiated ‘shielded’ etched PMP polymer film, spectroscopic (IR) analysis showed significant variations in the susceptibility of associated functional groups within the PMP polymer film with selective attack and emergence of some specific functional groups such as at 1478 cm-1, 1810 cm-1 and 2115 cm-1 which were assigned to methylene, CH3 (asymmetry deformation), CH3 and CH2 respectively Also, the IR results for swift heavy ion irradiated ‘shielded’ etched PMP polymer showed that unsaturated olefinic groups were the dominant functional groups that were being attacked by during etching with acidified chromium trioxide (H2SO4+CrO3) which is an aggressive chemical etchant. The gas permeability analysis of swift heavy ion irradiated ‘shielded’ etched PET and PMP polymer films showed that the gas permeability was improved in comparison with the as-received PET and as-received PMP polymer films. The gas permeability of swift heavy ion irradiated ‘shielded’ etched PET increased as a function of etching time and was found to be highest after 12 minutes of chemical etching in 1 M NaOH at 80 ˚C. In the case of swift heavy ion irradiated ‘shielded’ etched PMP, the gas permeability was observed to show the highest gas permeability after 2 hours 30 minutes of etching in H2SO4 + CrO3 solution. The gas permeability analysis for swift heavy ion irradiated ‘shielded’ PET and PMP polymer films was tested for He, CO2 and CH4 and the permeability results showed that helium was most permeable compared with CO2 and CH4 gases. In comparison, the selectivity analysis was performed for He/CO2 and CH4/He and the results showed that the selectivity decreased with increasing in etching time as expected. This study identified some important findings. Firstly, it was observed that the use of ‘shielded’ material on PET and PMP polymer films prior to swift heavy ion irradiation proved successful in the creation of asymmetrical polymer membrane structure. Also, it was also observed that the chemical etching of the ‘shielded’ swift heavy ion irradiated PET and PMP polymer films resulted in the presence of pores on the swift heavy ion irradiated side while the unirradiated sides of the PET and PMP polymer films were unaffected during chemical etching hence the pore depth could be controlled. In addition, the etching experiment showed that the pores geometry can be controlled as well as the gas permeability and selectivity properties of swift heavy ion ‘shielded’ irradiated etched PET and PMP polymer films. The process of polymer bulk and surface properties modification using ion-track technology i.e. swift heavy ion irradiation and subsequent chemical treatment of the irradiated polymer serves to reveal characteristic pore profiles unique to the prevailing ion-polymer interaction and ultimately results in alteration of the polymer characteristics.
3

Radiation Response of Nanostructured Cu

Cuncai Fan (7036280) 02 August 2019 (has links)
Irradiation of metals with energetic particles causes heavy damage effects in microstructure and mechanical properties, which is closely associated with irradiation conditions, presence of impurities, and microstructural features. It has been proposed that the radiation tolerance of a certain material can be enhanced by introducing a high density of interfaces, acting as ‘sinks’ that can frequently involve in attracting, absorbing and annihilating defects. Nanostructured materials with large volume fraction of interfaces, therefore, are assumed to be more radiation tolerant than conventional materials. This thesis focuses on the radiation damage effects in nanostructured Cu via the methods of in-situ TEM (transmission electron microscope) radiation experiments, postirradiation TEM analyses, small-mechanical tests (nanoindentation and micro-pillar compression), and computer simulations (molecular dynamics and phase-field modeling). We design and fabricate nanostructured Cu using direct current (DC) magnetron sputtering deposition technique, a typica physical vapor deposition (PVD) method and a bottom-up way to construct various nanostructured metals. High-density twin boundaries (TBs) and nanovoids (NVs) are introduced into two distinct nanostructured Cu films, including nanovoid-nanotwinned (NVNT) Cu (111) and nanovoid (NV) Cu (110). The in-situ high-energy Kr<sup>++</sup> (1 MeV) and ex-situ low energy He<sup>+</sup> (< 200 keV) irradiations are subsequently preformed on the as-deposited Cu samples. On the one hand, the in-situ TEM observations suggest that TBs and NVs can influence the formation, distribution and stability of radiation-induced defects. Meanwhile, the preexisting microstructures also undergo structural change through void shrinkage and twin boundary migration. On the other hand, the ex-situ micro-pillar compression tests reveal that the Heirradiated NV-NT Cu contains less defect clusters but experiences more radiation-induced hardening. The underlying mechanisms of void shrinkage, twin boundary migration, and radiationinduced hardening are fully discussed based on post-irradiation analyses and computer simulations.
4

Fabrication de semiconducteurs poreux pour améliorer l'isolation thermique des MEMS

Newby, Pascal January 2014 (has links)
Résumé : L’isolation thermique est essentielle dans de nombreux types de MEMS (micro-systèmes électro-mécaniques). Elle permet de réduire la consommation d’énergie, améliorer leurs performances, ou encore isoler la zone chaude du reste du dispositif, ce qui est essentiel dans les systèmes sur puce. Il existe quelques matériaux et techniques d’isolation pour les MEMS, mais ils sont limités. En effet, soit ils ne proposent pas un niveau d’isolation suffisant, sont trop fragiles, ou imposent des contraintes trop importantes sur la conception du dispositif et sont difficiles à intégrer. Une approche intéressante pour l’isolation, démontrée dans la littérature, est de fabriquer des pores de taille nanométrique dans le silicium par gravure électrochimique. En nanostructurant le silicium ainsi, on peut diviser sa conductivité thermique par un facteur de 100 à 1000, le transformant en isolant thermique. Cette solution est idéale pour l’intégration dans les procédés de fabrication existants des MEMS, car on garde le silicium qui est déjà utilisé pour leur fabrication, mais en le nanostructurant localement, on le rend isolant là où on en a besoin. Par contre sa porosité cause des problèmes : mauvaise résistance chimique, structure instable au-delà de 400°C, et tenue mécanique réduite. La facilité d’intégration des semiconducteurs poreux est un atout majeur, nous visons donc de réduire les désavantages de ces matériaux afin de favoriser leur intégration dans des dispositifs en silicium. Nous avons identifié deux approches pour atteindre cet objectif : i) améliorer le Si poreux ou ii) développer un nouveau matériau. La première approche consiste à amorphiser le Si poreux en l’irradiant avec des ions à haute énergie (uranium, 110 MeV). Nous avons montré que l’amorphisation, même partielle, du Si poreux entraîne une diminution de sa conductivité thermique, sans endommager sa structure poreuse. Cette technique réduit sa conductivité thermique jusqu’à un facteur de trois, et peut être combinée avec une pré-oxydation afin d’atteindre une réduction d’un facteur cinq. Donc cette méthode permet de réduire la porosité du Si poreux, et d’atténuer ainsi les problèmes de fragilité mécanique causés par la porosité élevée, tout en gardant un niveau d’isolation égal. La seconde approche est de développer un nouveau matériau. Nous avons choisi le SiC poreux : le SiC massif a des propriétés physiques supérieures à celles du Si, et donc à priori le SiC poreux devrait conserver cette supériorité. La fabrication du SiC poreux a déjà été démontrée dans la littérature, mais avec peu d’études détaillées du procédé. Sa conductivité thermique et tenue mécanique n’ont pas été caractérisées, et sa tenue en température que de façon incomplète. Nous avons mené une étude systématique de la porosification du SiC en fonction de la concentration en HF et le courant. Nous avons implémenté un banc de mesure de la conductivité thermique par la méthode « 3 oméga » et l’avons utilisé pour mesurer la conductivité thermique du SiC poreux. Nous avons montré qu’elle est environ deux ordres de grandeur plus faible que celle du SiC massif. Nous avons aussi montré que le SiC poreux est résistant à tous les produits chimiques typiquement utilisés en microfabrication sur silicium. D’après nos résultats il est stable jusqu’à au moins 1000°C et nous avons obtenu des résultats qualitatifs encourageants quant à sa tenue mécanique. Nos résultats signifient donc que le SiC poreux est compatible avec la microfabrication, et peut être intégré dans les MEMS comme isolant thermique. // Abstract : Thermal insulation is essential in several types of MEMS (micro electro-mechanical systems). It can help reduce power consumption, improve performance, and can also isolate the hot area from the rest of the device, which is essential in a system-on-chip. A few materials and techniques currently exist for thermal insulation in MEMS, but these are limited. Indeed, either they don’t have provide a sufficient level of insulation, are too fragile, or restrict design of the device and are difficult to integrate. A potentially interesting technique for thermal insulation, which has been demonstrated in the literature, is to make nanometer-scale pores in silicon by electrochemical etching. By nanostructuring silicon in this way, its thermal conductivity is reduced by a factor of 100 to 1000, transforming it into a thermal insulator. This solution is ideal for integration in existing MEMS fabrication processes, as it is based on the silicon substrates which are already used for their fabrication. By locally nanostructuring these substrates, silicon is made insulating wherever necessary. However the porosity also causes problems : poor chemical resistance, an unstable structure above 400◦C, and reduced mechanical properties. The ease of integration of porous semiconductors is a major advantage, so we aim to reduce the disadvantages of these materials in order to encourage their integration in silicon-based devices. We have pursued two approaches in order to reach this goal : i) improve porous Si, or ii) develop a new material. The first approach uses irradiation with high energy ions (100 MeV uranium) to amorphise porous Si. We have shown that amorphisation, even partial, of porous Si leads to a reduction of its thermal conductivity, without damaging its porous structure. This technique can reduce the thermal conductivity of porous Si by up to a factor of three, and can be combined with a pre-oxidation to achieve a five-fold reduction of thermal conductivity. Therefore, by using this method we can use porous Si layers with lower porosity, thus reducing the problems caused by the fragility of high-porosity layers, whilst keeping an equal level of thermal insulation. The second approach is to develop a new material. We have chosen porous SiC: bulk SiC has exceptional physical properties and is superior to bulk Si, so porous SiC should be superior to porous Si. Fabrication of porous SiC has been demonstrated in the literature, but detailed studies of the process are lacking. Its thermal conductivity and mechanical properties have never been measured and its high-temperature behaviour has only been partially characterised. We have carried out a systematic study of the effects of HF concentration and current on the porosification process. We have implemented a thermal conductivity measurement setup using the “3 omega” method and used it to measure the thermal conductivity of porous SiC. We have shown that it is about two orders of magnitude lower than that of bulk SiC. We have also shown that porous SiC is chemically inert in the most commonly used solutions for microfabrication. Our results show that porous SiC is stable up to at least 1000◦C and we have obtained encouraging qualitative results regarding its mechanical properties. This means that porous SiC is compatible with microfabrication processes, and can be integrated in MEMS as a thermal insulation material.
5

Fabrication de semiconducteurs poreux pour am??liorer l'isolation thermique des MEMS

Newby, Pascal January 2014 (has links)
R??sum?? : L???isolation thermique est essentielle dans de nombreux types de MEMS (micro-syst??mes ??lectro-m??caniques). Elle permet de r??duire la consommation d?????nergie, am??liorer leurs performances, ou encore isoler la zone chaude du reste du dispositif, ce qui est essentiel dans les syst??mes sur puce. Il existe quelques mat??riaux et techniques d???isolation pour les MEMS, mais ils sont limit??s. En effet, soit ils ne proposent pas un niveau d???isolation suffisant, sont trop fragiles, ou imposent des contraintes trop importantes sur la conception du dispositif et sont difficiles ?? int??grer. Une approche int??ressante pour l???isolation, d??montr??e dans la litt??rature, est de fabriquer des pores de taille nanom??trique dans le silicium par gravure ??lectrochimique. En nanostructurant le silicium ainsi, on peut diviser sa conductivit?? thermique par un facteur de 100 ?? 1000, le transformant en isolant thermique. Cette solution est id??ale pour l???int??gration dans les proc??d??s de fabrication existants des MEMS, car on garde le silicium qui est d??j?? utilis?? pour leur fabrication, mais en le nanostructurant localement, on le rend isolant l?? o?? on en a besoin. Par contre sa porosit?? cause des probl??mes : mauvaise r??sistance chimique, structure instable au-del?? de 400??C, et tenue m??canique r??duite. La facilit?? d???int??gration des semiconducteurs poreux est un atout majeur, nous visons donc de r??duire les d??savantages de ces mat??riaux afin de favoriser leur int??gration dans des dispositifs en silicium. Nous avons identifi?? deux approches pour atteindre cet objectif : i) am??liorer le Si poreux ou ii) d??velopper un nouveau mat??riau. La premi??re approche consiste ?? amorphiser le Si poreux en l???irradiant avec des ions ?? haute ??nergie (uranium, 110 MeV). Nous avons montr?? que l???amorphisation, m??me partielle, du Si poreux entra??ne une diminution de sa conductivit?? thermique, sans endommager sa structure poreuse. Cette technique r??duit sa conductivit?? thermique jusqu????? un facteur de trois, et peut ??tre combin??e avec une pr??-oxydation afin d???atteindre une r??duction d???un facteur cinq. Donc cette m??thode permet de r??duire la porosit?? du Si poreux, et d???att??nuer ainsi les probl??mes de fragilit?? m??canique caus??s par la porosit?? ??lev??e, tout en gardant un niveau d???isolation ??gal. La seconde approche est de d??velopper un nouveau mat??riau. Nous avons choisi le SiC poreux : le SiC massif a des propri??t??s physiques sup??rieures ?? celles du Si, et donc ?? priori le SiC poreux devrait conserver cette sup??riorit??. La fabrication du SiC poreux a d??j?? ??t?? d??montr??e dans la litt??rature, mais avec peu d?????tudes d??taill??es du proc??d??. Sa conductivit?? thermique et tenue m??canique n???ont pas ??t?? caract??ris??es, et sa tenue en temp??rature que de fa??on incompl??te. Nous avons men?? une ??tude syst??matique de la porosification du SiC en fonction de la concentration en HF et le courant. Nous avons impl??ment?? un banc de mesure de la conductivit?? thermique par la m??thode ?? 3 om??ga ?? et l???avons utilis?? pour mesurer la conductivit?? thermique du SiC poreux. Nous avons montr?? qu???elle est environ deux ordres de grandeur plus faible que celle du SiC massif. Nous avons aussi montr?? que le SiC poreux est r??sistant ?? tous les produits chimiques typiquement utilis??s en microfabrication sur silicium. D???apr??s nos r??sultats il est stable jusqu????? au moins 1000??C et nous avons obtenu des r??sultats qualitatifs encourageants quant ?? sa tenue m??canique. Nos r??sultats signifient donc que le SiC poreux est compatible avec la microfabrication, et peut ??tre int??gr?? dans les MEMS comme isolant thermique. // Abstract : Thermal insulation is essential in several types of MEMS (micro electro-mechanical systems). It can help reduce power consumption, improve performance, and can also isolate the hot area from the rest of the device, which is essential in a system-on-chip. A few materials and techniques currently exist for thermal insulation in MEMS, but these are limited. Indeed, either they don???t have provide a sufficient level of insulation, are too fragile, or restrict design of the device and are difficult to integrate. A potentially interesting technique for thermal insulation, which has been demonstrated in the literature, is to make nanometer-scale pores in silicon by electrochemical etching. By nanostructuring silicon in this way, its thermal conductivity is reduced by a factor of 100 to 1000, transforming it into a thermal insulator. This solution is ideal for integration in existing MEMS fabrication processes, as it is based on the silicon substrates which are already used for their fabrication. By locally nanostructuring these substrates, silicon is made insulating wherever necessary. However the porosity also causes problems : poor chemical resistance, an unstable structure above 400???C, and reduced mechanical properties. The ease of integration of porous semiconductors is a major advantage, so we aim to reduce the disadvantages of these materials in order to encourage their integration in silicon-based devices. We have pursued two approaches in order to reach this goal : i) improve porous Si, or ii) develop a new material. The first approach uses irradiation with high energy ions (100 MeV uranium) to amorphise porous Si. We have shown that amorphisation, even partial, of porous Si leads to a reduction of its thermal conductivity, without damaging its porous structure. This technique can reduce the thermal conductivity of porous Si by up to a factor of three, and can be combined with a pre-oxidation to achieve a five-fold reduction of thermal conductivity. Therefore, by using this method we can use porous Si layers with lower porosity, thus reducing the problems caused by the fragility of high-porosity layers, whilst keeping an equal level of thermal insulation. The second approach is to develop a new material. We have chosen porous SiC: bulk SiC has exceptional physical properties and is superior to bulk Si, so porous SiC should be superior to porous Si. Fabrication of porous SiC has been demonstrated in the literature, but detailed studies of the process are lacking. Its thermal conductivity and mechanical properties have never been measured and its high-temperature behaviour has only been partially characterised. We have carried out a systematic study of the effects of HF concentration and current on the porosification process. We have implemented a thermal conductivity measurement setup using the ???3 omega??? method and used it to measure the thermal conductivity of porous SiC. We have shown that it is about two orders of magnitude lower than that of bulk SiC. We have also shown that porous SiC is chemically inert in the most commonly used solutions for microfabrication. Our results show that porous SiC is stable up to at least 1000???C and we have obtained encouraging qualitative results regarding its mechanical properties. This means that porous SiC is compatible with microfabrication processes, and can be integrated in MEMS as a thermal insulation material.
6

Self-organized nanostructures by heavy ion irradiation: defect kinetics and melt pool dynamics

Böttger, Roman 13 March 2014 (has links) (PDF)
Self-organization is a hot topic as it has the potential to create surface patterns on the nanoscale avoiding cost-intensive top-down approaches. Although chemists have promising results in this area, ion irradiation can create self-organized surface patterns in a more controlled manner. Different regimes of pattern formation under ion irradiation were described so far by 2D models. Here, two new regimes have been studied experimentally, which require modeling in 3D: subsurface point defect kinetics as well as ion impact-induced melt pool formation. This thesis deals with self-organized pattern formation on Ge and Si surfaces under normal incidence irradiation with heavy monatomic and polyatomic ions of energies up to several tens of keV. Irradiation has been performed using liquid metal ion sources in a focused ion beam facility with mass-separation as well as by conventional broad beam ion implantation. Irradiated samples have been analyzed mainly by scanning electron microscopy. Related to the specific irradiation conditions, investigation and discussion of pattern formation has been divided into two parts: (i) formation of Ge morphologies due to point defect kinetics and (ii) formation of Ge and Si morphologies due to melt pool dynamics. Point defect kinetics dominates pattern formation on Ge under irradiation with monatomic ions at room temperature. Irradiation of Ge with Bi and Ge ions at fluences up to 10^17 cm^(-2) has been performed. Comprehensive studies show for the first time that morphologies change from flat surfaces over hole to nanoporous, sponge-like patterns with increasing ion energy. This study is consistent with former irradiations of Ge with a few ion energies. Based on my studies, a consistent, qualitative 3D model of morphology evolution has been developed, which attributes the ion energy dependency of the surface morphology to the depth dependency of point defect creation and relaxation. This model has been proven by atomistic computer experiments, which reproduce the patterns found in real irradiation experiments. At extremely high energy densities deposited by very heavy ions another mechanism dominates pattern formation. The formation of Ge and Si dot patterns by very heavy, monatomic and polyatomic Bi ion irradiation has been studied in detail for the first time. So far, this formation of pronounced dot pattern cannot be explained by any model. Comprehensive, experimental studies have shown that pattern formation on Ge is related to extremely high energy densities deposited by each polyatomic ion locally. The simultaneous impact of several atoms leads to local energy densities sufficient to cause local melting. Heating of Ge substrates under ion irradiation increases the achievable energy density in the collision cascade substantially. This prediction has been confirmed experimentally: it has been found that the threshold for nanomelting can be lowered by substrate heating, which allows pattern formation also under heavy, monatomic ion irradiation. Extensive studies of monatomic Bi irradiation of heated Ge have shown that morphologies change from sponge-like over highly regular dot patterns to smooth surfaces with increasing substrate temperature. The change from sponge-like to dot pattern is correlated to the melting of the ion collision cascade volume, with energy densities sufficient for melt pool formation at the surface. The model of pattern formation on Ge due to extremely high deposited energy densities is not specific to a single element. Therefore, Si has been studied too. Dot patterns have been found for polyatomic Bi ion irradiation of hot Si, which creates sufficiently high energy densities to allow ion impact-induced melt pool formation. This proves that pattern formation by melt pool formation is a novel, general pattern formation mechanism. Using molecular dynamics simulations of project partners, the correlation between dot patterning and ion impact-induced melt pool formation has been proven. The driving force for dot pattern formation due to high deposited energy densities has been identified and approximated in a first continuum description.
7

Fabrication de semiconducteurs poreux pour am??liorer l'isolation thermique des MEMS

Newby, Pascal January 2014 (has links)
R??sum?? : L???isolation thermique est essentielle dans de nombreux types de MEMS (micro-syst??mes ??lectro-m??caniques). Elle permet de r??duire la consommation d?????nergie, am??liorer leurs performances, ou encore isoler la zone chaude du reste du dispositif, ce qui est essentiel dans les syst??mes sur puce. Il existe quelques mat??riaux et techniques d???isolation pour les MEMS, mais ils sont limit??s. En effet, soit ils ne proposent pas un niveau d???isolation suffisant, sont trop fragiles, ou imposent des contraintes trop importantes sur la conception du dispositif et sont difficiles ?? int??grer. Une approche int??ressante pour l???isolation, d??montr??e dans la litt??rature, est de fabriquer des pores de taille nanom??trique dans le silicium par gravure ??lectrochimique. En nanostructurant le silicium ainsi, on peut diviser sa conductivit?? thermique par un facteur de 100 ?? 1000, le transformant en isolant thermique. Cette solution est id??ale pour l???int??gration dans les proc??d??s de fabrication existants des MEMS, car on garde le silicium qui est d??j?? utilis?? pour leur fabrication, mais en le nanostructurant localement, on le rend isolant l?? o?? on en a besoin. Par contre sa porosit?? cause des probl??mes : mauvaise r??sistance chimique, structure instable au-del?? de 400??C, et tenue m??canique r??duite. La facilit?? d???int??gration des semiconducteurs poreux est un atout majeur, nous visons donc de r??duire les d??savantages de ces mat??riaux afin de favoriser leur int??gration dans des dispositifs en silicium. Nous avons identifi?? deux approches pour atteindre cet objectif : i) am??liorer le Si poreux ou ii) d??velopper un nouveau mat??riau. La premi??re approche consiste ?? amorphiser le Si poreux en l???irradiant avec des ions ?? haute ??nergie (uranium, 110 MeV). Nous avons montr?? que l???amorphisation, m??me partielle, du Si poreux entra??ne une diminution de sa conductivit?? thermique, sans endommager sa structure poreuse. Cette technique r??duit sa conductivit?? thermique jusqu????? un facteur de trois, et peut ??tre combin??e avec une pr??-oxydation afin d???atteindre une r??duction d???un facteur cinq. Donc cette m??thode permet de r??duire la porosit?? du Si poreux, et d???att??nuer ainsi les probl??mes de fragilit?? m??canique caus??s par la porosit?? ??lev??e, tout en gardant un niveau d???isolation ??gal. La seconde approche est de d??velopper un nouveau mat??riau. Nous avons choisi le SiC poreux : le SiC massif a des propri??t??s physiques sup??rieures ?? celles du Si, et donc ?? priori le SiC poreux devrait conserver cette sup??riorit??. La fabrication du SiC poreux a d??j?? ??t?? d??montr??e dans la litt??rature, mais avec peu d?????tudes d??taill??es du proc??d??. Sa conductivit?? thermique et tenue m??canique n???ont pas ??t?? caract??ris??es, et sa tenue en temp??rature que de fa??on incompl??te. Nous avons men?? une ??tude syst??matique de la porosification du SiC en fonction de la concentration en HF et le courant. Nous avons impl??ment?? un banc de mesure de la conductivit?? thermique par la m??thode ?? 3 om??ga ?? et l???avons utilis?? pour mesurer la conductivit?? thermique du SiC poreux. Nous avons montr?? qu???elle est environ deux ordres de grandeur plus faible que celle du SiC massif. Nous avons aussi montr?? que le SiC poreux est r??sistant ?? tous les produits chimiques typiquement utilis??s en microfabrication sur silicium. D???apr??s nos r??sultats il est stable jusqu????? au moins 1000??C et nous avons obtenu des r??sultats qualitatifs encourageants quant ?? sa tenue m??canique. Nos r??sultats signifient donc que le SiC poreux est compatible avec la microfabrication, et peut ??tre int??gr?? dans les MEMS comme isolant thermique. // Abstract : Thermal insulation is essential in several types of MEMS (micro electro-mechanical systems). It can help reduce power consumption, improve performance, and can also isolate the hot area from the rest of the device, which is essential in a system-on-chip. A few materials and techniques currently exist for thermal insulation in MEMS, but these are limited. Indeed, either they don???t have provide a sufficient level of insulation, are too fragile, or restrict design of the device and are difficult to integrate. A potentially interesting technique for thermal insulation, which has been demonstrated in the literature, is to make nanometer-scale pores in silicon by electrochemical etching. By nanostructuring silicon in this way, its thermal conductivity is reduced by a factor of 100 to 1000, transforming it into a thermal insulator. This solution is ideal for integration in existing MEMS fabrication processes, as it is based on the silicon substrates which are already used for their fabrication. By locally nanostructuring these substrates, silicon is made insulating wherever necessary. However the porosity also causes problems : poor chemical resistance, an unstable structure above 400???C, and reduced mechanical properties. The ease of integration of porous semiconductors is a major advantage, so we aim to reduce the disadvantages of these materials in order to encourage their integration in silicon-based devices. We have pursued two approaches in order to reach this goal : i) improve porous Si, or ii) develop a new material. The first approach uses irradiation with high energy ions (100 MeV uranium) to amorphise porous Si. We have shown that amorphisation, even partial, of porous Si leads to a reduction of its thermal conductivity, without damaging its porous structure. This technique can reduce the thermal conductivity of porous Si by up to a factor of three, and can be combined with a pre-oxidation to achieve a five-fold reduction of thermal conductivity. Therefore, by using this method we can use porous Si layers with lower porosity, thus reducing the problems caused by the fragility of high-porosity layers, whilst keeping an equal level of thermal insulation. The second approach is to develop a new material. We have chosen porous SiC: bulk SiC has exceptional physical properties and is superior to bulk Si, so porous SiC should be superior to porous Si. Fabrication of porous SiC has been demonstrated in the literature, but detailed studies of the process are lacking. Its thermal conductivity and mechanical properties have never been measured and its high-temperature behaviour has only been partially characterised. We have carried out a systematic study of the effects of HF concentration and current on the porosification process. We have implemented a thermal conductivity measurement setup using the ???3 omega??? method and used it to measure the thermal conductivity of porous SiC. We have shown that it is about two orders of magnitude lower than that of bulk SiC. We have also shown that porous SiC is chemically inert in the most commonly used solutions for microfabrication. Our results show that porous SiC is stable up to at least 1000???C and we have obtained encouraging qualitative results regarding its mechanical properties. This means that porous SiC is compatible with microfabrication processes, and can be integrated in MEMS as a thermal insulation material.
8

Resistivity and the solid-to-liquid transition in high-temperature superconductors

Espinosa Arronte, Beatriz January 2006 (has links)
<p>In high-temperature superconductors a large region of the magnetic phase diagram is occupied by a vortex phase that displays a number of exciting phenomena. At low temperatures, vortices form a truly superconducting solid phase which at high temperatures turns into a dissipative vortex liquid. The character of the transition between these two phases depends on the amount and type of disorder present in the system. For weak point disorder the vortex solid-to-liquid transition is a first-order melting. In the presence of strong point disorder the solid is thought to be a vortex-glass and the transition into the liquid is instead of second order. When the disorder is correlated, like twin boundaries or artificially introduced columnar defects, the transition is also second order, but has essentially different properties. In this work, the transition between the solid and liquid phases of the vortex state has been studied by resistive transport measurements in mainly YBa2Cu3O7-[delta](YBCO) single crystals with different types of disorder.</p><p>The vortex-glass transition has been investigated in an extended model for the vortex-liquid resistivity close to the transition that takes into account both the temperature and magnetic field dependence of the transition line. The resistivity of samples with different properties was measured with various contact configurations at several magnetic fields and analyzed within this model. For each sample, attempts were made to scale the transition curves to one curve according to a suitable scaling variable predicted by the model. Good scaling was found in a number of different situations. The influence of increasing anisotropy and angular dependence of the magnetic field in the model were also considered.</p><p>The vortex solid-to-liquid transition was also studied in heavy-ion irradiated YBCO single crystals. The ions create columnar defects in the sample that act as correlated disorder. A magnetic field was applied at a tilt angle with respect to the direction of the columns. At the transition the resistance disappears as a power law with different exponents in the three orthogonal directions considered. This provides evidence for a new type of critical behavior with fully anisotropic critical scaling properties not previously found in any physical system.</p><p>The effect on the vortex solid-to-liquid transition of high magnetic fields applied parallel to the superconducting layers of underdoped YBCO single crystals was also studied. Some novel features were observed: a sharp kink appearing close to Tc at high magnetic fields and a triple dip in the angular dependence of the resistivity close to B||ab in some regions of the phase diagram.</p> / <p>I högtemperatursupraledare består en stor del av det magnetiska fasdiagrammet av en vortexfas som uppvisar ett flertal spännande fenomen. Vid låga temperaturer bildar vortexarna en fast vortexfas utan elektriskt motstånd. Vid högre temperatur övergår denna fas till en dissipativ vortexvätska. Egenskaperna hos denna fasövergång beror på oordningen i form av defekter. Vid svag punktoordning är fasomvandlingen mellan det fasta och flytande vortextillståndet en första ordningens smältövergång. Vid stark punktoordning anses den fasta fasen vara ett vortexglas och övergången till vortexvätskan är istället av andra ordningen. När oordningen är korrelerad, som för tvillinggränser eller artificiellt skapade kolumndefekter, är övergången också av andra ordningen men med väsentligt annorlunda egenskaper. I detta arbete har övergången mellan det fasta och det flytande vortextillståndet studerats med resistiva transportmätningar i framförallt enkristaller av YBa2Cu3O7-[delta] (YBCO) med olika typer av oordning.</p><p>Vortexglasövergången har undersökts i en utvidgad modell för resistansen i vortexvätskan nära fasövergången där hänsyn tas till såväl temperatur- som fältberoendet. Resistansen hos prover med olika egenskaper mättes i varierande magnetfält och i flera kontaktkonfigurationer och analyserades inom denna modell. Övergångskurvorna skalades till en kurva med en skalningsvariabel som givits av modellen. God skalning uppnåddes i flera olika fall. Effekten av ökande anisotropi och vinkelberoendet i modellen undersöktes också.</p><p>Vortexövergången mellan det fasta och det flytande vortextillståndet undersöktes även i enkristaller av YBCO bestrålade med tunga joner. Jonerna skapade kolumndefekter som fungerar som korrelerad oordning. Vinkeln mellan pålagt magnetfält och dessa kolumndefekter varierades. Vid fasövergången avtar resistansen som en potenslag med olika exponenter i de tre undersökta ortogonala riktningarna. Detta ger experimentell belägg för en ny typ av kritiskt beteende med fullständigt anisotropa kritiska skalningsegenskaper.</p><p>Egenskaparna hos på vortexövergången mellan fast och flytande fas vid höga magnetfält parallella med de supraledande lagren hos underdopade YBCO enkristaller undersöktes också. Några nya effekter observerades: en skarp knyck uppstod nära Tc vid höga magnetfält och en tredubbel dipp i den vinkelberoende resistiviteten nära B||ab i några regioner av fasdiagrammet.</p>
9

Ion-beam mixing of Fe/Si bilayers / Ionenstrahkmischen von Fe/Si Dopelschichten

Milinovic, Velimir 27 October 2005 (has links)
No description available.
10

Resistivity and the solid-to-liquid transition in high-temperature superconductors

Espinosa Arronte, Beatriz January 2006 (has links)
In high-temperature superconductors a large region of the magnetic phase diagram is occupied by a vortex phase that displays a number of exciting phenomena. At low temperatures, vortices form a truly superconducting solid phase which at high temperatures turns into a dissipative vortex liquid. The character of the transition between these two phases depends on the amount and type of disorder present in the system. For weak point disorder the vortex solid-to-liquid transition is a first-order melting. In the presence of strong point disorder the solid is thought to be a vortex-glass and the transition into the liquid is instead of second order. When the disorder is correlated, like twin boundaries or artificially introduced columnar defects, the transition is also second order, but has essentially different properties. In this work, the transition between the solid and liquid phases of the vortex state has been studied by resistive transport measurements in mainly YBa2Cu3O7-[delta](YBCO) single crystals with different types of disorder. The vortex-glass transition has been investigated in an extended model for the vortex-liquid resistivity close to the transition that takes into account both the temperature and magnetic field dependence of the transition line. The resistivity of samples with different properties was measured with various contact configurations at several magnetic fields and analyzed within this model. For each sample, attempts were made to scale the transition curves to one curve according to a suitable scaling variable predicted by the model. Good scaling was found in a number of different situations. The influence of increasing anisotropy and angular dependence of the magnetic field in the model were also considered. The vortex solid-to-liquid transition was also studied in heavy-ion irradiated YBCO single crystals. The ions create columnar defects in the sample that act as correlated disorder. A magnetic field was applied at a tilt angle with respect to the direction of the columns. At the transition the resistance disappears as a power law with different exponents in the three orthogonal directions considered. This provides evidence for a new type of critical behavior with fully anisotropic critical scaling properties not previously found in any physical system. The effect on the vortex solid-to-liquid transition of high magnetic fields applied parallel to the superconducting layers of underdoped YBCO single crystals was also studied. Some novel features were observed: a sharp kink appearing close to Tc at high magnetic fields and a triple dip in the angular dependence of the resistivity close to B||ab in some regions of the phase diagram. / I högtemperatursupraledare består en stor del av det magnetiska fasdiagrammet av en vortexfas som uppvisar ett flertal spännande fenomen. Vid låga temperaturer bildar vortexarna en fast vortexfas utan elektriskt motstånd. Vid högre temperatur övergår denna fas till en dissipativ vortexvätska. Egenskaperna hos denna fasövergång beror på oordningen i form av defekter. Vid svag punktoordning är fasomvandlingen mellan det fasta och flytande vortextillståndet en första ordningens smältövergång. Vid stark punktoordning anses den fasta fasen vara ett vortexglas och övergången till vortexvätskan är istället av andra ordningen. När oordningen är korrelerad, som för tvillinggränser eller artificiellt skapade kolumndefekter, är övergången också av andra ordningen men med väsentligt annorlunda egenskaper. I detta arbete har övergången mellan det fasta och det flytande vortextillståndet studerats med resistiva transportmätningar i framförallt enkristaller av YBa2Cu3O7-[delta] (YBCO) med olika typer av oordning. Vortexglasövergången har undersökts i en utvidgad modell för resistansen i vortexvätskan nära fasövergången där hänsyn tas till såväl temperatur- som fältberoendet. Resistansen hos prover med olika egenskaper mättes i varierande magnetfält och i flera kontaktkonfigurationer och analyserades inom denna modell. Övergångskurvorna skalades till en kurva med en skalningsvariabel som givits av modellen. God skalning uppnåddes i flera olika fall. Effekten av ökande anisotropi och vinkelberoendet i modellen undersöktes också. Vortexövergången mellan det fasta och det flytande vortextillståndet undersöktes även i enkristaller av YBCO bestrålade med tunga joner. Jonerna skapade kolumndefekter som fungerar som korrelerad oordning. Vinkeln mellan pålagt magnetfält och dessa kolumndefekter varierades. Vid fasövergången avtar resistansen som en potenslag med olika exponenter i de tre undersökta ortogonala riktningarna. Detta ger experimentell belägg för en ny typ av kritiskt beteende med fullständigt anisotropa kritiska skalningsegenskaper. Egenskaparna hos på vortexövergången mellan fast och flytande fas vid höga magnetfält parallella med de supraledande lagren hos underdopade YBCO enkristaller undersöktes också. Några nya effekter observerades: en skarp knyck uppstod nära Tc vid höga magnetfält och en tredubbel dipp i den vinkelberoende resistiviteten nära B||ab i några regioner av fasdiagrammet. / QC 20110125

Page generated in 0.0991 seconds