• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 29
  • 24
  • 10
  • 10
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 146
  • 16
  • 16
  • 15
  • 15
  • 12
  • 11
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Very fines layers delimitation using the Wavelet Transform Modulus Maxima lines(WTMM) combined with the DWT

Ouadfeul, Sid-Ali 12 May 2007 (has links) (PDF)
The delimitation of the very fines lithologies from seismic data is a crucial problem in geophysics, indeed the presence of the noise in seismic traces can deteriorate information and hide important hydrocarbons accumulations. For that we have to try in this paper to use a recent technique developed by A.Arneodo and his collaborators which is the wavelet transform modulus maxima lines (WTMM) combined with the discrete wavelet transform (DWT), to denoising traces and characterize each amplitude in the seismic trace by an exponent of Holder. In order to separate information that is of a significant geological lithology variation with the various noises. Our application at VSP data shows that this technique is a powerful tool of processing.
22

Tool steel for tool holder applications : microstructure and mechanical properties

Medvedeva, Anna January 2008 (has links)
<p>Large improvements in cutting tool design and technology, including the application of advanced surface engineering treatments on the cemented carbide insert, have been achieved in the last decades to enhance tool performance. However, the problem of improving the tool body material is not adequately studied.</p><p>Fatigue is the most common failure mechanism in cutting tool bodies. Rotating tools, tool going in and out of cutting engagement, impose dynamic stresses and require adequate fatigue strength of the tool. Working temperatures of milling cutter bodies in the insert pocket can reach up to 600°C depending on the cutting conditions and material of the workpiece. As a result, steel for this application shall have good hot properties such as high temper resistance and high hot hardness values to avoid plastic deformation in the insert pocket of the cutting tool. Machinability of the steel is also essential, as machining of steel represents a large fraction of the production cost of a milling cutter.</p><p>This thesis focus on the improvement of the cutting tool performance by the use of steel grades for tool bodies with optimized combination of fatigue strength, machinability and properties at elevated temperatures.</p><p>The first step was to indentify the certain limit of the sulphur addition for improved machinability which is allowable without reducing the fatigue strength of the milling cutter body below an acceptable level. The combined effect of inclusions, surface condition and geometrical stress concentrator on the fatigue life of the tool steel in smooth specimens and in tool components were studied in bending fatigue.</p><p>As the fatigue performance of the tools to a large extent depends on the stress relaxation resistance at elevated temperature use, the second step in this research was to investigate the stress relaxation of the commonly used milling cutter body materials and a newly steel developed within the project. Compressive residual stresses were induced by shot peening and their response to mechanical and thermal loading as well as the material substructures and their dislocation characteristics were studied using X-ray diffraction.</p><p>Softening resistance of two hot work tool steels and a newly developed steel was investigated during high temperature hold times and isothermal fatigue and discussed of with respect to their microstructure. Carbide morphology and precipitation as well as dislocation structure were determined using transmission electron microscopy and X-ray line broadening analysis.</p>
23

Small holder farmers' perceptions, host plant suitability and natural enemies of the groundnut leafminer, Aproaerema modicella (Lepidoptera: Gelechiidae) in South Africa / Anchen van der Walt

Van der Walt, Anchen January 2007 (has links)
Thesis (M. Environmental Science)--North-West University, Potchefstroom Campus, 2008.
24

Tool steel for tool holder applications : microstructure and mechanical properties

Medvedeva, Anna January 2008 (has links)
Large improvements in cutting tool design and technology, including the application of advanced surface engineering treatments on the cemented carbide insert, have been achieved in the last decades to enhance tool performance. However, the problem of improving the tool body material is not adequately studied. Fatigue is the most common failure mechanism in cutting tool bodies. Rotating tools, tool going in and out of cutting engagement, impose dynamic stresses and require adequate fatigue strength of the tool. Working temperatures of milling cutter bodies in the insert pocket can reach up to 600°C depending on the cutting conditions and material of the workpiece. As a result, steel for this application shall have good hot properties such as high temper resistance and high hot hardness values to avoid plastic deformation in the insert pocket of the cutting tool. Machinability of the steel is also essential, as machining of steel represents a large fraction of the production cost of a milling cutter. This thesis focus on the improvement of the cutting tool performance by the use of steel grades for tool bodies with optimized combination of fatigue strength, machinability and properties at elevated temperatures. The first step was to indentify the certain limit of the sulphur addition for improved machinability which is allowable without reducing the fatigue strength of the milling cutter body below an acceptable level. The combined effect of inclusions, surface condition and geometrical stress concentrator on the fatigue life of the tool steel in smooth specimens and in tool components were studied in bending fatigue. As the fatigue performance of the tools to a large extent depends on the stress relaxation resistance at elevated temperature use, the second step in this research was to investigate the stress relaxation of the commonly used milling cutter body materials and a newly steel developed within the project. Compressive residual stresses were induced by shot peening and their response to mechanical and thermal loading as well as the material substructures and their dislocation characteristics were studied using X-ray diffraction. Softening resistance of two hot work tool steels and a newly developed steel was investigated during high temperature hold times and isothermal fatigue and discussed of with respect to their microstructure. Carbide morphology and precipitation as well as dislocation structure were determined using transmission electron microscopy and X-ray line broadening analysis.
25

The Processing Of Porous Ni-rich Tini Alloys Via Powder Metallurgy And Their Characterization

Nakas, Gul Ipek 01 September 2012 (has links) (PDF)
In the scope of this study, TiNi foams with porosities in the range of 39-64 vol% were processed from prealloyed powders by Mg space holder technique. Porous TiNi alloys displayed homogeneously distributed spherical pores with interconnections, which is suitable for bone ingrowth. Porous Ti-50.8 at%Ni alloys were processed by sintering at 1200 &deg / C for 2 h to analyze the microstructure as well as mechanical behavior. SEM, TEM and XRD studies were conducted for the characterization of microstructure and phase analyses in addition to the mechanical characterization performed by monotonic and superelasticity compression tests as well as compressive fatigue tests. It was observed that stress required to trigger martensitic transformation was decreased via increasing porosity. The monotonic compression test results also indicated that altering the porosity content of TiNi foams leads to different monotonic compression behaviors. It was observed that the foams display more bulk deformation like behavior as a composite structure composed of TiNi and macropores when the porosity content was low. As the porosity content has increased, the struts became more effective and deformation proceeds by the collapse of favorable struts. On the other hand, cyclic superelasticity tests results indicated that maximum achieved and recovered strain values at the end of fifth cycle increase while the fraction of strain recovered at the end of fifth cycle decreases with decreasing porosity content. Furthermore, the fatigue lives of the processed foams were observed to vary within a band which has a width decreasing with decreasing &sigma / max / &sigma / y yielding an endurance limit ranging in between 26-89 MPa or 0.5-0.6 &sigma / y. Fractography studies on the failed foams after fatigue testing revealed that the failure occurs by the coalescence of micro-cracks initiated from pore walls leading to macro-cracks aligned at 45o with respect to the loading axis. In addition to the mentioned characterization studies, the effects of sintering temperature and time on TiNi foams with 58 vol% porosity as well as heat treatment on the microstructure and the mechanical behavior of TiNi foams with 49 vol% porosity were analyzed with SEM and compression tests. Aging of TiNi foams with 49 vol% porosity at 450 &deg / C for 1.5 h has shown that the presence of Ti3Ni4 precipitates improve the superelastic response.
26

Utveckling av Steghållare : För yrkesmän med skåpbil

Andersson, Henrik, Hjalmarsson, Anton January 2008 (has links)
Uppgiften som detta examensarbete går ut på är att utveckla en ny steghållare som ska ingå i Thules produktserie Professional. Det är önskvärt att kunna lasta stegen bakifrån och möjliggöra lastning från marken även på högre skåpbilar. Steghållaren ska framförallt vara anpassad till yrkesmän, såsom hantverkare, målare, etc. Därför söker Thule en robust, säker och lättmanövrerad steghållare med attraktivt utseende. Steghållaren ska minska den tid det tar att lasta på och av stegen. Produkten måste även klara miljökraven samt korrosion då den kommer att användas största delen utomhus. Steghållaren ska passa både till Thules Professional bar och Thules fyrkantsrör. / The task given by Thule has the purpose of develop a new ladder holder for the product line Professional. Thule is obtaining a robust, safe, and easy to handle ladder holder with an attractive look. It is desirable to be able to load the ladder from behind and make loading standing on the ground possible even on top of higher vans. The ladder holder is supposed to be suited for professionals such as craftsmen and painters. This product is designed to reduce time waste and heavy lifts. It is also desirable to withstand corrosion and meet the environmental requirements.
27

Production And Characterization Of Porous Titanium Alloys

Esen, Ziya 01 October 2007 (has links) (PDF)
In the present study, production of titanium and Ti6Al4V alloy foams has been investigated using powder metallurgical space holder technique in which magnesium powder were utilized to generate porosities in the range 30 to 90 vol. %. Also, sintering of titanium and Ti-6Al-4V alloy powders in loose and compacted condition at various temperatures (850-1250oC) and compaction pressures (120-1125 MPa), respectively, were investigated to elucidate the structure and mechanical properties of the porous cell walls present due to partial sintering of powders in the specimens prepared by space holder technique. In addition, microstructure and mechanical response of the porous alloys were compared with the furnace cooled bulk samples of Ti-6Al-4V-ELI alloy subsequent to betatizing. It has been observed that the magnesium also acts as a deoxidizer during foaming experiments, and its content and removal temperature is critical in determining the sample collapse. Stress-strain curves of the foams exhibited a linear elastic region / a long plateau stage / and a densification stage. Whereas, curves of loose powder sintered samples were similar to that of bulk alloy. Shearing failure in foam samples occurred as series of deformation bands formed in the direction normal to the applied load and cell collapsing occured in discrete bands. Average neck size of samples sintered in loose or compacted condition were found to be different even when they had the same porosity, and the strength was observed to change linearly with the square of neck size ratio. The relation between mechanical properties of the foam and its relative density, which is calculated considering the micro porous cell wall, was observed to obey power law. The proportionality constant and the exponent reflect the structure and properties of cell walls and edges and macro pore character.
28

Processing And Characterization Of Porous Titanium Nickel Shape Memory Alloys

Aydogmus, Tarik 01 July 2010 (has links) (PDF)
Porous TiNi alloys (Ti-50.4 at. %Ni and Ti-50.6 at. %Ni) with porosities in the range 21%-81% were prepared successfully applying a new powder metallurgy fabrication route in which magnesium was used as space holder resulting in either single austenite phase or a mixture of austenite and martensite phases dictated by the composition of the starting prealloyed powders but entirely free from secondary brittle intermetallics, oxides, nitrides and carbonitrides. Magnesium vapor do not only prevents secondary phase formation and contamination but also provides higher temperature sintering opportunity preventing liquid phase formation at the eutectic temperature, 1118 &deg / C resulting from Ni enrichment due to oxidation. By two step sintering processing (holding the sample at 1100 &deg / C for 30 minutes and subsequently sintering at temperatures higher than the eutectic temperature, 1118 &deg / C) magnesium may allow sintering probably up to the melting point of TiNi. The processed alloys exhibited interconnected (partially or completely depending on porosity content) open macro-pores spherical in shape and irregular micro-pores in the cell walls resulting from incomplete sintering. It has been found that porosity content of the foams have no influence on the phase transformation temperatures while deformation and oxidation are severely influential. Porous TiNi alloys displayed excellent superelasticity and shape memory behavior. Space holder technique seems to be a promising method for production of porous TiNi alloys. Desired porosity level, pore shape and accordingly mechanical properties were found to be easily adjustable.
29

Characterization And Fatigue Behaviour Of Ti-6al-4v Foams

Asik, Emin Erkan 01 August 2012 (has links) (PDF)
Porous Ti-6Al-4V alloys are widely used in the biomedical applications for hard tissue implantation due to its biocompatibility and elastic modulus being close to that of bone. In this study, porous Ti-6Al-4V alloys were produced with a powder metallurgical process, space holder technique, where magnesium powders were utilized in order to generate porosities in the range of 50 to 70 vol. %. In the productions of Ti-6Al-4V foams, first, the spherical Ti-6Al-4V powders with an average size of 55 &mu / m were mixed with spherical magnesium powders sieved to an average size of 375 &mu / m, and then the mixtures were compacted with a hydraulic press under 500 MPa pressure by using a double-ended steel die and finaly, the green compacts were sintered at 1200
30

Utveckling av Steghållare : För yrkesmän med skåpbil

Andersson, Henrik, Hjalmarsson, Anton January 2008 (has links)
<p>Uppgiften som detta examensarbete går ut på är att utveckla en ny steghållare som ska ingå i Thules produktserie Professional. Det är önskvärt att kunna lasta stegen bakifrån och möjliggöra lastning från marken även på högre skåpbilar. Steghållaren ska framförallt vara anpassad till yrkesmän, såsom hantverkare, målare, etc. Därför söker Thule en robust, säker och lättmanövrerad steghållare med attraktivt utseende. Steghållaren ska minska den tid det tar att lasta på och av stegen. Produkten måste även klara miljökraven samt korrosion då den kommer att användas största delen utomhus. Steghållaren ska passa både till Thules Professional bar och Thules fyrkantsrör.</p> / <p>The task given by Thule has the purpose of develop a new ladder holder for the product line Professional. Thule is obtaining a robust, safe, and easy to handle ladder holder with an attractive look. It is desirable to be able to load the ladder from behind and make loading standing on the ground possible even on top of higher vans. The ladder holder is supposed to be suited for professionals such as craftsmen and painters. This product is designed to reduce time waste and heavy lifts. It is also desirable to withstand corrosion and meet the environmental requirements.</p>

Page generated in 0.046 seconds