51 |
Development of linear capacitance-resistance models for characterizing waterflooded reservoirsKim, Jong Suk 13 February 2012 (has links)
The capacitance-resistance model (CRM) has been continuously improved and tested on both synthetic and real fields. For a large waterflood, with hundreds of injectors and producers present in a reservoir, tens of thousands of model parameters (gains, time constants, and productivity indices) in a field must be determined to completely define the CRM. In this case obtaining a unique solution in history-matching large reservoirs by nonlinear regression is difficult. Moreover, this approach is more likely to produce parameters that are statistically insignificant. The nonlinear nature of the CRM also makes it difficult to quantify the uncertainty in model parameters. The analytical solutions of the two linear reservoir models, the linearly transformed CRM whose control volume is the drainage volume around each producer (ltCRMP) and integrated capacitance-resistance model (ICRM), are developed in this work. Both models are derived from the governing differential equation of the producer-based representation of CRM (CRMP) that represents an in-situ material balance over the effective pore volume of a producer. The proposed methods use a constrained linear multivariate regression (LMR) to provide information about preferential permeability trends and fractures in a reservoir. The two models’ capabilities are validated with simulated data in several synthetic case studies. The ltCRMP and ICRM have the following advantages over the nonlinear waterflood model (CRMP): (1) convex objective functions, (2) elimination of the use of solver when constraints are ignored, and (3) faster computation time in optimization. In both methods, a unique solution can always be obtained regardless of the number of parameters as long as the number of data points is greater than the number of unknowns (parameters). The methods of establishing the confidence limits on CRMP gains and ICRM parameters are demonstrated in this work. This research also presents a method that uses the ICRM to estimate the gains between newly introduced injectors and existing producers for a homogeneous reservoir without having to do additional simulations or regression on newly simulated data. This procedure can guide geoscientists to decide where to drill new injectors to increase future oil recovery and provide rapid solutions without having to run reservoir simulations for each scenario. / text
|
52 |
Modeling the effect of injecting low salinity water on oil recovery from carbonate reservoirsAl Shalabi, Emad Waleed 10 February 2015 (has links)
The low salinity water injection technique (LSWI) has become one of the important research topics in the oil industry because of its possible advantages for improving oil recovery. Several mechanisms describing the LSWI process have been suggested in the literature; however, there is no consensus on a single main mechanism for the low salinity effect on oil recovery. As a result of the latter, there are few models for LSWI and especially for carbonates due to their heterogeneity and complexity. In this research, we proposed a systematic approach for modeling the LSWI effect on oil recovery from carbonates by proposing six different methods for history matching and three different LSWI models for the UTCHEM simulator, empirical, fundamental, and mechanistic LSWI models. The empirical LSWI model uses contact angle measurements and injected water salinity. The fundamental LSWI model captures the effect of LSWI through the trapping number. In the mechanistic LSWI model, we include the effect of different geochemical reactions through Gibbs free energy. Moreover, field-scale predictions of LSWI were performed and followed by a sensitivity analysis for the most influential design parameters using design of experiment (DoE). The LSWI technique was also optimized using the response surface methodology (RSM) where a response surface was built. Also, we moved a step further by investigating the combined effect of injecting low salinity water and carbon dioxide on oil recovery from carbonates through modeling of the process and numerical simulations using the UTCOMP simulator. The analysis showed that CO₂ is the main controller of the residual oil saturation whereas the low salinity water boosts the oil production rate by increasing the oil relative permeability through wettability alteration towards a more water-wet state. In addition, geochemical modeling of LSWI only and the combined effect of LSWI and CO₂ were performed using both UTCHEM and PHREEQC upon which the geochemical model in UTCHEM was modified and validated against PHREEQC. Based on the geochemical interpretation of the LSWI technique, we believe that wettability alteration is the main contributor to the LSWI effect on oil recovery from carbonates by anhydrite dissolution and surface charge change through pH exceeding the point of zero charge. / text
|
53 |
Computational tools for soft sensing and state estimationBalakrishnapillai Chitralekha, Saneej Unknown Date
No description available.
|
54 |
Computational tools for soft sensing and state estimationBalakrishnapillai Chitralekha, Saneej 06 1900 (has links)
The development of fast and efficient computer hardware technology has resulted in the rapid development of numerous computational software tools for making statistical inferences. The computational algorithms, which are the backbone of these tools, originate from distinct areas in science, mathematics and engineering. The main focus of this thesis is on computational tools which can be employed for estimating unmeasured variables in a process using all the available prior information. Specifically, this thesis demonstrates the application of a variety of tools for soft sensing of process variables and uncertain parameters of physiochemical process models, using routine data available from the process. The application examples presented in this thesis come from broad areas where process uncertainty is inherent and includes petrochemical processes, mechanical valve actuators, and upstream production processes in petroleum reservoirs. The mathematical models that are employed in different domains vary significantly in their structure and their level of complexity. In the petrochemical domain, the focus was on developing empirical soft sensors which are essentially nonparametric mathematical models identified using routine data from the process. The Support Vector Regression technique was applied for identifying such nonparametric empirical models. On the other hand, in all the other application examples in this thesis the physical parametric models of the process were utilized. The latter application examples, which cover a major portion of this thesis, demonstrate the application of modern state and parameter estimation algorithms which are firmly grounded on Bayesian theory and Monte Carlo techniques. Prior to the chapters on the application of state and parameter estimation techniques, a tutorial overview of the Monte Carlo simulation based state estimation algorithms is provided with an attempt to throw new light on these techniques. The tutorial is aimed at making these techniques simple to visualize and understand. The application case studies serve to illustrate the performance of the different algorithms. All case studies presented in this thesis are performed on processes that exhibit significant nonlinearity in terms of the relationship between the process input variables and output variables. / Process Control
|
55 |
Aplicação da metaheuristica busca dispersa ao problema do ajuste de historico / Application of the scatter serach methaheuristic to the history matching problemSousa, Sergio Henrique Guerra de 13 August 2018 (has links)
Orientadores: Denis Jose Schiozer, Celio Maschio / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica e Instituto de Geociencias / Made available in DSpace on 2018-08-13T03:31:41Z (GMT). No. of bitstreams: 1
Sousa_SergioHenriqueGuerrade_M.pdf: 1592526 bytes, checksum: a308d06cf11fb891b71f7b3396952356 (MD5)
Previous issue date: 2007 / Resumo: O problema do ajuste de histórico é uma das tarefas que mais demandam tempo em um estudo de reservatório baseado em simulações de fluxo, porque é um problema inverso onde os resultados (dados de produção) são conhecidos, porém os valores de entrada (a caracterização do reservatório) não são integralmente conhecidos. Adicionalmente, as funções objetivo que medem a qualidade do ajuste costumam ser expressões compostas por uma série de componentes que tornam a topologia do espaço de soluções complexa e repleta de não linearidades. A metodologia adotada neste trabalho foi a modelagem do problema de ajuste de histórico como um problema de otimização combinatória de modo que ele pudesse ser abordado através de processos metaheurísticos. Em particular, a metaheurística Busca Dispersa (Scatter Search) foi acoplada a um algoritmo de Busca Direta baseado no método de Hooke e Jeeves para resolver o problema do ajuste de histórico. Reservatórios sintéticos de solução conhecida foram utilizados para fazer a validação da metodologia e, em seguida, ela foi aplicada a outro reservatório, também sintético, mas com características de reservatórios reais onde a solução do ajuste é desconhecida. São discutidos ao longo do texto o uso da metodologia de forma automática e assistida e também os benefícios do uso da computação distribuída na execução do método. As maiores contribuições deste trabalho em relação à questão do ajuste de histórico são: a introdução de uma nova metodologia versátil para uso automático ou assistido, a discussão de algumas características que dificultam o processo de ajuste e de que forma eles podem ser contornados e também a abordagem do tema do ajuste automático vs. o ajuste assistido ilustrado com exemplos. / Abstract: The history matching problem is one of the most demanding tasks in a reservoir simulation study; because it's an inverse problem where the results (production data) are known but the input data (the reservoir characterization data) are not entirely known. Moreover, the objective function that guide the match is usually made out of a series of components that make the topology of the objective function both complex and full of non-linearities. The methodology adopted in this work was to model the history matching problem as a combinatorial optimization problem in order for it to be solved by metaheuristic processes. In particular, the Scatter Search metaheuristic was coupled with a direct search method based on Hooke and Jeeve's method to solve the history matching problem. Synthetic reservoirs of known solutions where used to validate the methodology and then the methodology was applied to another reservoir, also synthetic, but with characteristics of real reservoirs where the solution is not known in advance. Throughout the text, the mixed use of the methodology on both an assisted and automatic fashion is discussed along with the benefits attained by the use of distributed computing resources. The greatest contributions of this work related to the history matching problem are: the introduction of a new versatile methodology for both automatic and assisted matches, the discussion of some characteristics that burden the entire process and some ways to overcome the difficulties, and also the discussion of some tradeoffs between automatic versus assisted history matching with examples to illustrate the matter. / Mestrado / Reservatórios e Gestão / Mestre em Ciências e Engenharia de Petróleo
|
56 |
Mitigação de incertezas atraves da integração com ajuste de historico de produção / Uncertainty mitigation through the integration with production history matchingBecerra, Gustavo Gabriel 12 July 2007 (has links)
Orientadores: Denis Jose Schiozer, Celio Maschio / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica e Instituto de Geociencias / Made available in DSpace on 2018-08-12T07:35:35Z (GMT). No. of bitstreams: 1
Becerra_GustavoGabriel_M.pdf: 16760750 bytes, checksum: 0609c24d13d46b9121f71356ce9d42a1 (MD5)
Previous issue date: 2007 / Resumo: A escassez de informações de qualidade introduz risco ao processo de previsão da produção de petróleo tornando imprescindível o ajuste de histórico de produção, que é a calibração do modelo a partir da resposta produtiva registrada. O ajuste é um problema inverso, em que diferentes combinações dos valores dos parâmetros do reservatório podem conduzir a respostas aceitáveis, especialmente quando o grau de incerteza desses parâmetros é elevado. A integração do ajuste de histórico com a análise probabilística dos cenários representativos conduz à obtenção de uma metodologia para detecção dos modelos calibrados dentro de uma faixa de aceitaçãodefinida. O tratamento de atributos interdependentes de influência global e local e o avanço por etapas são necessários. Desta forma, o objetivo deste trabalho é apresentar uma metodologia que integra a análise de incertezas com o ajuste de histórico em modelos de reservatórios complexos. Este procedimento auxilia a detectar os atributos incertos críticos e sua possível variação com o intuito de estimar a faixa representativa das reservas a desenvolver. Não é alvo obter o melhor ajuste determinístico, mas refletir como o histórico possibilita uma mitigação das incertezas. Assim, a meta é usar modelos mais complexos e aprimorar a metodologia iniciada por Moura Filho (2006), desenvolvida para um modelo teórico simples. São utilizados dois casos de estudo de complexidade similar. Um deles referente ao reservatório do Campo de Namorado, utilizado para verificar e validar, em nível global, a aplicação da metodologia. Na etapa de aplicação, é usado um modelo sintético construído a partir de dados de afloramentos reais no Brasil e compreendendo informações de campos análogos com sistemas turbidíticos depositados em águas profundas. Os métodos aplicados, mediante a redefinição das probabilidades associadas e níveis dos atributos incertos, permitem: (1) reduzir a faixa de ajustes possíveis e obter modelos mais confiáveis; (2) identificar e condicionar à incerteza presente em função dos dados registrados; (3) diminuir os intervalos de incerteza dos parâmetros críticos identificados; (4) demarcar os limites seguros do desempenho futuro do reservatório. A conseqüência é um aumento da confiança no uso da simulação como ferramenta auxiliar do processo decisório. Além disso, procura-se fornecer à equipe multidisciplinar uma metodologia para reduzir o tempo empregado no gerenciamento de múltiplos atributos incertos na etapa de ajuste do modelo. / Abstract: The lack of reliable data or with high degree of uncertainty yields risk to the process of production prediction making the history matching, the model calibration from the registered field production indispensable. History matching is an inverse problem and, in general, different combinations of reservoir attributes can lead acceptable solutions, especially whit high degree of uncertainty of these attributes. The integration of history matching with a probabilistic analysis of representative models yields a way to detect matched models inside an acceptance interval, providing more efficient framework for predictions. It is necessary to consider dependences between global and local attributes. The scope of this work is to present a methodology that integrates the uncertainty analysis with the history matching process in complex models. This procedure helps to detect critical subsurface attributes and their possible variation, in order to estimate a representative range of the additional reserves to be developed. . It is not an objective to obtain the best deterministic model, but to mitigate uncertainties by using observed data. The objective is to improve the methodology initiated by Moura Filho (2006), applied to a simple model. The methodology presented in this work is applied in two study cases with similar complexity. Firstly, the methodology is verified and validated, on global scale, in Namorado Field. Then, at the application stage, it is chosen a synthetic reservoir model made from real outcrop data of Brazil and involving information from analog fields with turbiditic systems deposited in deep waters. The methodology allows the redefinition of the probability and levels of the dynamic and static attributes in order: (1) to reduce the group of possible history matching obtaining more realistic models; (2) to identify the existent uncertainty as a function of observed data; (3) to decrease the uncertainty range of critical reservoir parameters; (4) to increase the confidence in production forecast. One contribution of this work is to present a quantitative approach to increase the reliability on the use of reservoir simulation as an auxiliary tool in decision processes. Another purpose of this work is to provide a procedure to reduce the consumed time to handle multiples uncertainty attributes during the history matching. / Mestrado / Reservatórios e Gestão / Mestre em Ciências e Engenharia de Petróleo
|
57 |
Comparação de métodos de otimização para o problema de ajuste de histórico em ambientes paralelosXavier, Carolina Ribeiro 18 August 2009 (has links)
Submitted by isabela.moljf@hotmail.com (isabela.moljf@hotmail.com) on 2017-05-05T11:50:07Z
No. of bitstreams: 1
carolinaribeiroxavier.pdf: 2823825 bytes, checksum: af5d50f5cdbb099ed71457b9baaabdc9 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-05-17T13:34:27Z (GMT) No. of bitstreams: 1
carolinaribeiroxavier.pdf: 2823825 bytes, checksum: af5d50f5cdbb099ed71457b9baaabdc9 (MD5) / Made available in DSpace on 2017-05-17T13:34:27Z (GMT). No. of bitstreams: 1
carolinaribeiroxavier.pdf: 2823825 bytes, checksum: af5d50f5cdbb099ed71457b9baaabdc9 (MD5)
Previous issue date: 2009-08-18 / O processo de ajuste histórico tem como objetivo a determinação dos parâmetros de modelos de reservatório de petróleo. Uma vez ajustados, os modelos podem ser utilizados para a previsão do comportamento do reservatório. Este trabalho apresenta uma comparação de diferentes métodos de otimização para a solução deste problema. Métodos baseados em derivadas são comparados com um algoritmo genético. Em particular, compara-se os métodos: Levenberg-Marquardt, Quasi-Newton, Gradiente Conjugado n~ao linear, máxima descida e algoritmo genético. Devido à grande demanda computacional deste problema a computação paralela foi amplamente utilizada. As comparações entre os algoritmos de otimização foram realizadas em um ambiente de computação paralela heterogêneo e os resultados preliminares são apresentados e discutidos. / The process of history matching aims on the determination of the models' parameters from a petroleum reservoir. Once adjusted, the models can be used for the prediction of the reservoir behavior. This work presents a comparsion of different optimization methods for this problem's solution. Derivative based methods are compared to a genetic algorithm. In particular, the following methods are compared: Levenberg-Marquadt, Quasi-Newton, Non Linear Conjugate Gradient, steepest descent and genetic algorithm. Due to the great computational demand of this problem, the parallel computing has been widely used. The comparsions among the optimization algorithms were performed in an heterogeneous parallel computing environment and the preliminar results are presented and discussed.
|
58 |
Model Selection and Uniqueness Analysis for Reservoir History MatchingRafiee, Mohammad Mohsen 28 January 2011 (has links)
“History matching” (model calibration, parameter identification) is an established method for determination of representative reservoir properties such as permeability, porosity, relative permeability and fault transmissibility from a measured production history; however the uniqueness of selected model is always a challenge in a successful history matching.
Up to now, the uniqueness of history matching results in practice can be assessed only after individual and technical experience and/or by repeating history matching with different reservoir models (different sets of parameters as the starting guess).
The present study has been used the stochastical theory of Kullback & Leibler (K-L) and its further development by Akaike (AIC) for the first time to solve the uniqueness problem in reservoir engineering. In addition - based on the AIC principle and the principle of parsimony - a penalty term for OF has been empirically formulated regarding geoscientific and technical considerations. Finally a new formulation (Penalized Objective Function, POF) has been developed for model selection in reservoir history matching and has been tested successfully in a North German gas field. / „History Matching“ (Modell-Kalibrierung, Parameter Identifikation) ist eine bewährte Methode zur Bestimmung repräsentativer Reservoireigenschaften, wie Permeabilität, Porosität, relative Permeabilitätsfunktionen und Störungs-Transmissibilitäten aus einer gemessenen Produktionsgeschichte (history).
Bis heute kann die Eindeutigkeit der identifizierten Parameter in der Praxis nicht konstruktiv nachgewiesen werden. Die Resultate eines History-Match können nur nach individueller Erfahrung und/oder durch vielmalige History-Match-Versuche mit verschiedenen Reservoirmodellen (verschiedenen Parametersätzen als Startposition) auf ihre Eindeutigkeit bewertet werden.
Die vorliegende Studie hat die im Reservoir Engineering erstmals eingesetzte stochastische Theorie von Kullback & Leibler (K-L) und ihre Weiterentwicklung nach Akaike (AIC) als Basis für die Bewertung des Eindeutigkeitsproblems genutzt. Schließlich wurde das AIC-Prinzip als empirischer Strafterm aus geowissenschaftlichen und technischen Überlegungen formuliert. Der neu formulierte Strafterm (Penalized Objective Function, POF) wurde für das History Matching eines norddeutschen Erdgasfeldes erfolgreich getestet.
|
59 |
[pt] AVALIANDO O USO DO ALGORITMO RANDOM FOREST PARA SIMULAÇÃO EM RESERVATÓRIOS MULTI-REGIÕES / [en] EVALUATING THE USE OF RANDOM FOREST REGRESSOR TO RESERVOIR SIMULATION IN MULTI-REGION RESERVOIRSIGOR CAETANO DINIZ 22 June 2023 (has links)
[pt] Simulação de reservatórios de óleo e gás é uma demanda comum em engenharia de petróleo e pesquisas relacionadas, que pode requerer um elevado custo computacional de tempo e processamento ao resolver um problema matemático. Além disso, alguns métodos de caracterização de reservatórios necessitam múltiplas iterações, resultando em muitas simulações para obter um resultado. Também podemos citar os métodos baseados em conjunto, tais como o ensemble Kalman filter, o EnKF, e o Ensemble Smoother With Multiple Data Assimilation,o ES-MDA, que requerem muitas simulações. Em contrapartida, o uso de aprendizado de máquina cresceu bastante na indústria de energia. Isto pode melhorar a acurácia de predição, otimizar estratégias e outros. Visando reduzir as complexidades de simulação de reservatórios, este trabalho investiga o uso de aprendizado de máquina como uma alternativa a simuladores convencionais. O modelo Random Forest Regressor é testado para reproduzir respostas de pressão em um reservatório multi-região radial composto. Uma solução analítica é utilizada para gerar o conjunto de treino e teste para o modelo. A partir de experimentação e análise, este trabalho tem o objetivo de suplementar a utilização de aprendizado de máquina na indústria de energia. / [en] Oil and gas reservoir simulation is a common demand in petroleum
engineering, and research, which may have a high computational cost, solving
a mathematical numeric problem, or high computational time. Moreover,
several reservoir characterization methods require multiple iterations, resulting
in many simulations to obtain a reasonable characterization. It is also
possible to mention ensemble-based methods, such as the ensemble Kalman
filter, EnKF, and the Ensemble Smoother With Multiple Data Assimilation,
ES-MDA, which demand lots of simulation runs to provide the output
result. As a result, reservoir simulation might be a complex subject to
deal with when working with reservoir characterization. The use of machine
learning has been increasing in the energy industry. It can improve the
accuracy of reservoir predictions, optimize production strategies, and many
other applications. The complexity and uncertainty of reservoir models pose
significant challenges to traditional modeling approaches, making machine
learning an attractive solution. Aiming to reduce reservoir simulation’s
complexities, this work investigates using a machine-learning model as an
alternative to conventional simulators. The Random Forest regressor model
is experimented with to reproduce pressure response solutions for multi-region
radial composite reservoirs. An analytical approach is employed to create
the training dataset in the following procedure: the permeability is sorted
using a specific distribution, and the output is generated using the analytical
solution. Through experimentation and analysis, this work aims to advance
our understanding of using machine learning in reservoir simulation for the
energy industry.
|
60 |
[en] EVALUATING THE IMPACT OF THE INFLATION FACTORS GENERATION FOR THE ENSEMBLE SMOOTHER WITH MULTIPLE DATA ASSIMILATION / [pt] INVESTIGANDO O IMPACTO DA GERAÇÃO DOS FATORES DE INFLAÇÃO PARA O ENSEMBLE SMOOTHER COM MÚLTIPLA ASSIMILAÇÃO DE DADOSTHIAGO DE MENEZES DUARTE E SILVA 09 September 2021 (has links)
[pt] O ensemble smoother with multiple data assimilation (ES-MDA) se tornou
um poderoso estimador de parâmetros. A principal ideia do ES-MDA
é assimilar os mesmos dados com a matriz de covariância dos erros dos dados
inflada. Na implementação original do ES-MDA, os fatores de inflação e
o número de assimilações são escolhidos a priori. O único requisito é que a
soma dos inversos de tais fatores seja igual a um. Naturalmente, escolhendo-os
iguais ao número de assimilações cumpre este requerimento. Contudo, estudos
recentes mostraram uma relação entre a equação de atualização do ES-MDA
com a solução para o problema inverso regularizado. Consequentemente, tais
elementos agem como os parâmetros de regularização em cada assimilação.
Assim, estudos propuseram técnicas para gerar tais fatores baseadas no princípio
da discrepância. Embora estes estudos tenham propostos técnicas, um
procedimento ótimo para gerar os fatores de inflação continua um problema
em aberto. Mais ainda, tais estudos divergem em qual método de regularização
é sufiente para produzir os melhores resultados para o ES-MDA. Portanto,
nesta tese é abordado o problema de gerar os fatores de inflação para o ESMDA
e suas influências na performance do método. Apresentamos uma análise
numérica do impacto de tais fatores nos parâmetros principais do ES-MDA:
o tamanho do conjunto, o número de assimilações e o vetor de atualização
dos parâmetros. Com a conclusão desta análise, nós propomos uma nova técnica
para gerar os fatores de inflação para o ES-MDA baseada em um método
de regularização para algorítmos do tipo Levenberg-Marquardt. Investigando
os resultados de um problema de inundação de um reservatório 2D, o novo
método obtém melhor estimativa tanto para os parâmetros do modelo tanto
quanto para os dados observados. / [en] The ensemble smoother with multiple data assimilation (ES-MDA) gained
much attention as a powerful parameter estimation method. The main idea
of the ES-MDA is to assimilate the same data multiple times with an inflated
data error covariance matrix. In the original ES-MDA implementation, these
inflation factors, such as the number of assimilations, are selected a priori.
The only requirement is that the sum of the inflation factors inverses must be
equal to one. Therefore, selecting them equal to the number of assimilations
is a straightforward choice. Nevertheless, recent studies have shown a relationship
between the ES-MDA update equation and the solution to a regularized
inverse problem. Hence, the inflation factors play the role of the regularization
parameter at each ES-MDA assimilation step. As a result, they have also suggested
new procedures to generate these elements based on the discrepancy
principle. Although several studies proposed efficient techniques to generate
the ES-MDA inflation factors, an optimal procedure to generate them remains
an open problem. Moreover, the studies diverge on which regularization scheme
is sufficient to provide the best ES-MDA outcomes. Therefore, in this work,
we address the problem of generating the ES-MDA inflation factors and their
influence on the method s performance. We present a numerical analysis of
the influence of such factors on the main parameters of the ES-MDA, such
as the ensemble size, the number of assimilations, and the ES-MDA vector of
model parameters update. With the conclusions presented in the aforementioned
analysis, we propose a new procedure to generate ES-MDA inflation
factors based on a regularizing scheme for Levenberg-Marquardt algorithms.
It is shown through a synthetic two-dimensional waterflooding problem that
the new method achieves better model parameters and data match compared
to the other ES-MDA implementations available in the literature.
|
Page generated in 0.0653 seconds