Spelling suggestions: "subject:"hyperphenylalaninemia"" "subject:"hiperinsulinemia""
1 |
Efeitos da hiperfenilalaninemia materna em ratas Wistar sobre alguns parâmetros de metabolismo energético na prole e efeito protetor da associação de piruvato com creatinaBortoluzzi, Vanessa Trindade January 2014 (has links)
A fenilcetonúria (PKU) é um dos erros inatos do metabolismo mais frequentes. Ela é causada pela deficiência na atividade da fenilalanina hidroxilase, levando à acumulação de fenilalanina e dos seus metabolitos no sangue e tecidos. A PKU ou hiperfenilalaninemia materna não tratada pode resultar em prole não fenilcetonúrica com baixo peso ao nascer e sequelas neonatais, especialmente microcefalia e deficiência intelectual. Os mecanismos subjacentes à neuropatologia da lesão cerebral na síndrome da fenilcetonúria materna são pouco compreendidos. No presente estudo, avaliou-se o possível efeito preventivo da coadministração de creatina e piruvato sobre os efeitos desencadeados pela administração de fenilalanina a ratas Wistar durante a gestação e lactação em algumas enzimas envolvidas na rede de fosforil transferência no córtex cerebral e no hipocampo da prole aos 21 dias de idade. A administração de fenilalanina provocou diminuição do peso corporal, do córtex cerebral e hipocampo e diminuição da atividade da adenilato-cinase e creatina-cinase citosólica e mitocondria. A coadministração de creatina e piruvato foi eficaz na prevenção destas alterações provocadas por fenilalanina, sugerindo que modificações no metabolismo energético podem ser importantes na fisiopatologia da PKU materna. Se estas alterações também ocorrem na PKU materno, é possível que a suplementação com creatina e piruvato à dieta restrita em fenilalanina possa ser benéfica para os filhos de mães fenilcetonúricas. / Phenylketonuria (PKU) is the most frequent inborn error of metabolism. It is caused by deficiency in the activity of phenylalanine hydroxylase, leading to accumulation of phenylalanine and its metabolites. Untreated maternal PKU or hyperphenylalaninemia may result in nonphenylketonuric offspring with low birth weight and neonatal sequelae, especially microcephaly and intellectual disability. The mechanisms underlying the neuropathology of brain injury in maternal PKU syndrome are poorly understood. In the present study, we evaluated the possible preventive effect of the co-administration of creatine plus pyruvate on the effects elicited by phenylalanine administration to female Wistar rats during pregnancy and lactation on some enzymes involved in the phosphoryltransfer network in the brain cortex and hippocampus of the offspring at 21 days of age. Phenylalanine administration provoked diminution of body, brain cortex an hippocampus weight and decrease of adenylate kinase, mitochondrial and cytosolic creatine kinase activities. Coadministration of creatine plus pyruvate was effective in the prevention of those alterations provoked by phenylalanine, suggesting that altered energy metabolism may be important in the pathophysiology of maternal PKU. If these alterations also occur in maternal PKU, it is possible that pyruvate and creatine supplementation to the phenylalanine-restricted diet might be beneficial to the children born from phenylketonuric mothers.
|
2 |
Efeitos da hiperfenilalaninemia materna em ratas Wistar sobre alguns parâmetros de metabolismo energético na prole e efeito protetor da associação de piruvato com creatinaBortoluzzi, Vanessa Trindade January 2014 (has links)
A fenilcetonúria (PKU) é um dos erros inatos do metabolismo mais frequentes. Ela é causada pela deficiência na atividade da fenilalanina hidroxilase, levando à acumulação de fenilalanina e dos seus metabolitos no sangue e tecidos. A PKU ou hiperfenilalaninemia materna não tratada pode resultar em prole não fenilcetonúrica com baixo peso ao nascer e sequelas neonatais, especialmente microcefalia e deficiência intelectual. Os mecanismos subjacentes à neuropatologia da lesão cerebral na síndrome da fenilcetonúria materna são pouco compreendidos. No presente estudo, avaliou-se o possível efeito preventivo da coadministração de creatina e piruvato sobre os efeitos desencadeados pela administração de fenilalanina a ratas Wistar durante a gestação e lactação em algumas enzimas envolvidas na rede de fosforil transferência no córtex cerebral e no hipocampo da prole aos 21 dias de idade. A administração de fenilalanina provocou diminuição do peso corporal, do córtex cerebral e hipocampo e diminuição da atividade da adenilato-cinase e creatina-cinase citosólica e mitocondria. A coadministração de creatina e piruvato foi eficaz na prevenção destas alterações provocadas por fenilalanina, sugerindo que modificações no metabolismo energético podem ser importantes na fisiopatologia da PKU materna. Se estas alterações também ocorrem na PKU materno, é possível que a suplementação com creatina e piruvato à dieta restrita em fenilalanina possa ser benéfica para os filhos de mães fenilcetonúricas. / Phenylketonuria (PKU) is the most frequent inborn error of metabolism. It is caused by deficiency in the activity of phenylalanine hydroxylase, leading to accumulation of phenylalanine and its metabolites. Untreated maternal PKU or hyperphenylalaninemia may result in nonphenylketonuric offspring with low birth weight and neonatal sequelae, especially microcephaly and intellectual disability. The mechanisms underlying the neuropathology of brain injury in maternal PKU syndrome are poorly understood. In the present study, we evaluated the possible preventive effect of the co-administration of creatine plus pyruvate on the effects elicited by phenylalanine administration to female Wistar rats during pregnancy and lactation on some enzymes involved in the phosphoryltransfer network in the brain cortex and hippocampus of the offspring at 21 days of age. Phenylalanine administration provoked diminution of body, brain cortex an hippocampus weight and decrease of adenylate kinase, mitochondrial and cytosolic creatine kinase activities. Coadministration of creatine plus pyruvate was effective in the prevention of those alterations provoked by phenylalanine, suggesting that altered energy metabolism may be important in the pathophysiology of maternal PKU. If these alterations also occur in maternal PKU, it is possible that pyruvate and creatine supplementation to the phenylalanine-restricted diet might be beneficial to the children born from phenylketonuric mothers.
|
3 |
Efeitos da hiperfenilalaninemia materna em ratas Wistar sobre alguns parâmetros de metabolismo energético na prole e efeito protetor da associação de piruvato com creatinaBortoluzzi, Vanessa Trindade January 2014 (has links)
A fenilcetonúria (PKU) é um dos erros inatos do metabolismo mais frequentes. Ela é causada pela deficiência na atividade da fenilalanina hidroxilase, levando à acumulação de fenilalanina e dos seus metabolitos no sangue e tecidos. A PKU ou hiperfenilalaninemia materna não tratada pode resultar em prole não fenilcetonúrica com baixo peso ao nascer e sequelas neonatais, especialmente microcefalia e deficiência intelectual. Os mecanismos subjacentes à neuropatologia da lesão cerebral na síndrome da fenilcetonúria materna são pouco compreendidos. No presente estudo, avaliou-se o possível efeito preventivo da coadministração de creatina e piruvato sobre os efeitos desencadeados pela administração de fenilalanina a ratas Wistar durante a gestação e lactação em algumas enzimas envolvidas na rede de fosforil transferência no córtex cerebral e no hipocampo da prole aos 21 dias de idade. A administração de fenilalanina provocou diminuição do peso corporal, do córtex cerebral e hipocampo e diminuição da atividade da adenilato-cinase e creatina-cinase citosólica e mitocondria. A coadministração de creatina e piruvato foi eficaz na prevenção destas alterações provocadas por fenilalanina, sugerindo que modificações no metabolismo energético podem ser importantes na fisiopatologia da PKU materna. Se estas alterações também ocorrem na PKU materno, é possível que a suplementação com creatina e piruvato à dieta restrita em fenilalanina possa ser benéfica para os filhos de mães fenilcetonúricas. / Phenylketonuria (PKU) is the most frequent inborn error of metabolism. It is caused by deficiency in the activity of phenylalanine hydroxylase, leading to accumulation of phenylalanine and its metabolites. Untreated maternal PKU or hyperphenylalaninemia may result in nonphenylketonuric offspring with low birth weight and neonatal sequelae, especially microcephaly and intellectual disability. The mechanisms underlying the neuropathology of brain injury in maternal PKU syndrome are poorly understood. In the present study, we evaluated the possible preventive effect of the co-administration of creatine plus pyruvate on the effects elicited by phenylalanine administration to female Wistar rats during pregnancy and lactation on some enzymes involved in the phosphoryltransfer network in the brain cortex and hippocampus of the offspring at 21 days of age. Phenylalanine administration provoked diminution of body, brain cortex an hippocampus weight and decrease of adenylate kinase, mitochondrial and cytosolic creatine kinase activities. Coadministration of creatine plus pyruvate was effective in the prevention of those alterations provoked by phenylalanine, suggesting that altered energy metabolism may be important in the pathophysiology of maternal PKU. If these alterations also occur in maternal PKU, it is possible that pyruvate and creatine supplementation to the phenylalanine-restricted diet might be beneficial to the children born from phenylketonuric mothers.
|
4 |
Modelo de hiperfenilalaninemia induz excitotoxicidade glutamatérgica e alterações gliais em ratos : um estudo utilizando o exercício físico como um possível agente neuroprotetorCortes, Marcelo Xavier January 2015 (has links)
A fenilcetonúria é um dos mais comuns erros inatos do metabolismo, caracterizada por uma deficiência ou uma menor atividade da enzima fenilalanina hidroxilase, responsável pela hidroxilação irreversível da fenilalanina em tirosina. Essa deficiência enzimática leva a um quadro de hiperfenilalanina, característico desta doença, ocasionando o acúmulo de fenilalanina em diferentes tecidos corporais. Quando não diagnosticada precocemente, a criança com fenilcetonúria apresenta um quadro clínico caracterizado por microcefalia, retardo mental grave e epilepsia. Estudos em culturas de células neuronais observaram que a fenilalanina causa alterações na transmissão sináptica glutamatérgica, o que foi relacionado com as alterações cerebrais características de pacientes fenilcetonúricos não tratados. Entretanto, nenhum estudo em modelo in vivo foi realizado para elucidar a participação dos astrócitos, o principal tipo celular responsável pela remoção do glutamato da fenda sináptica, nesse processo de toxicidade. Outros fatores observados na doença são um aumento sérico de S100B em pacientes, bem como um aumento de GFAP, observado em cerebelo de camundongos hiperfenilalaninêmicos. O treinamento físico impediu o aumento do estresse oxidativo em modelo animal de hiperfenilalaninemia, além de impedir a diminuição da concentração de triptofano cerebral causada pela indução do modelo. Considerando os efeitos da fenilcetonúria no sistema nervoso central e a falta de estudos sobre o papel dos astrócitos nessa doença, bem como o possível potencial terapêutico do treinamento físico, o objetivo deste estudo foi avaliar as funções astrocitárias, incluindo o metabolismo glutamatérgico e proteínas específicas como a S100B e a GFAP, em um modelo de hiperfenilalaninemia induzido em ratos jovens e a influência do treinamento físico nestes e em animais saudáveis. Foi observada uma diminuição na captação de glutamato com consequente aumento na concentração de glutamato no líquor dos animais submetidos ao modelo de hiperfenialaninemia, sugerindo um quadro de excitotoxicidade. Também foi observada uma redução da concentração de S100B no tecido cerebral e aumento da concentração dessa proteína no líquor. O treinamento físico, realizado em paralelo com a indução do modelo foi capaz de impedir todas essas alterações, exceto pelo aumento de S100B no líquor. Além disso, nos animais controle, o treinamento físico também teve efeitos no sistema nervoso central, aumentando o conteúdo intracelular de S100B e GFAP. Juntos, esses dados sugerem que os astrócitos estão envolvidos na fisiopatologia da fenilcetonúria e que o treinamento físico pode ser uma estratégia terapêutica adjuvante para essa doença, uma vez que, apesar de não ter normalizado a concentração sérica de fenilalanina, foi capaz de exercer um papel protetor no sistema nervoso central. Outro achado relevante foi o efeito do exercício físico no sistema nervoso central dos animais jovens, sugerindo um aumento do trofismo astrocitário, que pode ser de extrema importância para o desenvolvimento cerebral. / Phenylketonuria is one of the most common inborn errors of metabolism characterized by a deficiency or reduced activity of the enzyme phenylalanine hydroxylase, responsible for irreversible hydroxylation of phenylalanine to tyrosine. This enzyme deficiency leads to hyperphenylalaninemia, characteristic of this pathology, causing an increase in the phenylalanine concentration in different tissues. If not detected early, children with phenylketonuria have a clinical condition characterized by microcephaly, severe mental retardation and epilepsy. Studies in neuronal cell cultures observed that phenylalanine causes changes in glutamatergic synaptic transmission, which has been linked to brain changes characteristics of untreated patients. However, there is a lack of information about the involvement of astrocytes, the primary cell type responsible for the removal of glutamate from the synaptic cleft, in the process of toxicity in animal model. It has been observed an increase in serum S100B in patients, and an increase in GFAP measured in cerebellum of hyperphenylalaninemic mice. The physical training prevented the oxidative stress in an animal model of hyperphenylalaninemia, and the decrease in the concentration of brain tryptophan caused by the induction of the model. Considering the effects of phenylketonuria in the central nervous system and the lack of studies on the role of astrocytes in this pathology as well as the possible therapeutic potential of physical training, the objective of this study was to evaluate the astrocytic functions, including glutamatergic metabolism and specific proteins as S100B and GFAP, in a hyperphenylalaninemic model induced in young rats and the influence of exercise training in hyperphenylalaninemic and healthy animals. We observed a decreased glutamate uptake with a consequent increase in glutamate concentration in cerebrospinal fluid in animals subjected to hyperphenylalaninemic model, suggesting a excitotoxicity mechanism. Besides, hyperphenylalaninemic rats showed a reduction of S100B concentration in brain tissue and an increase in the concentration of this protein in cerebrospinal fluid. Physical training, held in parallel with the induction of the model was able to prevent all these changes, except for the increased S100B in cerebrospinal fluid. Moreover, in control animals, physical training also had effects on the central nervous system, increasing the intracellular content of S100B and GFAP. Together, these data suggest that astrocytes are involved in the pathophysiology of phenylketonuria and exercise training may be considered a complementary therapeutic strategy since it was able to exert a protective role in the central nervous system, even than it was not able to normalize serum phenylalanine concentration. Another important finding was the effect of exercise on central nervous system of young animals, suggesting an increase in astrocytic tropism, which can be extremely important for brain development.
|
5 |
Modelo de hiperfenilalaninemia induz excitotoxicidade glutamatérgica e alterações gliais em ratos : um estudo utilizando o exercício físico como um possível agente neuroprotetorCortes, Marcelo Xavier January 2015 (has links)
A fenilcetonúria é um dos mais comuns erros inatos do metabolismo, caracterizada por uma deficiência ou uma menor atividade da enzima fenilalanina hidroxilase, responsável pela hidroxilação irreversível da fenilalanina em tirosina. Essa deficiência enzimática leva a um quadro de hiperfenilalanina, característico desta doença, ocasionando o acúmulo de fenilalanina em diferentes tecidos corporais. Quando não diagnosticada precocemente, a criança com fenilcetonúria apresenta um quadro clínico caracterizado por microcefalia, retardo mental grave e epilepsia. Estudos em culturas de células neuronais observaram que a fenilalanina causa alterações na transmissão sináptica glutamatérgica, o que foi relacionado com as alterações cerebrais características de pacientes fenilcetonúricos não tratados. Entretanto, nenhum estudo em modelo in vivo foi realizado para elucidar a participação dos astrócitos, o principal tipo celular responsável pela remoção do glutamato da fenda sináptica, nesse processo de toxicidade. Outros fatores observados na doença são um aumento sérico de S100B em pacientes, bem como um aumento de GFAP, observado em cerebelo de camundongos hiperfenilalaninêmicos. O treinamento físico impediu o aumento do estresse oxidativo em modelo animal de hiperfenilalaninemia, além de impedir a diminuição da concentração de triptofano cerebral causada pela indução do modelo. Considerando os efeitos da fenilcetonúria no sistema nervoso central e a falta de estudos sobre o papel dos astrócitos nessa doença, bem como o possível potencial terapêutico do treinamento físico, o objetivo deste estudo foi avaliar as funções astrocitárias, incluindo o metabolismo glutamatérgico e proteínas específicas como a S100B e a GFAP, em um modelo de hiperfenilalaninemia induzido em ratos jovens e a influência do treinamento físico nestes e em animais saudáveis. Foi observada uma diminuição na captação de glutamato com consequente aumento na concentração de glutamato no líquor dos animais submetidos ao modelo de hiperfenialaninemia, sugerindo um quadro de excitotoxicidade. Também foi observada uma redução da concentração de S100B no tecido cerebral e aumento da concentração dessa proteína no líquor. O treinamento físico, realizado em paralelo com a indução do modelo foi capaz de impedir todas essas alterações, exceto pelo aumento de S100B no líquor. Além disso, nos animais controle, o treinamento físico também teve efeitos no sistema nervoso central, aumentando o conteúdo intracelular de S100B e GFAP. Juntos, esses dados sugerem que os astrócitos estão envolvidos na fisiopatologia da fenilcetonúria e que o treinamento físico pode ser uma estratégia terapêutica adjuvante para essa doença, uma vez que, apesar de não ter normalizado a concentração sérica de fenilalanina, foi capaz de exercer um papel protetor no sistema nervoso central. Outro achado relevante foi o efeito do exercício físico no sistema nervoso central dos animais jovens, sugerindo um aumento do trofismo astrocitário, que pode ser de extrema importância para o desenvolvimento cerebral. / Phenylketonuria is one of the most common inborn errors of metabolism characterized by a deficiency or reduced activity of the enzyme phenylalanine hydroxylase, responsible for irreversible hydroxylation of phenylalanine to tyrosine. This enzyme deficiency leads to hyperphenylalaninemia, characteristic of this pathology, causing an increase in the phenylalanine concentration in different tissues. If not detected early, children with phenylketonuria have a clinical condition characterized by microcephaly, severe mental retardation and epilepsy. Studies in neuronal cell cultures observed that phenylalanine causes changes in glutamatergic synaptic transmission, which has been linked to brain changes characteristics of untreated patients. However, there is a lack of information about the involvement of astrocytes, the primary cell type responsible for the removal of glutamate from the synaptic cleft, in the process of toxicity in animal model. It has been observed an increase in serum S100B in patients, and an increase in GFAP measured in cerebellum of hyperphenylalaninemic mice. The physical training prevented the oxidative stress in an animal model of hyperphenylalaninemia, and the decrease in the concentration of brain tryptophan caused by the induction of the model. Considering the effects of phenylketonuria in the central nervous system and the lack of studies on the role of astrocytes in this pathology as well as the possible therapeutic potential of physical training, the objective of this study was to evaluate the astrocytic functions, including glutamatergic metabolism and specific proteins as S100B and GFAP, in a hyperphenylalaninemic model induced in young rats and the influence of exercise training in hyperphenylalaninemic and healthy animals. We observed a decreased glutamate uptake with a consequent increase in glutamate concentration in cerebrospinal fluid in animals subjected to hyperphenylalaninemic model, suggesting a excitotoxicity mechanism. Besides, hyperphenylalaninemic rats showed a reduction of S100B concentration in brain tissue and an increase in the concentration of this protein in cerebrospinal fluid. Physical training, held in parallel with the induction of the model was able to prevent all these changes, except for the increased S100B in cerebrospinal fluid. Moreover, in control animals, physical training also had effects on the central nervous system, increasing the intracellular content of S100B and GFAP. Together, these data suggest that astrocytes are involved in the pathophysiology of phenylketonuria and exercise training may be considered a complementary therapeutic strategy since it was able to exert a protective role in the central nervous system, even than it was not able to normalize serum phenylalanine concentration. Another important finding was the effect of exercise on central nervous system of young animals, suggesting an increase in astrocytic tropism, which can be extremely important for brain development.
|
6 |
Modelo de hiperfenilalaninemia induz excitotoxicidade glutamatérgica e alterações gliais em ratos : um estudo utilizando o exercício físico como um possível agente neuroprotetorCortes, Marcelo Xavier January 2015 (has links)
A fenilcetonúria é um dos mais comuns erros inatos do metabolismo, caracterizada por uma deficiência ou uma menor atividade da enzima fenilalanina hidroxilase, responsável pela hidroxilação irreversível da fenilalanina em tirosina. Essa deficiência enzimática leva a um quadro de hiperfenilalanina, característico desta doença, ocasionando o acúmulo de fenilalanina em diferentes tecidos corporais. Quando não diagnosticada precocemente, a criança com fenilcetonúria apresenta um quadro clínico caracterizado por microcefalia, retardo mental grave e epilepsia. Estudos em culturas de células neuronais observaram que a fenilalanina causa alterações na transmissão sináptica glutamatérgica, o que foi relacionado com as alterações cerebrais características de pacientes fenilcetonúricos não tratados. Entretanto, nenhum estudo em modelo in vivo foi realizado para elucidar a participação dos astrócitos, o principal tipo celular responsável pela remoção do glutamato da fenda sináptica, nesse processo de toxicidade. Outros fatores observados na doença são um aumento sérico de S100B em pacientes, bem como um aumento de GFAP, observado em cerebelo de camundongos hiperfenilalaninêmicos. O treinamento físico impediu o aumento do estresse oxidativo em modelo animal de hiperfenilalaninemia, além de impedir a diminuição da concentração de triptofano cerebral causada pela indução do modelo. Considerando os efeitos da fenilcetonúria no sistema nervoso central e a falta de estudos sobre o papel dos astrócitos nessa doença, bem como o possível potencial terapêutico do treinamento físico, o objetivo deste estudo foi avaliar as funções astrocitárias, incluindo o metabolismo glutamatérgico e proteínas específicas como a S100B e a GFAP, em um modelo de hiperfenilalaninemia induzido em ratos jovens e a influência do treinamento físico nestes e em animais saudáveis. Foi observada uma diminuição na captação de glutamato com consequente aumento na concentração de glutamato no líquor dos animais submetidos ao modelo de hiperfenialaninemia, sugerindo um quadro de excitotoxicidade. Também foi observada uma redução da concentração de S100B no tecido cerebral e aumento da concentração dessa proteína no líquor. O treinamento físico, realizado em paralelo com a indução do modelo foi capaz de impedir todas essas alterações, exceto pelo aumento de S100B no líquor. Além disso, nos animais controle, o treinamento físico também teve efeitos no sistema nervoso central, aumentando o conteúdo intracelular de S100B e GFAP. Juntos, esses dados sugerem que os astrócitos estão envolvidos na fisiopatologia da fenilcetonúria e que o treinamento físico pode ser uma estratégia terapêutica adjuvante para essa doença, uma vez que, apesar de não ter normalizado a concentração sérica de fenilalanina, foi capaz de exercer um papel protetor no sistema nervoso central. Outro achado relevante foi o efeito do exercício físico no sistema nervoso central dos animais jovens, sugerindo um aumento do trofismo astrocitário, que pode ser de extrema importância para o desenvolvimento cerebral. / Phenylketonuria is one of the most common inborn errors of metabolism characterized by a deficiency or reduced activity of the enzyme phenylalanine hydroxylase, responsible for irreversible hydroxylation of phenylalanine to tyrosine. This enzyme deficiency leads to hyperphenylalaninemia, characteristic of this pathology, causing an increase in the phenylalanine concentration in different tissues. If not detected early, children with phenylketonuria have a clinical condition characterized by microcephaly, severe mental retardation and epilepsy. Studies in neuronal cell cultures observed that phenylalanine causes changes in glutamatergic synaptic transmission, which has been linked to brain changes characteristics of untreated patients. However, there is a lack of information about the involvement of astrocytes, the primary cell type responsible for the removal of glutamate from the synaptic cleft, in the process of toxicity in animal model. It has been observed an increase in serum S100B in patients, and an increase in GFAP measured in cerebellum of hyperphenylalaninemic mice. The physical training prevented the oxidative stress in an animal model of hyperphenylalaninemia, and the decrease in the concentration of brain tryptophan caused by the induction of the model. Considering the effects of phenylketonuria in the central nervous system and the lack of studies on the role of astrocytes in this pathology as well as the possible therapeutic potential of physical training, the objective of this study was to evaluate the astrocytic functions, including glutamatergic metabolism and specific proteins as S100B and GFAP, in a hyperphenylalaninemic model induced in young rats and the influence of exercise training in hyperphenylalaninemic and healthy animals. We observed a decreased glutamate uptake with a consequent increase in glutamate concentration in cerebrospinal fluid in animals subjected to hyperphenylalaninemic model, suggesting a excitotoxicity mechanism. Besides, hyperphenylalaninemic rats showed a reduction of S100B concentration in brain tissue and an increase in the concentration of this protein in cerebrospinal fluid. Physical training, held in parallel with the induction of the model was able to prevent all these changes, except for the increased S100B in cerebrospinal fluid. Moreover, in control animals, physical training also had effects on the central nervous system, increasing the intracellular content of S100B and GFAP. Together, these data suggest that astrocytes are involved in the pathophysiology of phenylketonuria and exercise training may be considered a complementary therapeutic strategy since it was able to exert a protective role in the central nervous system, even than it was not able to normalize serum phenylalanine concentration. Another important finding was the effect of exercise on central nervous system of young animals, suggesting an increase in astrocytic tropism, which can be extremely important for brain development.
|
7 |
Efeito da silibinina sobre parâmetros de estresse oxidativo contra a neurotoxicidade da fenilalaninaTerra, Melaine January 2014 (has links)
A fenilcetonúria (PKU) é uma doença metabólica causada pela deficiência da enzima fenilalanina hidroxilase, levando ao acúmulo de fenilalanina. As principais características clínicas dos pacientes com PKU não tratados são o comprometimento neuropsicológico e o retardo no desenvolvimento. O estresse oxidativo tem sido detectado em muitos erros inatos do metabolismo, incluindo PKU. A silibinina é um flavonoide proveniente da planta cardo de leite (Silybum marianum) que apresenta propriedades antioxidantes e que, após administração, é amplamente distribuída pelos tecidos. Neste trabalho, nós investigamos os efeitos da silibinina in vivo e in vitro contra o estresse oxidativo causado por elevados níveis de fenilalanina. Ratos machos e fêmeas, com 12 dias de vida no início dos experimentos, receberam injeções subcutâneas de α- metilfenilalanina e fenilalanina para realizar o modelo agudo de hiperfenilalaninemia, e o tratamento com silibinina consistiu em injeções intraperitoniais da substância na dose de 20 mg/kg. Os animais foram mortos no 14° dia de vida. Para realizar os experimentos in vitro, homogeneizados de córtex cerebral de ratos de 14 dias de vida foram incubados com fenilalanina e silibinina. In vitro e in vivo, a silibinina foi capaz de prevenir a inibição provocada pela fenilalanina nas atividades das enzimas catalase, glutationa peroxidase e glicose-6-fosfato desidrogenase. Não foram verificadas diferenças entre os grupos nas atividades da superóxido dismutase e da glutationa redutase. Além disso, a silibinina preveniu as alterações provocadas pela fenilalanina no conteúdo de carbonilas proteicas, nas substâncias reativas ao ácido tiobarbitúrico e na produção de espécies reativas. A silibinina preveniu o dano oxidativo induzido pela fenilalanina e pode ser uma potencial terapia complementar para o tratamento da PKU. / Phenylketonuria (PKU) is a metabolic disorder caused by a deficiency of phenylalanine hydroxylase, leading to accumulation of phenylalanine. The main clinical features of non-treated PKU patients are neuropsychological impairment and developmental retardation. Oxidative stress has been related to many inborn errors of metabolism including PKU. Silibinin is a flavonoid derived from the herb milk thistle (Silybum marianum) which presents antioxidant properties and is widely distributed into tissues after administration. In this study, we investigated the in vivo and in vitro effects of silibinin against oxidative stress caused by high levels of phenylalanine. Male and female rats, 12 days old at the beginning of experiments, received subcutaneous injections of α- methylphenylalanine and phenylalanine to produce hyperphenylalaninemia, and intraperitoneal injections of 20 mg/kg silibinin. The animals were killed on the 14th day of life. To perform in vitro experiments, cerebral cortex homogenates of 14 days old rats were incubated with phenylalanine and silibinin. In vivo and in vitro, silibinin was able to prevent the inhibition provoked by phenylalanine on the activities of catalase, glutathione peroxidase and glucose-6-phosphate dehydrogenase. No differences were found among the groups in the activities of superoxide dismutase and glutathione reductase. Moreover, silibinin prevented the alterations provoked by phenylalanine on protein carbonyl content, thiobarbituric acid-reactive substances and production of reactive species. Silibinin prevented oxidative damage induced by phenylalanine and may be a potential adjunctive therapy to PKU treatment.
|
8 |
Efeitos do exercício físico regular sobre o estresse oxidativo e sistema catecolaminérgico em ratos hiperfenilalaninêmicosMazzola, Priscila Nicolao January 2011 (has links)
Fenilcetonúria (PKU) é um erro inato do metabolismo causado pela deficiência da atividade da enzima fenilalanina hidroxilase, levando ao acúmulo de fenilalanina e seus metabólitos no sangue e tecidos. A hiperfenilalaninemia (HPA) causa danos importantes no cérebro, provavelmente causados por aumento de estresse oxidativo e diminuição da disponibilidade dos outros aminoácidos grandes neutros (LNAA), entre outros mecanismos. Pacientes diagnosticados precocemente também estão sujeitos a estes desequilíbrios. O objetivo deste trabalho foi verificar em ratos: a) o efeito agudo do modelo de HPA na concentração de aminoácidos em plasma e cérebro total, b) o efeito do exercício regular em parâmetros de estresse oxidativo em cérebro total, conteúdo de catecolaminas em supra-renal e aspectos comportamentais na HPA crônica. Para o modelo agudo, os ratos foram divididos nos grupos HPA e Salina (SAL) (n=3). A HPA foi induzida através da administração subcutânea de alfa-metil-fenilalanina e fenilalanina, enquanto o grupo SAL recebeu salina. Os animais foram mortos 1 h após a injeção, no segundo dia de tratamento. Para o modelo crônico, os animais foram distribuídos no grupo Sedentário (Sed) ou Exercício (Exe), e subdivididos em SAL e HPA. Grupos HPA (n=16- 20) foram submetidos ao modelo durante 17 dias, enquanto os grupos SAL (n=16-20) receberam salina. Os grupos Exe realizaram duas semanas de exercício aeróbico com duração diária de 20 min. No 17º dia, 1 h após a injeção, os animais realizaram a primeira exposição ao teste de campo aberto e, 24 h depois, realizaram a segunda sessão. Após, os animais foram mortos e o cérebro total foi homogeneizado para determinação da lipoperoxidação, através do conteúdo de substâncias reativas ao ácido tiobarbitúrico (TBA-RS), e atividade das enzimas antioxidantes superóxido dismutase (SOD), catalase (CAT) e glutationa peroxidase (GPx). As glândulas supra-renais foram coletadas para análise de conteúdo de catecolaminas. O efeito agudo de HPA causou aumento de fenilalanina e diminuição de tirosina em plasma e cérebro, bem como diminuiu os níveis dos outros LNAA apenas no cérebro. Cronicamente, a HPA causou aumento de TBA-RS e SOD, e redução de CAT, GPx e conteúdo de catecolaminas. O exercício foi capaz de reverter todas as alterações encontradas no grupo HPA, exceto para a SOD. Quanto aos parâmetros comportamentais, a HPA causou diminuição na memória de habituação e o exercício regular preveniu esta alteração. Nenhuma alteração foi encontrada no grupo ExeSAL. Os ratos hiperfenilalaninêmicos foram mais responsivos aos benefícios produzidos pelo exercício regular. O treinamento físico parece ser uma estratégia interessante a ser estudada para a restauração do sistema antioxidante e de alterações comportamentais que ocorrem na PKU. / Phenylketonuria (PKU) is an inborn error of metabolism caused by deficiency of phenylalanine hydroxylase, resulting in accumulation of phenylalanine and its metabolites in blood and tissues. Hyperphenylalaninemia (HPA) causes serious damage in the brain probably due to increased oxidative stress and decreased availability of other large neutral amino acids (LNAA), among other mechanisms. Patients early diagnosed are also subject to these imbalances. The objective of this study was to evaluate: a) the effect of acute HPA model on the concentration of LNAA in plasma and total brain, b) the effect of regular exercise on parameters of oxidative stress in total brain, catecholamine content in suprarenal and behavioral aspects in a chronic HPA model. HPA was induced by subcutaneous administration of alpha-methylphenylalanine and phenylalanine, while SAL group received saline. For the acute model, rats were divided into groups Saline (SAL) and HPA (n = 3). Animals were killed 1 h after last injection, at the second day of treatment. For the chronic model, animals were divided into sedentary group (Sed) or exercise group (Exe), and subdivided into SAL (n=16-20) and HPA (n=16-20). Administration continued as long as 17 days. Exe groups performed two weeks of daily aerobic exercise lasting 20 min. At the 17th day, 1 h after injection, the animals performed the first exposure to open field task, and 24 h later, performed the second session. After that, animals were killed and the whole brain was homogenized to evaluate lipid peroxidation through the content of thiobarbituric acid reactive substances (TBA-RS), and activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Suprarenal glands were collected for catecholamine content analysis. Acute HPA increased phenylalanine and decreased tyrosine in plasma and brain as well as decreased levels of other LNAA in the brain. Chronically, HPA increased TBA-RS and SOD activity, and reduced CAT and GPx activities in the brain and reduced catecholamine content into suprarenal. Regular exercise was able to prevent all the alterations found in HPA group, except for SOD activity. Regarding the behavioral data, HPA caused a decrease of habituation memory and regular exercise prevented this change. Exercise per se (ExeSAL group) produced no changes. HPA rats were more responsive to the benefits produced by regular exercise. Physical training appears to be an interesting strategy to be studied for the restoration of the antioxidant system and the behavioral changes that occur in PKU.
|
9 |
Efeito da silibinina sobre parâmetros de estresse oxidativo contra a neurotoxicidade da fenilalaninaTerra, Melaine January 2014 (has links)
A fenilcetonúria (PKU) é uma doença metabólica causada pela deficiência da enzima fenilalanina hidroxilase, levando ao acúmulo de fenilalanina. As principais características clínicas dos pacientes com PKU não tratados são o comprometimento neuropsicológico e o retardo no desenvolvimento. O estresse oxidativo tem sido detectado em muitos erros inatos do metabolismo, incluindo PKU. A silibinina é um flavonoide proveniente da planta cardo de leite (Silybum marianum) que apresenta propriedades antioxidantes e que, após administração, é amplamente distribuída pelos tecidos. Neste trabalho, nós investigamos os efeitos da silibinina in vivo e in vitro contra o estresse oxidativo causado por elevados níveis de fenilalanina. Ratos machos e fêmeas, com 12 dias de vida no início dos experimentos, receberam injeções subcutâneas de α- metilfenilalanina e fenilalanina para realizar o modelo agudo de hiperfenilalaninemia, e o tratamento com silibinina consistiu em injeções intraperitoniais da substância na dose de 20 mg/kg. Os animais foram mortos no 14° dia de vida. Para realizar os experimentos in vitro, homogeneizados de córtex cerebral de ratos de 14 dias de vida foram incubados com fenilalanina e silibinina. In vitro e in vivo, a silibinina foi capaz de prevenir a inibição provocada pela fenilalanina nas atividades das enzimas catalase, glutationa peroxidase e glicose-6-fosfato desidrogenase. Não foram verificadas diferenças entre os grupos nas atividades da superóxido dismutase e da glutationa redutase. Além disso, a silibinina preveniu as alterações provocadas pela fenilalanina no conteúdo de carbonilas proteicas, nas substâncias reativas ao ácido tiobarbitúrico e na produção de espécies reativas. A silibinina preveniu o dano oxidativo induzido pela fenilalanina e pode ser uma potencial terapia complementar para o tratamento da PKU. / Phenylketonuria (PKU) is a metabolic disorder caused by a deficiency of phenylalanine hydroxylase, leading to accumulation of phenylalanine. The main clinical features of non-treated PKU patients are neuropsychological impairment and developmental retardation. Oxidative stress has been related to many inborn errors of metabolism including PKU. Silibinin is a flavonoid derived from the herb milk thistle (Silybum marianum) which presents antioxidant properties and is widely distributed into tissues after administration. In this study, we investigated the in vivo and in vitro effects of silibinin against oxidative stress caused by high levels of phenylalanine. Male and female rats, 12 days old at the beginning of experiments, received subcutaneous injections of α- methylphenylalanine and phenylalanine to produce hyperphenylalaninemia, and intraperitoneal injections of 20 mg/kg silibinin. The animals were killed on the 14th day of life. To perform in vitro experiments, cerebral cortex homogenates of 14 days old rats were incubated with phenylalanine and silibinin. In vivo and in vitro, silibinin was able to prevent the inhibition provoked by phenylalanine on the activities of catalase, glutathione peroxidase and glucose-6-phosphate dehydrogenase. No differences were found among the groups in the activities of superoxide dismutase and glutathione reductase. Moreover, silibinin prevented the alterations provoked by phenylalanine on protein carbonyl content, thiobarbituric acid-reactive substances and production of reactive species. Silibinin prevented oxidative damage induced by phenylalanine and may be a potential adjunctive therapy to PKU treatment.
|
10 |
Efeitos do exercício físico regular sobre o estresse oxidativo e sistema catecolaminérgico em ratos hiperfenilalaninêmicosMazzola, Priscila Nicolao January 2011 (has links)
Fenilcetonúria (PKU) é um erro inato do metabolismo causado pela deficiência da atividade da enzima fenilalanina hidroxilase, levando ao acúmulo de fenilalanina e seus metabólitos no sangue e tecidos. A hiperfenilalaninemia (HPA) causa danos importantes no cérebro, provavelmente causados por aumento de estresse oxidativo e diminuição da disponibilidade dos outros aminoácidos grandes neutros (LNAA), entre outros mecanismos. Pacientes diagnosticados precocemente também estão sujeitos a estes desequilíbrios. O objetivo deste trabalho foi verificar em ratos: a) o efeito agudo do modelo de HPA na concentração de aminoácidos em plasma e cérebro total, b) o efeito do exercício regular em parâmetros de estresse oxidativo em cérebro total, conteúdo de catecolaminas em supra-renal e aspectos comportamentais na HPA crônica. Para o modelo agudo, os ratos foram divididos nos grupos HPA e Salina (SAL) (n=3). A HPA foi induzida através da administração subcutânea de alfa-metil-fenilalanina e fenilalanina, enquanto o grupo SAL recebeu salina. Os animais foram mortos 1 h após a injeção, no segundo dia de tratamento. Para o modelo crônico, os animais foram distribuídos no grupo Sedentário (Sed) ou Exercício (Exe), e subdivididos em SAL e HPA. Grupos HPA (n=16- 20) foram submetidos ao modelo durante 17 dias, enquanto os grupos SAL (n=16-20) receberam salina. Os grupos Exe realizaram duas semanas de exercício aeróbico com duração diária de 20 min. No 17º dia, 1 h após a injeção, os animais realizaram a primeira exposição ao teste de campo aberto e, 24 h depois, realizaram a segunda sessão. Após, os animais foram mortos e o cérebro total foi homogeneizado para determinação da lipoperoxidação, através do conteúdo de substâncias reativas ao ácido tiobarbitúrico (TBA-RS), e atividade das enzimas antioxidantes superóxido dismutase (SOD), catalase (CAT) e glutationa peroxidase (GPx). As glândulas supra-renais foram coletadas para análise de conteúdo de catecolaminas. O efeito agudo de HPA causou aumento de fenilalanina e diminuição de tirosina em plasma e cérebro, bem como diminuiu os níveis dos outros LNAA apenas no cérebro. Cronicamente, a HPA causou aumento de TBA-RS e SOD, e redução de CAT, GPx e conteúdo de catecolaminas. O exercício foi capaz de reverter todas as alterações encontradas no grupo HPA, exceto para a SOD. Quanto aos parâmetros comportamentais, a HPA causou diminuição na memória de habituação e o exercício regular preveniu esta alteração. Nenhuma alteração foi encontrada no grupo ExeSAL. Os ratos hiperfenilalaninêmicos foram mais responsivos aos benefícios produzidos pelo exercício regular. O treinamento físico parece ser uma estratégia interessante a ser estudada para a restauração do sistema antioxidante e de alterações comportamentais que ocorrem na PKU. / Phenylketonuria (PKU) is an inborn error of metabolism caused by deficiency of phenylalanine hydroxylase, resulting in accumulation of phenylalanine and its metabolites in blood and tissues. Hyperphenylalaninemia (HPA) causes serious damage in the brain probably due to increased oxidative stress and decreased availability of other large neutral amino acids (LNAA), among other mechanisms. Patients early diagnosed are also subject to these imbalances. The objective of this study was to evaluate: a) the effect of acute HPA model on the concentration of LNAA in plasma and total brain, b) the effect of regular exercise on parameters of oxidative stress in total brain, catecholamine content in suprarenal and behavioral aspects in a chronic HPA model. HPA was induced by subcutaneous administration of alpha-methylphenylalanine and phenylalanine, while SAL group received saline. For the acute model, rats were divided into groups Saline (SAL) and HPA (n = 3). Animals were killed 1 h after last injection, at the second day of treatment. For the chronic model, animals were divided into sedentary group (Sed) or exercise group (Exe), and subdivided into SAL (n=16-20) and HPA (n=16-20). Administration continued as long as 17 days. Exe groups performed two weeks of daily aerobic exercise lasting 20 min. At the 17th day, 1 h after injection, the animals performed the first exposure to open field task, and 24 h later, performed the second session. After that, animals were killed and the whole brain was homogenized to evaluate lipid peroxidation through the content of thiobarbituric acid reactive substances (TBA-RS), and activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Suprarenal glands were collected for catecholamine content analysis. Acute HPA increased phenylalanine and decreased tyrosine in plasma and brain as well as decreased levels of other LNAA in the brain. Chronically, HPA increased TBA-RS and SOD activity, and reduced CAT and GPx activities in the brain and reduced catecholamine content into suprarenal. Regular exercise was able to prevent all the alterations found in HPA group, except for SOD activity. Regarding the behavioral data, HPA caused a decrease of habituation memory and regular exercise prevented this change. Exercise per se (ExeSAL group) produced no changes. HPA rats were more responsive to the benefits produced by regular exercise. Physical training appears to be an interesting strategy to be studied for the restoration of the antioxidant system and the behavioral changes that occur in PKU.
|
Page generated in 0.0601 seconds