Spelling suggestions: "subject:"roles -"" "subject:"holds -""
401 |
Second-Order Perturbation Analysis of the St. Venant Equations in Relation to Bed-Load Transport and Equilibrium Scour Hole DevelopmentLambrechtsen, Frans Joseph 01 December 2013 (has links)
This analysis is an expansion of research done by Rollin Hotchkiss during his Ph.D work. The research uses fluid flow, sediment transport, and perturbation theory to predict where scour will occur in a variable-width channel. The resulting equations also determine equilibrium scour depth based upon the stream bed elevation derived from a dimensionless bed slope equation. Hotchkiss perturbed the width of the channel using a second order Taylor Series perturbation but neglected second order terms. The present work follows the same procedures as Hotchkiss but maintains the second order terms. The primary purpose is to examine how the additional terms impact the final equilibrium scour depth and location results. The results of this research show a slight variation from the previous work. With respect to a hypothetical case, there was not a significant amount of change, thereby verifying that scour migrates downstream with an increase in discharge. Interestingly, the comparison shows a slight increase in sediment discharge through the test reach analyzed. Supplementary to previous research, values of scour depth and location in terms of distance from the start of channel-width perturbation are provided; at the lowest discharge maximum scour occurs 4% of a wavelength upstream of the narrowest portion, and at the highest discharge maximum scour occurs at the narrowest point. Additionally, a one-dimensional HEC-RAS sediment transport model and a two- dimensional SRH flow model were compared to the analytical results. Results show that the model output of the HEC-RAS model and the SRH model adequately approximate the analytical model studied. Specifically, the results verify that maximum scour depth transitions downstream as discharge increases.
|
402 |
Geodesic motion in the Reissner-Nordström space-time / Movimento geodésico no espaço-tempo de Reissner-NordstömCapobianco, Rogério Augusto 04 July 2019 (has links)
The motion of neutral test particles, both massive and massless, in the space time of a charged source described by the Reissner-Nordström solution is studied. This solution is characterized by two parameters, mass and charge, which defines the horizons of the source. When the mass is larger than the charge, the solution describes a black hole, with two distinct horizons. When the mass and charge are equal there is an extremal black hole, and both horizons merge to one. Finally, when the charge is larger than the mass there is a naked singularity, with no horizon. The structure and properties of these different type of solution are presented and discussed. A general solution of the equations of motion is presented in function of the Weierstrass elliptic function ℘. In addition, the possible orbits for test particles are discussed, and the conditions for existence of closed, circular or escape orbits are presented. The classifications is made based on the particles energy, and the mass and charge of the source. We find that all mentioned orbits are allowed for the three different type of solutions. In particular, for extremal black holes and naked singularities, we find stable circular orbits located outside the event horizon and hence being visible for an external observer. / O movimento de partículas teste neutras, ambas massivas e sem massa, no espaço-tempo de uma fonte carregada descrita pela solução de Reissner-Nordström é estudada. Essa solução é caracterizada por dois parâmetros, massa e carga, que definem os horizontes da fonte. Quando a massa é maior que a carga tal solução descreve um buraco negro com dois horizontes distintos. Quando a massa e a carga são iguais há um buraco negro extremo, e ambos os horizontes se unem em um. Finalmente, quando a carga é maior que a massa, há uma singularidade nua, sem horizontes. A estrutura e as propriedades dessas diferentes soluções são apresentadas e discutidas. Uma solução geral da equação de movimento é apresentada em termos da função elíptica de Weierstrass, ℘. Além do mais as possiveis órbitas para uma partícula teste são discutidas, e as condições para existência de órbitas fechadas, circulares e de escape são apresentadas. A classificação é feita a partir da energia da partícula, e da massa e carga da fonte. Encontramos que todas as orbitas mencionadas são permitidas nos três diferentes tipos de soluções. Em partícular, para buracos negros extremos e singularidades nuas, encontramos órbitas circulares estáveis localizadas fora do horizonte de eventos e, consequentemente, sendo visível para observadores externos.
|
403 |
Hawkingmassa i Kerr-rumtid / The Hawking Mass in Kerr SpacetimeJonsson Holm, Jonas January 2004 (has links)
<p>In this thesis we calculate the Hawking mass numerically for surfaces in Kerr spacetime. The Hawking mass is a useful tool for proving the Penrose inequality and the result does not contradict the inequality. It also does not contradict the assumption that the Hawking mass should be monotonic for surfaces in Kerr spacetime. The Hawking mass is quasi-local and defined by the spin coefficents of Newman and Penrose, so first we give a discussion about quasi-local quantities and then a short description of the Newman-Penrose formalism.</p>
|
404 |
Bridging the gap between post-Newtonian theory and numerical relativity in gravitational-wave data analysisOhme, Frank January 2012 (has links)
One of the most exciting predictions of Einstein's theory of gravitation that have not yet been proven experimentally by a direct detection are gravitational waves. These are tiny distortions of the spacetime itself, and a world-wide effort to directly measure them for the first time with a network of large-scale laser interferometers is currently ongoing and expected to provide positive results within this decade. One potential source of measurable gravitational waves is the inspiral and merger of two compact objects, such as binary black holes. Successfully finding their signature in the noise-dominated data of the detectors crucially relies on accurate predictions of what we are looking for.
In this thesis, we present a detailed study of how the most complete waveform templates can be constructed by combining the results from
(A) analytical expansions within the post-Newtonian framework and
(B) numerical simulations of the full relativistic dynamics. We analyze various strategies to construct complete hybrid waveforms that consist of a post-Newtonian inspiral part matched to numerical-relativity data. We elaborate on exsisting approaches for nonspinning systems by extending the accessible parameter space and introducing an alternative scheme based in the Fourier domain. Our methods can now be readily applied to multiple spherical-harmonic modes and precessing systems.
In addition to that, we analyze in detail the accuracy of hybrid waveforms with the goal to quantify how numerous sources of error in the approximation techniques affect the application of such templates in real gravitational-wave searches. This is of major importance for the future construction of improved models, but also for the correct interpretation of gravitational-wave observations that are made utilizing any complete waveform family. In particular, we comprehensively discuss how long the numerical-relativity contribution to the signal has to be in order to make the resulting hybrids accurate enough, and for currently feasible simulation lengths we assess the physics one can potentially do with template-based searches. / Eine der aufregendsten Vorhersagen aus Einsteins Gravitationstheorie, die bisher noch nicht direkt durch ein Experiment nachgewiesen werden konnten, sind Gravitationswellen. Dies sind winzige Verzerrungen der Raumzeit selbst, und es wird erwartet, dass das aktuelle Netzwerk von groß angelegten Laserinterferometern im kommenden Jahrzehnt die erste direkte Gravitationswellenmessung realisieren kann. Eine potentielle Quelle von messbaren Gravitationswellen ist das Einspiralen und Verschmelzen zweier kompakter Objekte, wie z.B. ein Binärsystem von Schwarzen Löchern. Die erfolgreiche Identifizierung ihrer charakteristischen Signatur im Rausch-dominierten Datenstrom der Detektoren hängt allerdings entscheidend von genauen Vorhersagen ab, was wir eigentlich suchen.
In dieser Arbeit wird detailliert untersucht, wie die komplettesten Wellenformenmodelle konstruiert werden können, indem die Ergebnisse von
(A) analytischen Entwicklungen im post-Newtonschen Verfahren und
(B) numerische Simulationen der voll-relativistischen Bewegungen verknüpft werden. Es werden verschiedene Verfahren zur Erstellung solcher "hybriden Wellenformen", bei denen der post-Newtonsche Teil mit numerischen Daten vervollständigt wird, analysiert. Existierende Strategien für nicht-rotierende Systeme werden vertieft und der beschriebene Parameterraum erweitert. Des Weiteren wird eine Alternative im Fourierraum eingeführt. Die entwickelten Methoden können nun auf multiple sphärisch-harmonische Moden und präzedierende Systeme angewandt werden.
Zusätzlich wird die Genauigkeit der hybriden Wellenformen mit dem Ziel analysiert, den Einfluss verschiedener Fehlerquellen in den Näherungstechniken zu quantifizieren und die resultierenden Einschränkungen bei realen Anwendungen abzuschätzen. Dies ist von größter Bedeutung für die zukünftige Entwicklung von verbesserten Modellen, aber auch für die korrekte Interpretation von Gravitationswellenbeobachtungen, die auf Grundlage solcher Familien von Wellenformen gemacht worden sind. Insbesondere wird diskutiert, wie lang der numerische Anteil des Signals sein muss, um die Hybride genau genug konstruieren zu können. Für die aktuell umsetzbaren Simulationslängen wird die Physik eingeschätzt, die mit Hilfe von Modell-basierten Suchen potentiell untersucht werden kann.
|
405 |
Making Maps and Keeping Logs : Quantum Gravity from Classical ViewpointsJohansson, Niklas January 2009 (has links)
This thesis explores three different aspects of quantum gravity. First we study D3-brane black holes in Calabi-Yau compactifications of type IIB string theory. Using the OSV conjecture and a relation between topological strings and matrix models we show that some black holes have a matrix model description. This is the case if the attractor mechanism fixes the internal geometry to a conifold at the black hole horizon. We also consider black holes in a flux compactification and compare the effects of the black holes and fluxes on the internal geometry. We find that the fluxes dominate. Second, we study the scalar potential of type IIB flux compactifications. We demonstrate that monodromies of the internal geometry imply as a general feature the existence of long series of continuously connected minima. This allows for the embedding of scenarios such as chain inflation and resonance tunneling into string theory. The concept of monodromies is also extended to include geometric transitions: passing to a different Calabi-Yau topology, performing its monodromies and then returning to the original space allows for novel transformations. All constructions are performed explicitly, using both analytical and numerical techniques, in the mirror quintic Calabi-Yau. Third, we study cosmological topologically massive gravity at the chiral point, a prime candidate for quantization of gravity in three dimensions. The prospects of this scenario depend crucially of the stability of the theory. We demonstrate the presence of a negative energy bulk mode that grows logarithmically toward the AdS boundary. The AdS isometry generators have non-unitary matrix representations like in logarithmic CFT, and we propose that the CFT dual for this theory is logarithmic. In a complementing canonical analysis we also demonstrate the existence of this bulk degree of freedom, and we present consistent boundary conditions encompassing the new mode.
|
406 |
Information geometries in black hole physicsPidokrajt, Narit January 2009 (has links)
In this thesis we aim to develop new perspectives on the statistical mechanics of black holes using an information geometric approach (Ruppeiner and Weinhold geometry). The Ruppeiner metric is defined as a Hessian matrix on a Gibbs surface, and provides a geometric description of thermodynamic systems in equilibrium. This Ruppeiner geometry exhibits physically suggestive features; a flat Ruppeiner metric for systems with no interactions i.e. the ideal gas, and curvature singularities signaling critical behavior(s) of the system. We construct a flatness theorem based on the scaling property of the black holes, which proves to be useful in many cases. Another thermodynamic geometry known as the Weinhold geometry is defined as the Hessian of internal energy and is conformally related to the Ruppeiner metric with the system’s temperature as a conformal factor. We investigate a number of black hole families in various gravity theories. Our findings are briefly summarized as follows: the Reissner-Nordström type, the Einstein-Maxwell-dilaton andBTZ black holes have flat Ruppeiner metrics that can be represented by a unique state space diagram. We conjecture that the state space diagram encodes extremality properties of the black hole solution. The Kerr type black holes have curved Ruppeiner metrics whose curvature singularities are meaningful in five dimensions and higher, signifying the onset of thermodynamic instabilities of the black hole in higher dimensions. All the three-parameter black hole families in our study have non-flat Ruppeiner and Weinhold metrics and their associated curvature singularities occur in the extremal limits. We also study two-dimensional black hole families whose thermodynamic geometries are dependent on parameters that determine the thermodynamics of the black hole in question. The tidal charged black hole which arises in the braneworld gravity is studied. Despite its similarity to the Reissner-Nordström type, its thermodynamic geometries are distinctive. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. / Geometry and Physics
|
407 |
Hawkingmassa i Kerr-rumtid / The Hawking Mass in Kerr SpacetimeJonsson Holm, Jonas January 2004 (has links)
In this thesis we calculate the Hawking mass numerically for surfaces in Kerr spacetime. The Hawking mass is a useful tool for proving the Penrose inequality and the result does not contradict the inequality. It also does not contradict the assumption that the Hawking mass should be monotonic for surfaces in Kerr spacetime. The Hawking mass is quasi-local and defined by the spin coefficents of Newman and Penrose, so first we give a discussion about quasi-local quantities and then a short description of the Newman-Penrose formalism.
|
408 |
A Quasilocal Hamiltonian for Gravity with Classical and Quantum ApplicationsBooth, Ivan January 2000 (has links)
I modify the quasilocal energy formalism of Brown and York into a purely Hamiltonian form. As part of the reformulation, I remove their restriction that the time evolution of the boundary of the spacetime be orthogonal to the leaves of the time foliation. Thus the new formulation allows an arbitrary evolution of the boundary which physically corresponds to allowing general motions of the set of observers making up that boundary. I calculate the rate of change of the quasilocal energy in such situations, show how it transforms with respect to boosts of the boundaries, and use the Lanczos-Israel thin shell formalism to reformulate it from an operational point of view. These steps are performed both for pure gravity and gravity with attendant matter fields. I then apply the formalism to characterize naked black holes and study their properties, investigate gravitational tidal heating, and combine it with the path integral formulation of quantum gravity to analyze the creation of pairs of charged and rotating black holes. I show that one must use complex instantons to study this process though the probabilities of creation remain real and consistent with the view that the entropy of a black hole is the logarithm of the number of its quantum states.
|
409 |
Further Investigation on Null and Interior Field Methods for Laplace¡¦s Equation with Very Small Circular HolesLin, I-Sheng 12 August 2011 (has links)
The error analysis is made for the simple annular domain with the circular boundaries having the same origin. The error bounds are derived, and the optimal convergence rates can be archived. For circular domains with circular boundaries, the same convergence rates can be achieved by strict proof. Moreover, the NFM algorithms and its conservative schemes can be applied to very small holes, which are difficult for other numerical methods to handle. Both the NFM and the collocation Trefftz method(CTM) are used for very small circular holes, the CTM is superior to the NFM in accuracy and stability.
|
410 |
Discovery Potential Of Quantum Black Holes In Add Model With The Cms DetectorGamsizkan, Halil 01 September 2011 (has links) (PDF)
With the long awaited start-up of the LHC, TeV scale physics is now in reach of the particles physicists to explore. There are many questions about the nature to be answered, and many more theories to be tested trying to answer them.
The ADD model of extra dimensions is one such model, written to address the large mass hi- erarchy between the two fundamental energy scales in nature, the electroweak and the Planck scales. ADD model predicts stronger gravity at sub-millimeter distance scales, which would then lead to an interesting physical object to be produced at proton collusions at the LHC: Tiny quantum black holes.
In this thesis we study the discovery potential of CMS for quantum black hole events for proton-proton collusions at sqrt(s) = 14 TeV. Our study details the trigger response of CMS, various criteria and methods for background rejection, affect of experimental uncertainties on measurements, for different model parameter values.
|
Page generated in 0.0589 seconds