Spelling suggestions: "subject:"hipercelularidade"" "subject:"osmolaridade""
1 |
Adenosina modula os níveis extracelulares de glutamato induzido por hiperosmolaridade em cultura de astrócitos hipotalâmicosBRAGA, Danielle Valente 29 April 2016 (has links)
Submitted by Cássio da Cruz Nogueira (cassionogueirakk@gmail.com) on 2017-03-27T13:39:41Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_AdenosinaModulaNiveis.pdf: 1692281 bytes, checksum: 60107a7df980759f899f053b19c19466 (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-04-03T14:38:09Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_AdenosinaModulaNiveis.pdf: 1692281 bytes, checksum: 60107a7df980759f899f053b19c19466 (MD5) / Made available in DSpace on 2017-04-03T14:38:09Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertacao_AdenosinaModulaNiveis.pdf: 1692281 bytes, checksum: 60107a7df980759f899f053b19c19466 (MD5)
Previous issue date: 2016-04-29 / Estudos recentes mostram que liberação de glutamato por células gliais hipotalâmicas é uma importante resposta fisiológica em situações de hiperosmolaridade. Além disso, estudos prévios apontam um marcante aumento dos níveis de adenosina no fluido intersticial renal após o aumento da ingestão de sódio. Neste contexto, o objetivo do presente estudo foi caracterizar a possível relação entre a liberação de adenosina e a liberação de glutamato em culturas primárias de astrócitos expostas à situação de hiperosmolaridade. Culturas de astrócitos hipotalâmicos obtidos de ratos da linhagem Wistar nos dois primeiros dias de nascidos, foram expostas à solução hipertônica com sódio (340mOsm/L) nos tempos 3, 5, 10 e 15 minutos. Após o estímulo, o meio de incubação foi coletado e os níveis extracelulares de glutamato e adenosina foram determinados por Cromatografia Liquida de Alta Eficácia (CLAE). Afim de avaliar a relação entre estes compostos em situações hiperosmóticas, utilizou-se o tratamento das culturas com Adenosina, com R- PIA um agonista do receptor A1, bem como com glutamato e agonista do receptor tipo NMDA. Nossos resultados demonstraram elevação significativa dos níveis extracelulares de glutamato após o estímulo hiperosmótico com um pico em 5 minutos. Similarmente, observamos o aumento nos níveis de adenosina no meio de incubação após 10 e 15 minutos. O tratamento com glutamato induziu aumento nos níveis extracelulares de adenosina após 15 e 20 minutos em meio iso-osmótico. A exposição ao NMDA não induziu a liberação de adenosina e em nenhuma das concentrações utilizadas. Os pré- tratamentos com adenosina e o agonista A1 R-PIA impediram a liberação de glutamato induzida por hiperosmolaridade. Nossos resultados mostraram também que o efeito do estímulo na liberação de glutamato e adenosina é dependente de sódio, e apresenta uma resposta específica para astrócitos do hipotálamo que pode ser modulada através da ativação do receptor A1 de adenosina. / Recent studies have shown that glutamate release by hypothalamic glial cells is an important physiological response to hyperosmolarity. Furthermore, previous studies point out an accentuated increase of the adenosine levels in renal interstitial fluid after the intake sodium increases. This study aims to evaluate the possible relationship between the adenosine and glutamate releases in primary cultures of astrocytes exposed to hyperosmolarity conditions. Hypothalamic astrocytes cultures of Wistar rats at the first two days after birth were exposed to hypertonic sodium solution (340mOsm/L) in different times (3, 5, 10 e 15 min). After this stimulus, the incubation medium was harvested and the extracellular levels of glutamate and adenosine were determined by High Performance Liquid Chromatography. In order to evaluate the relationship between these compounds in hyperosmotic conditions, we have used treatment of the cultures with adenosine, with R-PIA (an agonist of the A1 receptor), as well as with glutamate (an agonist of the NMDA receptor). Our results showed a significant increase of the extracellular levels of glutamate after the hyperosmotic stimulus with a peak at 5 min. Similarly, we have seen an increase of the adenosine levels in the incubation medium after 10 and 15 min. The treatment with glutamate induced an increase in extracellular levels of adenosine after 15 and 20 minutes in isosmotic medium. The exposure to the NMDA receptor did not induce the release of adenosine in none of the concentrations utilized. The pretreatment with adenosine and R-PIA A1 agonist blocked the release of glutamate induced by hyperosmolarity. Our results also showed that the effect of the stimulus on the release of glutamate and adenosine is sodium-dependent and presents a specific response for hypothalamic astrocytes, which can be modulated by the adenosine A1 receptor activation.
|
2 |
Participação dos grupamentos noradrenérgicos bulbares A1 e A2 na recuperação cardiovascular induzida pela administração intravenosa de solução salina hipertônica em ratos submetidos à hemorragia hipovolêmica / Participation of A1 and A2 noradrenergic clusters in cardiovascular recovery induced by intravenous administration of hypertonic saline solution in rats submitted to hypovolemic hemorrhageMarques, Stéfanne Madalena 17 February 2017 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2017-03-06T17:42:24Z
No. of bitstreams: 2
Dissertação - Stéfanne Madalena Marques - 2017.pdf: 2931392 bytes, checksum: 0d7549b7390188445fbcb19cb5e18723 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-03-07T10:42:02Z (GMT) No. of bitstreams: 2
Dissertação - Stéfanne Madalena Marques - 2017.pdf: 2931392 bytes, checksum: 0d7549b7390188445fbcb19cb5e18723 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-03-07T10:42:02Z (GMT). No. of bitstreams: 2
Dissertação - Stéfanne Madalena Marques - 2017.pdf: 2931392 bytes, checksum: 0d7549b7390188445fbcb19cb5e18723 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2017-02-17 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Several studies have determined the importance of intravenous infusion of sodium chloride (NaCl) solution in the cardiovascular recovery of hypovolemic hemorrhage (HH). Studies show the increased activity of the noradrenergic groups A1 and A2 in response to increased osmolarity in normovolemic rats. However, the participation of these neurons in the integration of the reflexive responses that lead to hemodynamic recovery and to the cardiovascular improvement induced by the infusion of hypertonic saline (HSI) solution during hypovolemia remain to be clarified. The present study sought to elucidate the participation of the noradrenergic groups A1 and A2 in cardiovascular recovery by HSI after HH in anesthetized rats. For this, mice should receive nanoinjections of 100 nL saporin (0.022 ng ∙ nl-1) or saporin-anti-DβH (0.105 ng ∙ nl-1) in the NTS region and/or bilaterally in the CVLM. After 20 days, the animals were instrumented to record the cardiovascular parameters: mean arterial pressure (MAP), heart rate (HR), renal vascular conductance (RVC), and aortic vascular conductance (AVC). HH was induced for 20 min by withdrawal of blood until a MAP reached about 60 mm Hg. Then, HIS (NaCl, 3M, 1.8 ml ∙ kg-1) / Diversos estudos determinaram a importância da infusão intravenosa de solução de cloreto de sódio (NaCl) hipertônica na recuperação cardiovascular da hemorragia hipovolêmica (HH). Estudos mostraram o aumento de atividade dos grupamentos noradrenérgicos bulbares A1 e A2 em resposta ao aumento da osmolaridade em ratos normovolêmicos. No entanto, a participação destes neurônios na integração das respostas reflexas que conduzem ao restabelecimento hemodinâmico e à melhora cardiovascular induzida pela infusão de solução salina hipertônica (SH) durante a hipovolemia ainda permanecem por ser esclarecidas. O presente estudo procurou elucidar a participação dos grupamentos noradrenérgicos bulbares A1 e A2 na recuperação cardiovascular por infusão de SH após HH em ratos anestesiados. Para isto, ratos Wistar receberam nanoinjeções de 100 nL de saporina (0,022 ng ∙ nl-1) ou saporina-anti-DβH (0,105 ng ∙ nl-1) na região NTS e/ou bilateralmente no CVLM. Após 15 dias, os animais foram instrumentalizados para registro dos parâmetros cardiovasculares: pressão arterial média (PAM), frequência cardíaca (FC), condutância vascular renal (CVR) e condutância vascular aórtica (CVA). A HH foi induzida durante 20 min pela retirada de sangue até que a PAM atingisse aproximadamente 60 mmHg. Em seguida, foi realizada a administração de solução SH (NaCl; 3M; 1,8 ml ∙ kg-1), e os parâmetros cardiovasculares foram registrados por mais 60 min. Os resultados mostraram que, nos animais com lesão do grupamento A2, após a infusão de SH a PAM retornou aos valores basais de maneira similar ao que ocorreu nos animais controle (sham A2: 109,4 ± 3,7 mmHg vs. Lesão A2: 108,6 ± 5,1 mmHg, 60 min após a infusão de SH); a FC reduziu significativamente em ratos controle e com lesão de A2 durante a HH e retornou aos níveis basais 10 min após infusão de SH (controle A2: 406,0 ± 10,6 bpm vs. Lesão A2: 368.8.1 ± 17,9 bpm); a HH e a infusão de solução SH não promoveu alterações nos valores basais de CVR em ambos os grupos (sham A2: Δ 3,0 ± 22,3%; Lesão A2: Δ -23,5 ± 16,6%, 20 min após a HH) e (sham A2: Δ 2,3 ± 18,8 vs. Lesão A2: Δ 7,3 ± 8,3%; 30 min após a infusão de SH). A CVA não foi alterada pela HH (sham A2: Δ -11,1 ± 6,6% vs Lesão A2: Δ 7,8 ± 11,6%; 20 min após a HH) ou infusão de SH (Sham: Δ -20,6 ± 7,8% vs. Lesão A2: Δ -4,4 ± 5,1%, 30 min após a infusão de SH). Nos animais com lesão combinada dos grupamentos A1 e A2, a infusão de SH não reestabeleceu os níveis de PAM (controle A1+A2: 104,9 ± 5,7 vs Lesão A1+A2: 64,2 ± 4,5 mmHg; p <0,05; 30 min após a infusão SH), permanecendo estes em níveis hemorrágicos até o final dos experimentos (controle A1+A2: 107,1 ± 3,3 vs Lesão A1+A2: 68,4 ± 4,2 mmHg; p <0,05; 60 min após infusão SH). A HH não alterou os valores basais de CVR (Sham A1+A2: Δ 4,7 ± 20,2% vs. Lesão A1+A2: Δ 2,9 ± 16,7%; 20 min após a HH); a solução SH, também, não foi capaz de alterar esse parâmetro nos grupos de animais controle e lesado (sham A1+A2: Δ: 0,1 ± 12,1% vs. Lesão A1+A2: Δ 29,4 ± 25,9%; 30 min após a infusão de SH). No grupo submetido a lesão A1+A2, a CVA não foi alterada pela HH em ambos os grupos (sham A1+A2: Δ -1,5 ± 16.3% vs. Lesão A1+A2: Δ -18,6 ± 6,3%; 20 min após a HH) ou pela infusão de solução de SH (sham A1+A2: Δ 20 ± 117% vs. Lesão A1+A2: Δ 9,5 ± 7,7%; 30 min após a infusão de SH). Os resultados indicam que o grupamento neuronal A2 não parece estar diretamente envolvido na recuperação cardiovascular por infusão de SH em ratos submetidos a HH e que a lesão simultânea dos grupamentos A1 e A2 foi capaz de suprimir a restauração da PAM em resposta à SH após a HH, indicando que a integridade desses grupamentos é essencial para a recuperação cardiovascular mediante hipernatremia aguda após a hipovolemia. Nosso estudo indica ainda que esses grupamentos não parecem estar diretamente envolvidos na regulação da reatividade vascular dos leitos analisados.
|
3 |
Estudo da interação entre ATP e glutamato em neurônios do núcleo paraventricular do hipotálamo e sua relação com a resposta simpatoexcitatória induzida por alterações na osmolaridade. / Study of the interaction between ATP and glutamate in neurons of the paraventricular nucleus of the hypothalamus and its relationship with the sympathoexcitatory response induced by changes in osmolarity.Ferreira Neto, Hildebrando Candido 28 November 2014 (has links)
Neste trabalho investigamos a interação entre ATP-glutamato na modulação de potenciais de ação e atividade sináptica de neurônios PVN-RVLM, além de avaliar se esta interação induziria mudanças na atividade simpática lombar (ANSL) por estímulo osmótico. Utilizamos de técnicas de imunohistoquímica, whole-cell patch clamp e registro eletroneurográfico. Observou-se que o ATP aumenta a frequência de potenciais de ação em neurônios PVN-RVLM, efeito bloqueado por acido quinurênico (KYN) e PPADS. A injeção de ATP no PVN aumenta a ANSL (25 nmol: 72%), um efeito atenuado por PPADS e/ou KYN, e também por CNQX. O ATP não afeta a função sináptica, mas aumenta correntes glutamatérgicas induzidas por aplicação AMPA em 52%, a qual foi bloqueada por PPADS ou por quelação de Ca2+ intracelular. Além disso, o estímulo osmótico ativa neurônios do PVN que expressam receptores P2X2 e potencia as correntes mediadas por AMPA (53%), um efeito bloqueado por PPADS. Finalmente, demonstrou-se que receptores P2 no PVN são importantes na simpatoexcitação induzida por estímulo osmótico agudo. / In the present study we investigate the interaction of ATP-glutamate on the firing activity and synaptic function in PVN-RVLM neurons, besides whether that interaction would be translated in changes on sympathetic nerve activity (SNA) induced by osmotic stimulus. Immunohistochemistry, whole-cell patch clamp and electroneurography technical approaches were used. Our data have shown that ATP increases firing rate of PVN-RVLM neurons, an effect blocked by kynurenic acid (KYN) or PPADS. ATP injection into the PVN enhanced SNA (72%), which was attenuated by PPADS and/or KYN, or CNQX. ATP did not affect synaptic function but, glutamatergic currents evoked by AMPA application were augmented with ATP (AMPA area: 52%), blocked by PPADS and chelation of intracellular Ca2+. In addition, we observed that acute osmotic stimulus activates P2X2 expressing neurons in the PVN. Moreover, an osmotic challenge potentiated AMPA responses (53%), an effect blocked by PPADS. Finally, we demonstrated that P2 receptors in the PVN are important for osmotically-driven sympathoexcitation.
|
4 |
Estudo dos mecanismos neuronais hipotalâmicos e bulbares envolvidos no modelo de hipertensão induzida por sobrecarga de sódio. / Hypothalamic and medullary pathways involved in sodium-induced hypertension.Ribeiro, Natalia 20 July 2018 (has links)
O aumento da osmolaridade plasmática é conhecido como hiperosmolaridade e é resultado do aumento do aporte de sódio ou, da diminuição do volume plasmático de água. Trata-se de um desafio orgânico capaz de iniciar uma série de respostas neuro-hormonais que incluem a liberação de vasopressina e aumento da atividade simpática, com consequente elevação da pressão arterial. Descrever o papel do sistema nervoso autonômico no desenvolvimento da hipertensão arterial secundária a ingestão de sódio é essencial para elucidar os mecanismos envolvidos na gênese desta patologia. Neste sentido, o RVLM é um importante alvo de estudos, dado seu envolvidos na regulação da atividade simpática, via projeções para a CIML. O RVLM possui um grupo neuronal denominado C1 caracterizado pela presença da enzima PNMT; a ativação destes neurônios já foi descrita em resposta a diversos desafios orgânicos tais como hipóxia, dor, hemorragia, inflamação, hipotensão e hipoglicemia. Sendo a hiperosmolaridade um desequilíbrio da homeostase propusemos investigar a possível participação dos neurônios adrenérgicos do grupamento C1 sobre a hipertensão secundária ao desafio hiperosmótico desencadeado pela ingestão crônica de solução de 2% cloreto de sódio (salina hipertônica de NaCl 2%) por 7 dias. Nossos resultados nos permitem concluir que: 1) a injeção de anti-D&betaH-saporina na região do RVLM causou a depleção de neurônios TH+ nas regiões C1 e A5; 2) A depleção dos neurônios TH+ não alterou o comportamento de ingestão de sódio e, tampouco os valores de hematócrito e osmolaridade plasmática resultados da exposição ao hiperosmótico durante 7 dias, comparado aos animais controle; 3) A lesão prévia dos neurônios do C1 e A5 inibe o desenvolvimento da hipertensão secundária ao estímulo hiperosmótico por ingestão de NaCl 2%. Além disso, propusemos também estudar como estariam as respostas cardiovasculares e de controle hidroeletrolítico em indivíduos normotensos e previamente hipertensos frente a diferentes intensidades de estímulo hiperosmótico desencadeado pela ingesta de salina hipertônica de NaCl 2%. Os resultados demonstraram que 1) a ingestão de sódio desencadeia uma elevação da pressão arterial de maior magnitude nos SHR, quando comparado aos animais Wistar; 2) que não parece estar envolvida com diferenças no balanço hidroeletrolítico, uma vez que observou-se repostas similares entre as duas linhagens; 3) houve ainda, um aumento da expressão do RNAm para neuropeptídeo vasopressina (VP) no núcleo paraventricular do hipotálamo (PVN) tanto em Wistar quanto em SHR decorrente da ingestão de NaCl 2% durante 7 dias. Até o presente momento nossos resultados permitem duas considerações acerca dos mecanismos envolvidos nas repostas geradas frente desafios da osmolaridade: 1) os neurônios TH+ e, potencialmente do grupamento C1, estão envolvidos no desenvolvimento da hipertensão arterial em situações de desafio crônico da osmolaridade; 2) em animais hipertensos (SHR) o estímulo hiperosmótico gera uma elevação da pressão arterial de maior magnitude em comparação aos animais normotensos, fato que sugerimos envolver mecanismos de controle neural da pressão arterial, uma vez que não se observou alterações significativas nos parâmetros hidroeletrolítico e função renal entre as duas linhagens. / Plasma osmolarity increases is known as hyperosmolarity and it is a consequence of high sodium intake or decrease of water plasma content. It is an organic imbalance that elicits neurohormonal responses including release of vasopressin and increased in sympathetic activity, with consequent elevation of blood pressure. To describe the role of the autonomic nervous system in the development of sodium induced hypertension is critical to elucidate the mechanisms involved in the genesis of this pathology. In this sense, the RVLM is an important target, given its involved in the regulation of sympathetic activity, via CIML projections. The RVLM has a neuronal group known as C1 that present the PNMT enzyme; the activation of these neurons has already been described in response to several organic challenges such as hypoxia, pain, hemorrhage, inflammation, hypotension and hypoglycemia. Since hyperosmolarity is an homeostasis imbalance, we propose to investigate the role of adrenergic C1 neurons on sodium induced hypertension, triggered by the chronic ingestion of NaCl2% solution during 7 days. Our results allow us to conclude that: 1) the anti-D&betaH-saporin injection in the RVLM led to a depletion of TH+ neurons in the C1 and A5 regions; 2) Depletion of TH + neurons did not alter the sodium intake behavior, hematocrit and plasma osmolality values result from 7 days NaCl 2% exposure, compared to control animals; 3) Depletion of TH+ in C1 and A5 regions inhibits the development of sodium induced hypertension . In addition, we also proposed to investigate the cardiovascular and hydroelectrolytic responses elicits in normotensive and hypertensive rats, in response to different intensities of hyperosmotic stimulation triggered by the ingestion of hypertonic saline of NaCl 2%. The results demonstrated that: 1) the increase in blood pressure triggers by NaCl 2% intake is higher in SHR when compared to Wistar animals; 2) that does not appear to be involved with differences in hydroelectrolyte balance, since similar responses were observed between the two strains; 3) there was also an increase in mRNA expression for neuropeptide vasopressin (VP) in the paraventricular nucleus of the hypothalamus (PVN) in both strains, Wistar and SHR, in consequence of 7 days NaCl 2% intake. Our results allow two considerations about the mechanisms involved in the responses elicits by osmolarity challenges: 1) TH+ neurons and, potentially C1 neurons, are involved in the development sodium induced hypertension and; 2) in SHRs the hyperosmotic stimulus generates a higher blood pressure increase in comparison to normotensive animals, which seems to be associated with sympathoexcitatory components, since no significant alterations were observed in the hydroelectrolytic parameters and renal function between the two strains.
|
5 |
Interação entre osmorreceptores e mecanismos colinérgicos e angiotensinérgicos prosencefálicos no controle da ingestão de sódioRoncari, Camila Ferreira 26 August 2014 (has links)
Made available in DSpace on 2016-06-02T19:22:11Z (GMT). No. of bitstreams: 1
6151.pdf: 1975366 bytes, checksum: 23b842452d75ee4bd80f5408eccc025c (MD5)
Previous issue date: 2014-08-26 / Universidade Federal de Minas Gerais / Sodium intake is induced by facilitatory signals, such as angiotensin II (ANG II) and aldosterone. Hyperosmolarity and central cholinergic activation, classic antinatriorexigenic stimuli, also induce NaCl intake when the inhibitory mechanisms of the lateral parabrachial nucleus (LPBN) are deactivated. In the present study, we investigated the possible interaction between osmoreceptors and cholinergic and angiotensinergic mechanisms in the control of water and NaCl intake induced by different dipsogenic and/or natriorexigenic stimuli combined with the blockade of LPBN inhibitory mechanisms. Rats with stainless steel cannulas implanted in the lateral ventricle (LV) or subfornical organ (SFO) and bilaterally into the LPBN were used to study the effects of injections of atropine (muscarinic cholinergic antagonist), losartan or ZD 7155 (AT1 receptor antagonists) into the LV or SFO on water and 0.3 M NaCl intake induced by bilateral injections of moxonidine (α2- adrenoceptor/imidazoline agonist) into the LPBN combined with a) plasma hyperosmolarity induced by intragastric (ig) 2 M NaCl; b) injections of carbachol (cholinergic agonist) into the LV or SFO; c) subcutaneous injections of furosemide (FURO) and captopril (CAP); d) injection of ANG II into the LV. Additionally, we also investigated whether acute application of osmotic, angiotensinergic and cholinergic stimuli would activate cultured SFO dissociated cells and if the same cell would be activated by different stimuli. In rats treated with ig 2 M NaCl, injections of moxonidine (0.5 nmol/0.2 μl) into the LPBN increased water and 0.3 M NaCl intake. Injections into the LV or SFO of atropine (20 nmol/1.0 μl and 2 nmol/0.1 μl, respectively) or losartan (100 μg/1.0 μl and 1 μg/0.1 μl, respectively) abolished water and 0.3 M NaCl intake in rats treated with ig 2 M NaCl combined with moxonidine into the LPBN. Moxonidine injected into the LPBN also increased water and 0.3 M NaCl intake induced by FURO + CAP, injections of ANG II (50 ng/1.0 μl) and carbachol (4 nmol/1.0 μl) into the LV or carbachol (0.5 nmol/0.1 μl) into the SFO. The blockade of AT1 receptors with injections of losartan into the LV or ZD 7155 (1 μg/0.1 μl) into the SFO abolished water and 0.3 M NaCl intake in rats treated with carbachol into the LV or SFO combined with LPBN injections of moxonidine. However, atropine injected into the LV, despite reducing water intake, did not change 0.3 M NaCl intake in rats treated with FURO + CAP or injection of ANG II into the LV combined with injections of moxonidine into the LPBN. Injections of losartan into the LV reduced 0.06 M sucrose intake, but did not change food intake induced by 24 h of food deprivation. Finally, in vitro studies showed that osmotic, angiotensinergic and cholinergic stimuli activate SFO dissociated cells and that different stimuli can activate the same SFO cell. Therefore, the results of the present study suggest that different stimuli, such as hyperosmolarity and central cholinergic activation, facilitate NaCl intake through activation of central angiotensinergic mechanisms. / A ingestão de sódio é induzida por sinais facilitatórios, como angiotensina II (ANG II) e aldosterona. A hiperosmolaridade e a estimulação colinérgica central, estímulos classicamente considerados antinatriorexigênicos, também induzem ingestão de NaCl quando os mecanismos inibitórios do núcleo parabraquial lateral (NPBL) são bloqueados. No presente estudo, investigamos a possível interação entre osmorreceptores e mecanismos colinérgicos e angiotensinérgicos centrais no controle da ingestão de água e NaCl induzida por diferentes estímulos dipsogênicos e/ou natriorexigênicos combinados com bloqueio dos mecanismos inibitórios do NPBL. Em ratos com cânulas de aço inoxidável implantadas no ventrículo lateral (VL) ou órgão subfornical (OSF) e bilateralmente no NPBL, foram estudados os efeitos de injeções de atropina (antagonista colinérgico muscarínico), losartan ou ZD 7155 (antagonistas de receptores AT1) no VL ou diretamente no OSF na ingestão de água e NaCl 0,3 M induzida por injeções bilaterais de moxonidina (agonista adrenérgico α2/imidazólico) no NPBL combinadas com: a) hiperosmolaridade plasmática induzida por sobrecarga intragástrica de NaCl 2 M; b) injeções de carbacol (agonista colinérgico) no VL ou OSF; c) injeções subcutâneas de furosemida (FURO) e captopril (CAP); d) injeção de ANG II no VL. Adicionalmente, também foi investigado se a aplicação aguda de estímulos osmóticos, angiotensinérgico e colinérgico ativariam neurônios dissociados do OSF mantidos em cultura e se um mesmo neurônio seria ativado por diferentes estímulos. Em ratos tratados com NaCl 2 M ig, injeções de moxonidina (0,5 nmol/0,2 μl) no NPBL aumentaram a ingestão de água e NaCl 0,3 M. Injeções no VL ou OSF de atropina (20 nmol/1,0 μl e 2 nmol/0,1 μl, respectivamente) ou losartan (100 μg/1,0 μl e 1 μg/0,1 μl, respectivamente) aboliram a ingestão de água e NaCl em ratos tratados com NaCl 2 M ig que receberam injeções de moxonidina no NPBL. Injeções de moxonidina também aumentaram a ingestão de água e NaCl 0,3 M induzida por FURO + CAP, injeções de ANG II (50 ng/1,0 μl) e carbacol (4 nmol/1,0 μl) no VL ou carbacol (0,5 nmol/0,1 μl) no OSF. O bloqueio de receptores AT1 com injeções de losartan no VL ou ZD 7155 (1 μg/0,1 μl) no OSF aboliu a ingestão de água e NaCl 0,3 M em ratos tratados com injeção de carbacol no VL ou OSF combinada com injeções de moxonidina no NPBL. No entanto, injeção de atropina no VL, apesar de reduzir a ingestão de água, não alterou a ingestão de NaCl 0,3 M em ratos tratados com FURO + CAP ou injeção de ANG II no VL combinados com injeções de moxonidina no NPBL. Injeções de losartan no VL reduziram a ingestão de sacarose 0,06 M, mas não alteraram a ingestão de ração induzida por privação alimentar por 24 h. Finalmente, os estudos in vitro mostraram que estímulos osmóticos, angiotensinérgico e colinérgico ativam as células dissociadas do OSF e que diferentes estímulos podem ativar uma mesma célula do OSF. Portanto, os resultados do presente estudo sugerem que diferentes estímulos, tais como hiperosmolaridade e ativação colinérgica central, facilitam a ingestão de NaCl através da ativação de mecanismos angiotensinérgicos centrais.
|
6 |
Estudo da interação entre ATP e glutamato em neurônios do núcleo paraventricular do hipotálamo e sua relação com a resposta simpatoexcitatória induzida por alterações na osmolaridade. / Study of the interaction between ATP and glutamate in neurons of the paraventricular nucleus of the hypothalamus and its relationship with the sympathoexcitatory response induced by changes in osmolarity.Hildebrando Candido Ferreira Neto 28 November 2014 (has links)
Neste trabalho investigamos a interação entre ATP-glutamato na modulação de potenciais de ação e atividade sináptica de neurônios PVN-RVLM, além de avaliar se esta interação induziria mudanças na atividade simpática lombar (ANSL) por estímulo osmótico. Utilizamos de técnicas de imunohistoquímica, whole-cell patch clamp e registro eletroneurográfico. Observou-se que o ATP aumenta a frequência de potenciais de ação em neurônios PVN-RVLM, efeito bloqueado por acido quinurênico (KYN) e PPADS. A injeção de ATP no PVN aumenta a ANSL (25 nmol: 72%), um efeito atenuado por PPADS e/ou KYN, e também por CNQX. O ATP não afeta a função sináptica, mas aumenta correntes glutamatérgicas induzidas por aplicação AMPA em 52%, a qual foi bloqueada por PPADS ou por quelação de Ca2+ intracelular. Além disso, o estímulo osmótico ativa neurônios do PVN que expressam receptores P2X2 e potencia as correntes mediadas por AMPA (53%), um efeito bloqueado por PPADS. Finalmente, demonstrou-se que receptores P2 no PVN são importantes na simpatoexcitação induzida por estímulo osmótico agudo. / In the present study we investigate the interaction of ATP-glutamate on the firing activity and synaptic function in PVN-RVLM neurons, besides whether that interaction would be translated in changes on sympathetic nerve activity (SNA) induced by osmotic stimulus. Immunohistochemistry, whole-cell patch clamp and electroneurography technical approaches were used. Our data have shown that ATP increases firing rate of PVN-RVLM neurons, an effect blocked by kynurenic acid (KYN) or PPADS. ATP injection into the PVN enhanced SNA (72%), which was attenuated by PPADS and/or KYN, or CNQX. ATP did not affect synaptic function but, glutamatergic currents evoked by AMPA application were augmented with ATP (AMPA area: 52%), blocked by PPADS and chelation of intracellular Ca2+. In addition, we observed that acute osmotic stimulus activates P2X2 expressing neurons in the PVN. Moreover, an osmotic challenge potentiated AMPA responses (53%), an effect blocked by PPADS. Finally, we demonstrated that P2 receptors in the PVN are important for osmotically-driven sympathoexcitation.
|
7 |
Contribuição dos grupamentos neuronais noradrenérgicos A1, A2 e do núcleo Pré-óptico mediano (MnPO) nas respostas cardiovasculares e autonômicas induzidas pela sobrecarga de sódio em ratos submetidos à hemorragia hipovolêmica / Contribution of A1, A2 noradrenergic neuronal clusters and median Preoptic nucleus (MnPO) in cardiovascular and autonomic responses induced by sodium overload in rats submitted to hypovolemic hemorrhageNaves, Lara Marques 02 March 2018 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2018-08-09T11:39:12Z
No. of bitstreams: 2
Dissertaçao - Lara Marques Naves - 2018.pdf: 4245553 bytes, checksum: 32754e93d07b1f96bc7f0b9a2bc618ff (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-08-09T12:20:22Z (GMT) No. of bitstreams: 2
Dissertaçao - Lara Marques Naves - 2018.pdf: 4245553 bytes, checksum: 32754e93d07b1f96bc7f0b9a2bc618ff (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-08-09T12:20:22Z (GMT). No. of bitstreams: 2
Dissertaçao - Lara Marques Naves - 2018.pdf: 4245553 bytes, checksum: 32754e93d07b1f96bc7f0b9a2bc618ff (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-03-02 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Hemodynamic and cardiovascular benefits from the hypertonic saline solution (HS) use in the hypotensive hemorrhage (HH) treatment have been reported for several years. Recent investigations have shown the participation of central nervous system (CNS) regions, such as A1 neuronal clusters (located in the caudal ventrolateral medulla; CVLM), A2 neuronal clusters (located in the nucleus of the solitary tract; NTS) and the Median Preoptic Nucleus (MnPO) on hemodynamic responses induced by sodium chloride overload in normovolemic animals. However, the role of the above structures in cardiovascular recovery and autonomic changes induced by HS solution administration in animals submitted to HH has not yet been evaluated. Thus, the present study evaluated the A1, A2 neuronal clusters and MnPO nucleus involvement in the cardiovascular and autonomic responses promoted by HS solution infusion in hypovolemic animals. For this, wistar rats (280-320 g) were separated into four protocols: I. A2 neuronal cluster lesion (A2 Sham: n = 6; A2 Experimental: n = 6); II. A1 neuronal cluster lesion (A1 Sham: n = 6; A1 Experimental: n = 6); III. A1 and A2 neural clusters concomitant lesions (A1 + A2 Sham: n = 6; A1 + A2 Experimental: n = 6) and IV. Pharmacological inhibition of MnPO (MnPO Sham: n = 6; MnPO Experimental: n = 6). The animals of the first three protocols were anesthetized and subjected to saporin-anti-DβH nanoinjections for neuronal lesion (100 nL, 0.105 ng/nl) in experimental groups and Saporin nanoinjections (100 nL, 0.022 ng/nL) in sham groups for fictitious neuronal lesion, respectively, in the NTS, CVLM or simultaneously in the NTS and CVLM regions. After 20 days of recovery, the animals were anesthetized and instrumented to mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nervous activity (RSNA) recordings. Then, HH was performed by blood withdrawal until MAP reached approximately 60 mmHg. After 20 min of HH, sodium overload (3M NaCl, 1.8 mL/g, 90 seconds of infusion, i.v) was conducted. In another series of experiments, MnPO Sham and MnPO Experimental groups were anesthetized and instrumented for MAP, HR and RSNA recordings. Then, the animals were submitted to HH and HS infusion at the end of the hemorrhage. GABAergic agonist Muscimol (4 mM, 100 nL, MnPO Experimental group) or saline nanoinjections (0.15 M, 100 nL, MnPO Sham group) were performed in the MnPO after 10 min from the start of HH. HH-induced hypotension, bradycardia and renal sympathoinhibition in the animals of the A2 Sham, A1 Sham, A1 + A2 Sham and MnPO Sham groups. In the sham groups, HS infusion after HH reestablished MAP, HR, and did not alter the renal sympathoinhibition generated during hypovolemia. In the A2 Experimental and A1 Experimental groups, the specific lesion of A1 or A2 neurons did not alter the hypotension, bradycardia and renal sympathoinhibition caused during HH. In addition, the A1 or A2 neurons specific lesion did not alter the reestablishment of MAP, HR and the RSNA reduction after HS solution infusion. However, in the animals of the A1 + A2 experimental group, the simultaneous A1 and A2 neurons lesion did not alter the decrease in MAP and HR observed during HH, but abolished renal sympathoinhibition. In addition, simultaneous A1 and A2 neurons lesion abolished MAP restoration and ANSR reduction after HS infusion, while HR restoration was not modified. In the MnPO experimental animals, MnPO nucleus inhibition did not alter the decrease in MAP and HR observed during HH, but abolished renal sympathoinhibition. However, MnPO inhibition abolished the MAP restoration and promoted strong sympathetic activation in the renal bed after HS infusion, while HR restoration was not modified. These results suggest that the A1, A2 neuronal clusters and MnPO nucleus are part of the integration and transmission information circuits about changes in plasma osmolarity, participating in cardiovascular and autonomic recovery induced by sodium chloride overload in animals submitted to HH. / Os benefícios hemodinâmicos e cardiovasculares provenientes do uso de solução salina hipertônica (SH) no tratamento da hemorragia hipotensiva (HH) são relatados há vários anos. Recentes investigações mostraram a participação de regiões do sistema nervoso central (SNC), como os grupamentos neuronais A1 (localizado na região caudoventrolateral do bulbo; CVLM), A2 (localizado no núcleo do tracto solitário; NTS) e do núcleo Pré-óptico mediano (MnPO) nas respostas hemodinâmicas induzidas pela sobrecarga de cloreto de sódio em animais normovolêmicos. Entretanto, o papel das estruturas acima relacionadas na recuperação cardiovascular e nas alterações autonômicas induzidas pela administração de solução SH em animais submetidos à HH ainda não foi avaliado. Assim, o presente estudo buscou avaliar o envolvimento dos grupamentos neuronais A1, A2 e do núcleo MnPO nas respostas cardiovasculares e autonômicas promovidas pela infusão de solução SH em animais hipovolêmicos. Para isto, ratos Wistar (280-320 g) foram separados em quatro protocolos: I. Lesão do grupamento neuronal A2 (Controle A2: n=6; Experimental A2: n=6); II. Lesão do grupamento neuronal A1 (Controle A1: n=6; Experimental A1: n=6); III. Lesões concomitantes dos grupamentos neuronais A1 e A2 (Controle A1 + A2: n=6; Experimental A1 + A2: n=6) e IV. Inibição farmacológica do núcleo MnPO (Controle MnPO: n=6; Experimental MnPO: n=6). Os animais dos três primeiros protocolos foram anestesiados e submetidos a nanoinjeções de saporina-anti-DβH para lesão neuronal (100 nL, 0,105 ng/nL) nos grupos experimentais e Saporina (100 nL, 0,022 ng/nL) nos grupos controles para lesão neuronal fictícia, respectivamente, no NTS, na região CVLM ou conjuntamente no NTS e CVLM. Após 20 dias de recuperação, os animais foram novamente anestesiados e instrumentalizados para registro da pressão arterial média (PAM), frequência cardíaca (FC) e atividade nervosa simpática renal (ANSR). Em seguida, a HH foi realizada através da retirada de sangue até que a PAM atingisse aproximadamente 60 mmHg. Após 20 min de HH foi conduzida a sobrecarga de sódio (NaCl 3M, 1,8 mL/kg, 90 segundos de infusão, i.v). Em outra série de experimentos, os animais dos grupos controle MnPO e Experimental MnPO foram anestesiados e instrumentalizados para registro da PAM, FC, ANSR. Em seguida, foram submetidos à HH e a infusão de solução SH ao final da hemorragia. Nanoinjeções do agonista GABAérgico, muscimol (4 mM, 100 nL, grupo experimental MnPO) ou salina (0,15 M; 100 nL; grupo controle MnPO) foram realizadas no MnPO após 10 min do início da HH. A HH promoveu hipotensão, bradicardia e simpatoinibição no território renal nos animais dos grupos controle A2, controle A1, controle A1 + A2 e controle MnPO. Nos grupos controle, a infusão de solução SH após a HH reestabeleceu a PAM, FC e não alterou a simpatoinibição renal gerada durante a hipovolemia. Nos animais dos grupos experimental A2 e experimental A1, a lesão especifica dos neurônios A1 ou A2 não alterou a hipotensão, bradicardia e simpatoinibição provocados durante a HH. Em adição, a lesão especifica dos neurônios A1 ou A2 não alterou o reestabelecimento da PAM, FC e a queda da ANSR gerada após a infusão de solução SH. Entretanto, nos animais do grupo experimental A1 + A2, a lesão simultânea dos neurônios A1 e A2 não alterou a queda da PAM, da FC observada durante a HH, mas aboliu a simpatoinibição renal. Ademais, a lesão simultânea dos neurônios A1 e A2 aboliu a restauração da PAM e a redução da ANSR após a infusão de solução SH, enquanto a restauração da FC não foi modificada. Nos animais do grupo experimental MnPO, a inibição do MnPO não alterou a queda da PAM e da FC observadas durante a HH, entretanto aboliu a simpatoinibição renal. Porém, a inibição do núcleo MnPO aboliu a restauração da PAM e promoveu forte simpatoexcitação no leito renal após a infusão de solução SH, enquanto a restauração da FC não foi modificada. Esses resultados sugerem que os neurônios dos grupamentos A1, A2 e o núcleo MnPO fazem parte dos circuitos de integração e transmissão de informações a respeito de mudanças na osmolaridade plasmática, participando da recuperação cardiovascular e autonômica induzida pela sobrecarga de cloreto de sódio em animais submetidos à HH.
|
Page generated in 0.2302 seconds