• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 7
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 17
  • 13
  • 10
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electric Space Propulsion Concepts Using Calcium Aluminate Electride Hollow Cathodes

Gondol, Norman 27 June 2022 (has links)
This dissertation investigates the possibility of using compact and heaterless calcium aluminate electride hollow cathodes in different electric propulsion systems for space applications. As conventional hollow cathodes generally require a heater to reach the high operating temperatures necessary to thermally emit electrons, research on low temperature heaterless hollow cathodes as electron sources has been increasing. Efforts at Technische Universität Dresden have resulted in an operational hollow cathode design that can be reliably used for low current plasma discharges. Hollow cathodes are crucial components in electric propulsion systems to ionize the propellant and neutralize the extracted ion beam. The successful development of an operational hollow cathode opens the possibility of using the design in different low-power electric propulsion systems. As the electron emission properties of C12A7:e- are still not well understood, a volume-averaged hollow cathode model has been developed as part of this thesis to obtain an improved insight into the plasma processes governing the cathode discharge. The model consists of two computational domains in which the plasma properties are volume-averaged. A lumped-node thermal model coupled with the plasma model provides the cathode temperature distribution for different operating points. The model moreover provides the discharge voltage which can be directly compared to experimental data. The thermal model was compared to thermal measurements to derive adequate values for free model parameters. The discharge voltage fits well for a 1 A discharge but diverges from measurement data at higher currents. The model is a starting point for further modeling efforts and needs to be verified using extensive plasma diagnostics. The first electric propulsion system developed as part of this thesis is an electrothermal device that takes advantage of high particle temperatures in a hollow cathode discharge. A performance model and preliminary test series were used to derive design parameters for a prototype that was used for an extensive parameter study. The thruster reliably generates thrust over a current range between 1 A – 3 A. The thrust achieved with this device is in the high micronewton to low millinewton range. The specific impulse is on the order of 100 s, which is low for electric propulsion systems, and the high discharge voltages of approximately 50 V limit the achievable efficiency to <1%. The second thruster concept is a DC discharge gridded ion thruster using a C12A7:e- hollow cathode as the discharge cathode and the neutral gas inlet. An analytical discharge model combined with a particle-in-cell simulation for ion extraction by electrostatically biased grids was used to design a modular testing prototype. The concept requires a low discharge current on the order of 200 mA. Operating the cathodes in a milliamp discharge current range proved to be difficult and was accompanied by high discharge voltages. Extracting an ion beam from the testing prototype was not successful. The third propulsion system is a magnetoplasmadynamic thruster (MPDT) that takes advantage of a strong magnetic field generated by permanent magnets and an orthogonal current in a plasma discharge using a C12A7:e- hollow cathode. Conventional MPDTs require high current discharges to generate a sufficiently strong self-induced magnetic field. The developed concept is a design alternative to expand the operational envelope to lower powers. A major advantage is the comparatively easy scalability of the device. One prototype for the low amp current range was developed and successfully operated. The generated thrust is in the low millinewton range with a specific impulse up to 1,200 s. The test series highlighted thermal problems with the design. Consequently, a sub-amp version of the concept was developed. The thruster was successfully operated but required high mass flow rates, lowering the specific impulse and efficiency.
12

Implementation of a ¼ Inch Hollow Cathode Into a Miniature Xenon Ion Thruster (MiXI)

Knapp, David Wayne 01 June 2012 (has links) (PDF)
Over the last decade, miniature ion thruster development has remained an active area of research do to its low power, low thrust, and high efficiency, however, due to several technical issues; a flight level miniature ion thruster has proved elusive. This thesis covers the design, fabrication, assembly, and test of an altered version of the Miniature Xenon Ion thruster (MiXI), originally developed by lead engineer Dr. Richard Wirz, at the California Institute of Technology (Caltech). In collaboration with Dr. Wirz, MiXI-CP-V3 was developed at Cal Poly San Luis Obispo with the goal of implementing of a ¼ inch hollow cathode and 3mmx3mm plasma confinement magnets in order to improve the plasma confinement characteristics, reliability, and performance of the MiXI design. Operational testing revealed a mass utilization efficiency of 35-75% and a discharge loss of 550-1200 eV/ion over plasma discharge currents of 0.5-1.5A and propellant flow rates of 0.8-1.3 SCCM. Testing revealed that the MiXI thruster can be operated with a hollow cathode and observations and data gained from this study have led to a greater understanding of the operational parameters of the MiXI thruster, and will contribute to the development and advancement of the MiXI baseline design, with the goal of creating an efficient and reliable flight level miniature ion thruster.
13

Étude de la reconfigurabilité d'une structure à bande interdite électromagnétique (BIE) métallique par plasmas de décharge

Lo, Juslan 14 May 2012 (has links) (PDF)
Les matériaux à bande interdite électromagnétique (BIE) plus connus sous le nom de cristaux photoniques en optique, sont des structures périodiques possédant des propriétés intéressantes que l'on ne retrouve pas dans les matériaux conventionnels. Ces propriétés dépendent des paramètres géométriques de la structure, et des paramètres constitutifs de ses éléments ( E et μ). Ainsi, ils peuvent présenter un indice de réfraction négatif, posséder des bandes interdites ou encore être fortement anisotropes. Pour les dispositifs hyperfréquences, l'exploitation de ces propriétés s'avère très pertinente. Or, ces structures sont en général passives, et l'une des considérations actuelles vise à les rendre reconfigurables, afin d'étendre encore leur champ d'applications. L'originalité de ce travail consiste à utiliser les plasmas comme élément contrôlable. En effet, leurs paramètres physiques (E , diamètre etc.) varient en fonction des conditions de décharge. Pour l'étude de ce principe de reconfigurabilité, un dispositif de diviseur de puissance commutable à base d'un BIE a été défini. Différents plasmas de grand volume à des pressions allant de 40 à 760 torrs ont été étudiés puis intégrés dans le dispositif. Des mesures microondes ont alors mis en évidence le contrôle de la propagation de l'onde par le plasma. Cette thèse, à l'intersection de deux disciplines, plasma et microondes, a permis de valider le concept d'utilisation de plasmas localisés pour rendre reconfigurable certaines propriétés des structures BIE. Suite à cette validation, d'autres travaux sont d'ores et déjà entamés, afin d'améliorer les performances et d'explorer d'autres idées liant notamment métamatériaux et plasmas.
14

Estudos espectroscópicos das propriedades de uma descarga elétrica em atmosfera de gás inerte. / Spectroscopic properties of an electrical discharge in an inert gas atmosphere.

Mirage, Armando 18 November 1989 (has links)
Apresentamos os resultados de medidas espectroscópicas feitas em átomos de elementos contidos em uma descarga elétrica do tipo catodo oco, usando um laser sintonizável de emissão contínua. Com experiências de absorção ótica foi possível determinar a densidade populacional e a temperatura dos átomos de 238U no estado fundamental, em função dos vários parâmetros que caracterizam a descarga. Desenvolvemos um método para a determinação da potência de saturação e calculamos o valor do produto para a transição 0 16.900cm-1 do 238UI. De forma alternativa às medidas óticas oudemos estudar a interação fóton-átomo analisando o sinal optogalvânico induzido na descarga pela radiação laser, com frequência sintonizada na mesma transição atômica do urânio e em função dos parâmetros anteriormente considerados. Os resultados obtidos com as experiências de absorção ótica e espectroscopia optogalvânica / The results of spectroscopic measurements obtained with atomic species present in a hollow cathode type discharge are reported. Using laser optical absorption techniques it was possible to get the population density and the atomic temperature of the 238UI ground state as a function of some discharge parameters. A method to determine the laser saturation intensity was developed, so the value of the product for the 0 16.900cm-1 238UI transition could be calculated. It was also possible to study the photon-atom interaction through the analysis of the optogalvanic signal induced in the laser radiation as a function of the same parameters considered before. Optogalvanic spectroscopy and optical absorption experiments showed the spatial distribution of the atoms in the ground state and excited states inside the cathode. In another set of experiments, a new way of inducing optogalvanic effect was investigated without using a tunable dye laser as the axcitation source. Measurements were done with two copper hollow cathode tubes filled with different gases, that were used as excitation source radiation and as signal detector. The results suggest that it is possible to use the new spectroscopy tecnique for qualitative and quantitative material analysis.
15

Estudos espectroscópicos das propriedades de uma descarga elétrica em atmosfera de gás inerte. / Spectroscopic properties of an electrical discharge in an inert gas atmosphere.

Armando Mirage 18 November 1989 (has links)
Apresentamos os resultados de medidas espectroscópicas feitas em átomos de elementos contidos em uma descarga elétrica do tipo catodo oco, usando um laser sintonizável de emissão contínua. Com experiências de absorção ótica foi possível determinar a densidade populacional e a temperatura dos átomos de 238U no estado fundamental, em função dos vários parâmetros que caracterizam a descarga. Desenvolvemos um método para a determinação da potência de saturação e calculamos o valor do produto para a transição 0 16.900cm-1 do 238UI. De forma alternativa às medidas óticas oudemos estudar a interação fóton-átomo analisando o sinal optogalvânico induzido na descarga pela radiação laser, com frequência sintonizada na mesma transição atômica do urânio e em função dos parâmetros anteriormente considerados. Os resultados obtidos com as experiências de absorção ótica e espectroscopia optogalvânica / The results of spectroscopic measurements obtained with atomic species present in a hollow cathode type discharge are reported. Using laser optical absorption techniques it was possible to get the population density and the atomic temperature of the 238UI ground state as a function of some discharge parameters. A method to determine the laser saturation intensity was developed, so the value of the product for the 0 16.900cm-1 238UI transition could be calculated. It was also possible to study the photon-atom interaction through the analysis of the optogalvanic signal induced in the laser radiation as a function of the same parameters considered before. Optogalvanic spectroscopy and optical absorption experiments showed the spatial distribution of the atoms in the ground state and excited states inside the cathode. In another set of experiments, a new way of inducing optogalvanic effect was investigated without using a tunable dye laser as the axcitation source. Measurements were done with two copper hollow cathode tubes filled with different gases, that were used as excitation source radiation and as signal detector. The results suggest that it is possible to use the new spectroscopy tecnique for qualitative and quantitative material analysis.
16

Investigation of Reactions between Barium Compounds and Tungsten in a Simulated Reservoir Hollow Cathode Environment

Schoenbeck, Laura 24 March 2005 (has links)
Reservoir-type dispenser hollow cathodes are currently being developed for use on NASAs Prometheus 1 mission. In these cathodes, the reaction between a barium source material and tungsten powder contained in a cavity surrounding a porous tungsten emitter produces barium vapor which is crucial to operation of the cathode. The primary objective of this research was to investigate the reactions between tungsten and a commercial barium source material in a simulated reservoir hollow cath-ode environment. Mixtures of tungsten and a barium calcium aluminate material were sealed inside molybdenum capsules with porous tungsten closures and heated to 1000?1200?and 1300?or 100, 200, and 400 hours. Based on the reaction products, which were identified to be BaAl2O4 and Ba2CaWO6, a reaction was proposed for the barium calcium aluminate material with tungsten. The bottom pellets in the capsules were found to have reacted to a much further extent than the top pellets in all of the samples, possibly due to a temperature gradient or excessive moisture in the base of the capsules. Quantita-tive and semi-quantitative x-ray analysis results did not show a clear trend as to how the concentrations of BaAl2O4 and Ba2CaWO6 vary with time. Most of the barium source materials are hygroscopic, and hydration of the materi-als would substantially reduce the performance of the cathode. Therefore, the environ-mental stability of several barium compounds, 3BaO??2O3 (B3A), 6BaO????2O3 (612), 4BaO????O3 (411), Ba2.9Ca1.1Al2O7 (B4ASSL), and Ba3Sc4O9, were investi-gated in order to evaluate their suitability for use as barium source materials. A micro-balance was used to measure weight gain of the materials as they were exposed to dew points of ??C and 11?t room temperature. The results showed that B3A hydrated more extensively than any of the other materials tested in the low- and intermediate-humidity environments, while the 612, 411, and B4ASSL materials were all reasonably stable in the low-humidity environment. The Ba3Sc4O9 was extremely stable compared to the barium aluminates in the intermediate-humidity conditions.
17

Modelling and Applications of the Hollow Cathode Plasma

Söderström, Daniel January 2008 (has links)
This thesis presents experimental and modelling research on atmospheric pressure hollow cathodes and hollow electrodes. Experiments with the hybrid hollow electrode activated discharge (H-HEAD), which is a combination of a hollow cathode and a microwave plasma source, is presented. The experiments show that this source is able to produce long plasma columns in air and nitrogen at atmospheric pressure and at very low gas flow rates. Measurements of the vibrational temperature of the nitrogen molecules are also presented in this thesis. The vibrational temperature is an indication of the electron temperature in the plasma, an important characteristic of the plasma. Modelling work on the hollow cathode at atmospheric pressure with fluid equations is also presented. It is shown that the inclusion of fast and secondary electrons, characteristic of the hollow cathode plasmas, increases the sheath width. The sheath width was found to be of the order of 100 μm. By modelling the plasma as highly collisional by using the drift-diffusion approximation, it was shown that the increase in sheath thickness was larger at lower pressures than at higher pressures. Still, the sheath width can be of the order of 100 μm. A pulsed atmospheric plasma in a hollow electrode geometry was also modelled by the drift-diffusion fluid equations, with the addition of the energy equation for electrons. Rate and transport coefficients for the electrons were calculated from the solution to the Boltzmann equation as functions of mean electron energy. The dynamics of the plasma at pulse rise time showed large electron density and mean energy peaks at the cathode ends, but also that these quantities were enhanced at the centre of the discharge, between the cathode plates.
18

Plasmaphysikalische Charakterisierung einer magnetfeldgestützten Hohlkathoden-Bogenentladung und ihre Anwendung in der Vakuumbeschichtung

Zimmermann, Burkhard 07 March 2013 (has links) (PDF)
Die vorliegende Dissertation behandelt Charakterisierung, Modellbildung sowie Anwendung einer magnetfeldgestützten Hohlkathoden-Bogenentladung. Hohlkathoden sind seit den 1960er Jahren Gegenstand grundlagen- sowie anwendungsorientierter Forschung und werden seit 20 Jahren am Fraunhofer-Institut für Elektronenstrahl- und Plasmatechnik für die Anwendung auf dem Gebiet der Vakuumbeschichtung weiterentwickelt. Ziel dieser Arbeit ist es, die technologischen Fortschritte physikalisch zu verstehen und gezielte Weiterentwicklungen für spezifische Einsatzgebiete zu ermöglichen. In der untersuchten Hohlkathodenbauform ist das aus Tantal bestehende, vom Arbeitsgas Argon durchströmte Kathodenröhrchen koaxial von einer Ringanode sowie von einer Magnetfeldspule umgeben. Die Entladung wird durch Hochspannungspulse gezündet, worauf sich ein diffuser Bogen im Röhrchen (internes Plasma) ausbildet. Das Röhrchen wird von Plasmaionen auf hohe Temperaturen geheizt, die eine thermionische Emission von Elektronen ermöglichen, welche das Plasma speisen. Das technologisch nutzbare externe Plasma wird im Vakuumrezipienten durch Wechselwirkung der Gasteilchen mit Strahlelektronen aus der Kathode erzeugt. Bei starker Reduktion des Arbeitsgasflusses wird die Entladung durch das Magnetfeld der Spule stabilisiert. Der experimentelle Befund, dass dadurch Plasmadichte und -reichweite sowie ggf. die Ladungsträgerenergien im Rezipienten aufgrund des intensiveren Elektronenstrahls wesentlich gesteigert werden können, wird durch ortsaufgelöste Langmuir-Sondenmessung, optische Emissionsspektroskopie und energieaufgelöste Massenspektrometrie ausführlich belegt und nach der Lösung von Strom- und Wärmebilanzgleichungen durch die Verhältnisse im Kathodenröhrchen begründet. Neben Argon werden auch typische Reaktivgase der Vakuumbeschichtung im Hohlkathodenplasma betrachtet: zum einen Stickstoff und Sauerstoff, die in reaktiven PVD-Prozessen (physikalische Dampfphasenabscheidung) zur Beschichtung mit Oxid- bzw. Nitridschichten zum Einsatz kommen und durch Ionisation, Dissoziation und Anregung im Hohlkathodenplasma verbesserte Schichteigenschaften ermöglichen; zum anderen Azetylen, das bei PECVD (plasmagestützte chemische Dampfphasenabscheidung) von amorphen wasserstoffhaltigen Kohlenstoffschichten z. B. für tribologische oder biokompatible Beschichtungen genutzt wird. Azetylen wird durch Streuprozesse mit Elektronen und Ionen im Plasma aufgespalten, wodurch schichtbildende Spezies erzeugt werden, die am Substrat kondensieren. Durch die Wahl der Plasmaparameter sowie durch abgestimmte Substratbiasspannung und Substratkühlung lassen sich die Beschichtungsrate einstellen sowie polymer-, graphit- oder diamantartige Eigenschaften erzielen. Neben der Plasmadiagnostik mittels energieaufgelöster Massenspektrometrie werden die erzeugten Kohlenstoffschichten vorgestellt und hinsichtlich Härte, Zusammensetzung und Morphologie analysiert. / In the present thesis, characterization, modeling and application of a magnetically enhanced hollow cathode arc discharge are presented. Since the 1960s, hollow cathodes are being studied in basic and applied research. At Fraunhofer Institute for Electron Beam and Plasma Technology, further development concerning the application in vacuum coating technology has been carried out for about twenty years. The present work targets on physically understanding the technological progress in order to enable specific further development and application. In the investigated hollow cathode device, a ring-shaped anode and a magnetic field coil are arranged coaxially around the tantalum cathode tube, which is flown through by argon as the working gas. The discharge is ignited by high voltage pulses establishing a diffuse arc within the cathode tube (internal plasma). The cathode is being heated by the plasma ions to high temperatures, which leads to thermionic emission of electrons sustaining the plasma. The external plasma in the vacuum chamber, which can be used for technological applications, is generated by collisions of gas atoms with beam electrons originating from the cathode. In the case of strongly reduced working gas flow, the discharge is stabilized by the magnetic field of the coil; the related experimental findings such as significantly increased plasma density and range as well as higher charge carrier energies in the external plasma are extensively proved by spatially resolved Langmuir probe measurements, optical emission spectroscopy, and energy-resolved ion mass spectrometry. Furthermore, the results are correlated to the conditions within the cathode tube by solving the current and heat balance equations. Besides argon, typical reactive gases used in vacuum coating are examined in the hollow cathode plasma, too. First, nitrogen and oxygen, which are applied in PVD (physical vapor deposition) processes for the deposition of oxide and nitride layers, are ionized, dissociated, and excited by plasma processes. In the case of practical application, this plasma activation leads to improved film properties. Second, acetylene is used as a precursor for PECVD (plasma-enhanced chemical vapor deposition) of amorphous hydrogenated carbon films, e.g. for tribological or biocompatible applications. Acetylene is cracked by electron and ion scattering in the plasma providing film-forming species to be deposited on the substrate. The deposition rate as well as the polymeric, graphitic, or diamond-like properties can be controlled by plasma parameters, a defined substrate bias, and substrate cooling. The hollow cathode-generated acetylene plasma has been characterized by energy-resolved ion mass spectrometry, and the carbon films obtained are analyzed regarding hardness, film composition, and morphology.
19

Determina??o do perfil t?rmico em amostras de a?o AISI M35 imersas em plasma

Galv?o, Nierlly Karinni de Almeida Maribondo 22 March 2007 (has links)
Made available in DSpace on 2014-12-17T14:07:19Z (GMT). No. of bitstreams: 1 NierllyKAMG.pdf: 1438330 bytes, checksum: d5fc2399ebd1b5a6e21ea3718fff6716 (MD5) Previous issue date: 2007-03-22 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The heat transfer between plasma and a solid occurs mostly due the radiation and the collision of the particles on the material surface, heating the material from the surface to the bulk. The thermal gradient inside the sample depends of the rate of particles collisions and thermal conductivity of the solid. In order to study that effect, samples of AISI M35 steel, with 9,5 mm X 3,0 mm (diameter X thickness) were quenched in resistive furnace and tempereds in plasma using the plane configuration and hollow cathode, working with pressures of 4 and 10 mbar respectively. Analyzing the samples microstructure and measuring the hardness along the transversal profile, it was possible to associate the tempered temperature evaluating indirectly the thermal profile. This relation was obtained by microstructural analyzes and through the hardness curve x tempered sample temperature in resistive furnace, using temperatures of 500, 550, 600, 650 and 700?C. The microstructural characterization of the samples was obtained by the scanning electron microscopy, optic microscopy and X-ray diffraction. It was verified that all samples treated in plasma presented a superficial layer, denominated affected shelling zone, wich was not present in the samples treated in resistive furnace. Moreover, the samples that presented larger thermal gradient were treated in hollow cathode with pressure of 4 mbar / A transfer?ncia de calor entre o plasma e um s?lido ocorre principalmente atrav?s da radia??o e colis?o das part?culas sobre a superf?cie do material, o que faz com que o aquecimento do material aconte?a da superf?cie para seu interior. Dependendo da taxa de colis?es das part?culas e da condutividade t?rmica do s?lido, haver? gradientes t?rmicos no interior das amostras. A fim de estudar esse efeito, amostras de a?o AISI M35, com 9,5 mm X 3,0 mm (di?metro X espessura) foram temperadas em forno resistivo e revenidas em plasma, nas configura??es c?todo planar e c?todo oco, com press?es de trabalho de 4 e 10 mbar, para ambas as configura??es. Analisando a microestrutura das amostras e medindo as durezas ao longo do perfil transversal pode-se associar ? temperatura de revenido avaliando indiretamente o perfil t?rmico. Essa rela??o foi obtida atrav?s de an?lise microestrutural e da curva dureza x temperatura de amostras revenidas em forno resistivo, utilizando temperaturas de 500, 550, 600, 650 e 700?C. A caracteriza??o microestrutural das amostras foi realizada atrav?s da microscopia eletr?nica de varredura (MEV), microscopia ?ptica (MO) e difra??o de raios-X (DRX). Verificou-se que todas as amostras tratadas em plasma apresentaram uma camada superficial, denominada de zona afetada por bombardeamento, que n?o se encontra presente nas amostras tratadas em forno resistivo. Al?m disso, verificou-se que as amostras que apresentaram maior gradiente t?rmico foram as tratadas em c?todo oco com press?o de 4 mbar
20

Modélisation d'une cathode creuse pour propulseur à plasma / Modelling of a hollow cathode for plasma thrusters

Sary, Gaétan 28 September 2016 (has links)
La cathode creuse est un élément clef des propulseurs à plasma. Dans un propulseur à plasma, un gaz propulsif est ionisé dans un canal de décharge puis accéléré hors de celui-ci afin de créer la poussée. Dans le propulseur de Hall en particulier, l'ionisation du gaz est provoquée par l'injection dans le canal de décharge d'un intense courant électronique (de quelques ampères à plus d'une centaine d'ampères). L'élément chargé de fournir le courant électronique de la décharge, la cathode creuse, est crucial dans le fonctionnement du propulseur. Or, celle-ci est souvent idéalisée dans les modèles de propulseur et n'est que rarement étudiée pour sa physique propre. Pourtant, le développement de propulseurs de Hall de haute puissance, destinés à terme à équiper l'ensemble des missions spatiales, requiert la mise au point de cathodes capable de délivrer un fort courant (jusqu'à plus de 100 A) sur des durées de l'ordre de la dizaine de milliers d'heures. Or, la mise au point de nouvelles cathodes s'est révélée difficile en raison de l'absence de modèle susceptible de prédire a priori les performances d'une cathode en fonction de sa conception. On se propose ici de mettre en place un modèle prédictif de cathode creuse capable de retranscrire la physique du fonctionnement de la cathode. L'objectif in fine est bien sûr d'utiliser ce modèle afin de faire le lien entre la conception de la cathode et son fonctionnement dans le but de guider le développement de futures cathodes. On présentera tout d'abord brièvement le contexte d'application des cathodes creuses, et on donnera un rapide aperçu du principe de fonctionnement global de la cathode. Ensuite, après avoir effectué un tour d'horizon des différents modèles numériques de cathode creuse préexistants dans la littérature, on détaillera le modèle de la cathode développé ici, qui incorpore une description fluide du plasma, ainsi que des transferts thermiques aux parois, qui conditionnent en grande partie le bon fonctionnement de la cathode. Un soin particulier sera apporté à la validation des résultats de simulation vis-à-vis des mesures expérimentales disponibles dans la littérature, ce qui nous permettra de perfectionner certains points du modèle afin de mieux traduire la réalité physique. En particulier, une modélisation spécifique de la région de transition entre la décharge interne de la cathode et la plume du propulseur sera réalisée. Ce modèle permettra de mettre en évidence certains phénomènes d'instabilité du plasma spécifiques de cette décharge, qui ont été jusqu'ici observés expérimentalement mais jamais pleinement intégrés aux modèles de cathode creuse. A l'aide du modèle validé, on procèdera à l'analyse physique de l'ensemble des phénomènes qui gouvernent le fonctionnement d'une cathode particulière, la cathode NSTAR développée par la NASA au Jet Propulsion Laboratory. Ensuite, on s'appuiera sur le modèle numérique pour comprendre l'impact sur le fonctionnement de la cathode des choix de conception au travers d'une étude paramétrique autour de la cathode NSTAR. Les tendances dégagées nous permettront de formuler des recommandations quant au développement de cathodes de haute puissance. Enfin, dans le but d'illustrer la versatilité du modèle développé, le comportement d'une cathode creuse employant une géométrie alternative à la cathode NSTAR sera également présenté. / A hollow cathode is a critical component of plasma thrusters. In a plasma thruster, a propellant gas is ionized in a discharge chamber and accelerated out of it so as to generate thrust. In Hall thrusters in particular, the ionization of the gas is caused by an intense electron current (from a few to hundred amps) which flows through the discharge chamber. The hollow cathode is the device which is responsible for providing the discharge current. This key element is often idealized in thruster numerical models and its physical behavior is rarely studied for its own sake. Yet, developing high power Hall thrusters, designed to propel in the long run every type of space mission, requires new hollow cathodes able to supply an intense electron current (over 100 A) over a duration on the order of ten thousand hours. So far, designing new cathodes proved difficult because of the lack of model capable of predicting the performance of a cathode based on its design. In this work, we build up a predictive model of a hollow cathode capable of simulating the physics relevant to the operation of the cathode. In the end, we aim at using this model to associate design characteristics of the cathode to key aspects of the cathode performance during operation. Our goal with this model is to guide the development of future high power hollow cathodes. We will first briefly describe the range of application of hollow cathodes related to space propulsion. Then we will give a brief account of the working principles of the cathode and we will set the numerical models available in the literature prior to this one out. The numerical model developed in this work will then be described. It includes a fluid treatment of the plasma as well as an account of the heat fluxes to the walls which largely control the performance of the cathode. Simulation results will be thoroughly compared to experimental measurements available in the literature and specific aspects of the model will be refined to match up simulation results with the physical reality. For instance, a model that specifically represents the transition region between the internal plasma of the cathode and the plume of the cathode will be described. This model will enable us to highlight plasma instability phenomena which were so far observed experimentally, yet never properly included in hollow cathode models. Using the model just developed, we will analyze the physics of a particular hollow cathode which has been developed by NASA at the Jet Propulsion Laboratory, the NSTAR hollow cathode. Then, thanks to the numerical model, we will be able to carry out a parametric study revolving around the design of the NSTAR cathode. This will allow us to bring out the influence of the design on the cathode performance and we will eventually express recommendations regarding the design of future high power cathodes. To conclude, the versatility of the numerical model built up here will also be displayed through simulations of the behavior of a hollow cathode based on an alternate geometry.

Page generated in 0.051 seconds