Spelling suggestions: "subject:"hipercomplexa"" "subject:"hipercomplexo""
1 |
Analiticidade e efeito gráfico da dilatação em funções octoniônicos quaseconformes do tipo F(Z)=Zn /Benzatti, Luiz Fernando Landucci. January 2008 (has links)
Orientador: Manoel Ferreira Borges Neto / Banca: Masayoshi Tsuchida / Banca: Siovani Felipussi / Resumo: Neste trabalho estudamos transformações quaseconformes no contexto dos octônios, que são hipercomplexos de oito dimensões. Por não preservar a magnitude dos ângulos, mapeamentos quaseconformes causam uma dilatação linear. A partir da definição métrica de quaseconformidade, utilizamos a forma binomial para mostrar que a distância jf(y) ¡ f(x)j pode ser escrita como um polinômio em r. Com isso, pudemos desenvolver não são um conjunto de fórmulas como também um método computacional simplificado para o cálculo analítico da dilatação. Posteriormente, utilizamos ferramentas gráficas para vizualizar as consequências da dilatação. / Abstract: In this work we study quasiconformal mappings related to octonionic algebra. Since quasicon- formal mappings do not preserve the magnitude of the angles they cause a linear dilatation. We show that it also happens to 8-dimensional hipercomplex. Based on the metric de¯nition of quasiconformal mapping we show that the distance jf(y)¡f(x)j is a polynomial of variable r. Then it¶s possible to make not only a set of formulas but also a computacional method to calculate the dilatation. We also use some graphical tools to visualize the consequences of dilatation. / Mestre
|
2 |
Analiticidade e efeito gráfico da dilatação em funções octoniônicos quaseconformes do tipo F(Z)=ZnBenzatti, Luiz Fernando Landucci [UNESP] 23 October 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0
Previous issue date: 2008-10-23Bitstream added on 2014-06-13T20:47:37Z : No. of bitstreams: 1
benzatti_lfl_me_sjrp.pdf: 732390 bytes, checksum: 881740f368084e6df5cf0fa8794b0073 (MD5) / Neste trabalho estudamos transformações quaseconformes no contexto dos octônios, que são hipercomplexos de oito dimensões. Por não preservar a magnitude dos ângulos, mapeamentos quaseconformes causam uma dilatação linear. A partir da definição métrica de quaseconformidade, utilizamos a forma binomial para mostrar que a distância jf(y) ¡ f(x)j pode ser escrita como um polinômio em r. Com isso, pudemos desenvolver não são um conjunto de fórmulas como também um método computacional simplificado para o cálculo analítico da dilatação. Posteriormente, utilizamos ferramentas gráficas para vizualizar as consequências da dilatação. / In this work we study quasiconformal mappings related to octonionic algebra. Since quasicon- formal mappings do not preserve the magnitude of the angles they cause a linear dilatation. We show that it also happens to 8-dimensional hipercomplex. Based on the metric de¯nition of quasiconformal mapping we show that the distance jf(y)¡f(x)j is a polynomial of variable r. Then it¶s possible to make not only a set of formulas but also a computacional method to calculate the dilatation. We also use some graphical tools to visualize the consequences of dilatation.
|
Page generated in 0.0322 seconds