• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 17
  • 13
  • 12
  • 11
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Branch Plate-to-circular Hollow Structural Section Connections

Voth, Andrew Peter 17 February 2011 (has links)
Although branch plate connections with circular hollow section (CHS) members are simple to fabricate and cost-effective, they are generally very flexible under low load application resulting in the limit states design resistance being governed by an imposed deformation limit. Restricting the ultimate capacity of a branch plate connection by a deformation limit results in the inherent strength of the CHS member being under-utilized, highlighting the need to develop connection stiffening methods. Two methods to stiffen branch plate-to-CHS connections are examined: a through plate connection and a grout-filled CHS branch plate connection. Further, the current design guidelines of various plate-to-CHS connection types are reexamined including the effect of chord axial stress and chord length on connection behaviour. Finally, the behaviour of connections with non-orthogonal or skew plate orientation, which has not previously been examined, was studied in depth.The behaviour of these uniplanar connection types under quasi-static axial loading was studied through 16 large-scale laboratory experiments and 682 numerical finite element analyses, as well as an extensive review of all previous international experimental and numerical findings. The extensive study formed the basis for a complete set of proposed design guidelines and provided insight into plate-to-CHS connection behaviour. For all plate-to-CHS connection types, the plate thickness is shown to effect connection capacity, though previously this was thought not to have significant impact on connection behaviour. The existing ideology of using the same design recommendations for tension- and compression-loaded connections, which was developed from compression results, under-utilizes an inherent increase in capacity provided by a connection primarily loaded in tension. As such, the recommended design guidelines split the two load senses into separate expressions that reflect the difference in behaviour. Stiffened through plate connection behaviour was determined to be the summation of branch plate behaviour in compression and tension, leading to a significant increase in capacity and identical behaviour regardless of branch load sense. The skewed branch plate connection behaviour was found to relate directly to the established behaviour of longitudinal and transverse plate connections. A design function was developed that interpolates the capacities of intermediate angles by using the proposed design recommendations of the two extreme connection types. Finally, the examination of chord axial stress and chord length for plate-to-CHS connections yielded results similar to previous international studies on CHS-to-CHS connections. The effect of chord length, however, has wide-reaching implications as to how experimental and numerical FE research programs are developed.
22

Branch Plate-to-circular Hollow Structural Section Connections

Voth, Andrew Peter 17 February 2011 (has links)
Although branch plate connections with circular hollow section (CHS) members are simple to fabricate and cost-effective, they are generally very flexible under low load application resulting in the limit states design resistance being governed by an imposed deformation limit. Restricting the ultimate capacity of a branch plate connection by a deformation limit results in the inherent strength of the CHS member being under-utilized, highlighting the need to develop connection stiffening methods. Two methods to stiffen branch plate-to-CHS connections are examined: a through plate connection and a grout-filled CHS branch plate connection. Further, the current design guidelines of various plate-to-CHS connection types are reexamined including the effect of chord axial stress and chord length on connection behaviour. Finally, the behaviour of connections with non-orthogonal or skew plate orientation, which has not previously been examined, was studied in depth.The behaviour of these uniplanar connection types under quasi-static axial loading was studied through 16 large-scale laboratory experiments and 682 numerical finite element analyses, as well as an extensive review of all previous international experimental and numerical findings. The extensive study formed the basis for a complete set of proposed design guidelines and provided insight into plate-to-CHS connection behaviour. For all plate-to-CHS connection types, the plate thickness is shown to effect connection capacity, though previously this was thought not to have significant impact on connection behaviour. The existing ideology of using the same design recommendations for tension- and compression-loaded connections, which was developed from compression results, under-utilizes an inherent increase in capacity provided by a connection primarily loaded in tension. As such, the recommended design guidelines split the two load senses into separate expressions that reflect the difference in behaviour. Stiffened through plate connection behaviour was determined to be the summation of branch plate behaviour in compression and tension, leading to a significant increase in capacity and identical behaviour regardless of branch load sense. The skewed branch plate connection behaviour was found to relate directly to the established behaviour of longitudinal and transverse plate connections. A design function was developed that interpolates the capacities of intermediate angles by using the proposed design recommendations of the two extreme connection types. Finally, the examination of chord axial stress and chord length for plate-to-CHS connections yielded results similar to previous international studies on CHS-to-CHS connections. The effect of chord length, however, has wide-reaching implications as to how experimental and numerical FE research programs are developed.
23

Influência das ligações no dimensionamento das estruturas tubulares circulares de aço treliçadas / Joint influence on design of steel circular hollow section truss structure

Sepúlveda, Bárbara Daniela Giorgini, 1986- 23 August 2018 (has links)
Orientador: João Alberto Venegas Requena / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo / Made available in DSpace on 2018-08-23T22:44:13Z (GMT). No. of bitstreams: 1 Sepulveda_BarbaraDanielaGiorgini_M.pdf: 5435418 bytes, checksum: 5d55af89b27e919b7c819e297b4cf056 (MD5) Previous issue date: 2013 / Resumo: Este artigo apresenta o estudo da influência das ligações no comportamento das estruturas treliçadas compostas por perfis tubulares de aço. As ligações em treliças de aço são normalmente projetadas para união de barras por meio de chapas que garantam a transmissão e equilíbrio das forças. No caso em particular de treliças que utilizam perfis tubulares de aço as ligações são projetadas sem chapas. As barras são unidas diretamente por meio de soldas nos contatos dos perfis que são cortados geometricamente exatos para o ajuste da ligação. Este procedimento aumenta a produtividade de fabricação além de dar um aspecto visual melhor para a estrutura. Dependendo da geometria da ligação podem ocorrer excentricidades dos eixos provocando a introdução de momentos fletores, que quando não puderem ser evitados, devem ser levados em consideração não só no cálculo da ligação como também na determinação dos esforços da treliça. Outro aspecto importante é a análise do colapso da ligação que pode ocorrer quando uma barra é associada à outra de forma inadequada na ligação direta, sendo variados os tipos de falhas. Portanto, será analisada a influência das ligações no comportamento da estrutura a partir de gráficos baseado no estudo das equações de força resistente das ligações tubulares circulares. Este estudo gráfico permitiu a criação do processo de cálculo, denominado Processo Simplificado, que orientam para as combinações de perfis que atendam as exigências geométricas e de força resistente das ligações durante o dimensionamento de barras. O processo é baseado em de tabelas de cálculo desenvolvidas para a orientação de um bom projeto de estrutura treliçada considerando ou evitando estas influências sem onerar o projeto final / Abstract: This paper presents the study of connections influence in the behavior of hollow sections truss structures. Joints in steel trusses are usually designed considering sheets that will ensure the transmission and balance of forces. In particular case of trusses using hollow sections steel connections are designed without plates. The beams are directly welded to steel sections which are geometrically cut to fit the joint. This increases manufacturing productivity in addition to give the structure a better visual appearance. Axes eccentricities can occur depending on connection geometry resulting in introduction of bending moments. When this eccentricity cannot be avoided, it has to be taken into account in joint design and also in determining truss efforts. Another important aspect is analysis joint collapse which can occur when a beam is improperly associated to another beam, which can produce many kinds of fails. Therefore, graphics analyses were studied based on circular hollow sections joint strength equations that show the influence of joints on structures. The Simplified Process, created after graphics studies, shows the valid combinations of circular hollow sections geometry and strength during beam structure design verification. This process is based on tables developed to orient a good truss project considering or avoiding this influences without raising budget on final design / Mestrado / Estruturas e Geotécnica / Mestra em Engenharia Civil
24

Numerical analysis of the fire resistance of circular and elliptical slender concrete filled tubular columns

Espinós Capilla, Ana 26 October 2012 (has links)
El empleo de pilares tubulares de acero rellenos de honnigón (CFT) ha crecido en las últimas décadas, debido a su excelente comportamiento estructural, que aprovecha el efecto combinado del acero y honnigón trabajando juntos. Esta asociación ofrece una serie de ventajas que hacen de las columnas CFT una solución interesante: su alta capacidad portante o su eficiente tecnología constructiva pueden citarse entre sus beneficios ampliamente conocidos, que se completan con una elevada resistencia al fuego sin necesidad de protección externa. Tradicionalmente, se han venido utilizando secciones huecas circulares, cuadradas y rectangulares para formar estas columnas compuestas. Adicionalmente, la sección elíptica ha sido recientemente introducida dentro de la gama de secciones de acero huecas disponib les comercialmente. Su atractivo estético y su reducida intrusión visual, junto con sus ventajas estructurales asociadas a secciones con diferentes propiedades en sus ejes fuerte y débil, hacen a las secciones elípticas de gran interés para los diseñadores. En esta tesis se estudian pi lares CFT de sección tanto circular como elíptica. Pese a que el comportamiento de los pilares CFT a temperatura ambiente ha quedado bien establecido en los últimos años, en situación de incendio la degradación de las propiedades del material da lugar a un comportamiento extremadamente no lineal de estas columnas compuestas, lo que hace dificil predecir su fallo. El estado del arte en el campo del comportamiento frente al fuego de columnas CFT se revisa en esta tesis, mostrando que es necesario profundizar en su investigación para una comprensión completa del funcionamiento de tales columnas en situación de incendio. En el caso de las secciones elípticas, este trabajo constituye una investigación novedosa. El comportamiento frente al fuego de los pilares CFT se estudia en esta tesis por medio de un modelo realista tridimensional de elementos finitos. Los valores adoptados de los parámetros del / Espinós Capilla, A. (2012). Numerical analysis of the fire resistance of circular and elliptical slender concrete filled tubular columns [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17579 / Palancia
25

The Plastic Behaviour of Cold-Formed Rectangular Hollow Sections

Wilkinson, Timothy James January 2000 (has links)
The aim of this thesis is to assess the suitability of cold-formed rectangular hollow sections (RHS) for plastic design. The project involved an extensive range of tests on cold-formed Grade C350 and Grade C450 (DuraGal) RHS beams, joints and frames. A large number of finite element analyses was also carried out on models of RHS beams. The conclusion is that cold- formed RHS can be used in plastic design, but stricter element slenderness (b/t) limits and consideration of the connections, are required. Further research, particularly into the effect of axial compression on element slenderness limits, is required before changes to current design rules can be finalised. Bending tests were performed on cold-formed RHS to examine the web and flange slenderness required to maintain the plastic moment for a large enough rotation suitable for plastic design. The major conclusions of the beam tests were: (i) Some sections which are classified as Compact or Class 1 by current steel design specifications do not maintain plastic rotations considered sufficient for plastic design. (ii) The current design philosophy, in which flange and web slenderness limits are independent, is inappropriate. An interaction formula is required, and simple formulations are proposed for RHS. Connection tests were performed on various types of knee joints in RHS, suitable for the column - rafter connection in a portal frame. The connection types investigated were welded stiffened and unstiffened rigid knee connections, bolted plate knee joints, and welded and bolted internal sleeve knee joints, for use in RHS portal frames. The ability of the connections to act as plastic hinges in a portal frame was investigated. The most important finding of the joint tests was the unexpected fracture of the cold-formed welded connections under opening moment before significant plastic rotations occurred. The use of an internal sleeve moved the plastic hinge in the connection away from the connection centre- line thus eliminating the need for the weld between the RHS, or the RHS and the stiffening plate, to carry the majority of the load. The internal sleeve connections were capable of sustaining the plastic moment for large rotations considered suitable for plastic design. Tests on pinned-base portal frames were also performed. There were three separate tests, with two different ratios of vertical to horizontal point loads, simulating gravity and horizontal wind loads. Two grades of steel were used for comparison. The aims of the tests were to examine if a plastic collapse mechanism could form in a cold-formed RHS frame, and to investigate if plastic design was suitable for such frames. In each frame, two regions of highly concentrated curvature were observed before the onset of local buckling, which indicated the formation of plastic hinges and a plastic collapse mechanism. An advanced plastic zone structural analysis which accounted for second order effects, material non-linearity and member imperfections slightly overestimated the strength of the frames. The analysis slightly underestimated the deflections, and hence the magnitude of the second order effects. A second order plastic zone analysis, which did not account for the effects of structural imperfections, provided the best estimates of the strengths of the frames, but also underestimated the deflections. While cold-formed RHS did not satisfy the material ductility requirements specified for plastic design in some current steel design standards, plastic hinges and plastic collapse mechanisms formed. This suggests that the restriction on plastic design for cold-formed RHS based on insufficient material ductility is unnecessary, provided that the connections are suitable for plastic hinge formation, if required. A large number of finite element analyses were performed to simulate the bending tests summarised above, and to examine various parameters not studied in the experimental investigation. To simulate the experimental rotation capacity of the RHS beams, a sinusoidally varying longitudinal local imperfection was prescribed. The finite element analysis determined similar trends as observed experimentally, namely that the rotation capacity depended on both the web slenderness and flange slenderness, and that for a given section aspect ratio, the relationship between web slenderness and rotation capacity was non-linear. The main finding of the finite element study was that the size of the imperfections had an unexpectedly large influence on the rotation capacity. Larger imperfections were required in the more slender sections to simulate the experimental results. There should be further investigation into the effect of varying material properties on rotation capacity.
26

The Plastic Behaviour of Cold-Formed Rectangular Hollow Sections

Wilkinson, Timothy James January 2000 (has links)
The aim of this thesis is to assess the suitability of cold-formed rectangular hollow sections (RHS) for plastic design. The project involved an extensive range of tests on cold-formed Grade C350 and Grade C450 (DuraGal) RHS beams, joints and frames. A large number of finite element analyses was also carried out on models of RHS beams. The conclusion is that cold- formed RHS can be used in plastic design, but stricter element slenderness (b/t) limits and consideration of the connections, are required. Further research, particularly into the effect of axial compression on element slenderness limits, is required before changes to current design rules can be finalised. Bending tests were performed on cold-formed RHS to examine the web and flange slenderness required to maintain the plastic moment for a large enough rotation suitable for plastic design. The major conclusions of the beam tests were: (i) Some sections which are classified as Compact or Class 1 by current steel design specifications do not maintain plastic rotations considered sufficient for plastic design. (ii) The current design philosophy, in which flange and web slenderness limits are independent, is inappropriate. An interaction formula is required, and simple formulations are proposed for RHS. Connection tests were performed on various types of knee joints in RHS, suitable for the column - rafter connection in a portal frame. The connection types investigated were welded stiffened and unstiffened rigid knee connections, bolted plate knee joints, and welded and bolted internal sleeve knee joints, for use in RHS portal frames. The ability of the connections to act as plastic hinges in a portal frame was investigated. The most important finding of the joint tests was the unexpected fracture of the cold-formed welded connections under opening moment before significant plastic rotations occurred. The use of an internal sleeve moved the plastic hinge in the connection away from the connection centre- line thus eliminating the need for the weld between the RHS, or the RHS and the stiffening plate, to carry the majority of the load. The internal sleeve connections were capable of sustaining the plastic moment for large rotations considered suitable for plastic design. Tests on pinned-base portal frames were also performed. There were three separate tests, with two different ratios of vertical to horizontal point loads, simulating gravity and horizontal wind loads. Two grades of steel were used for comparison. The aims of the tests were to examine if a plastic collapse mechanism could form in a cold-formed RHS frame, and to investigate if plastic design was suitable for such frames. In each frame, two regions of highly concentrated curvature were observed before the onset of local buckling, which indicated the formation of plastic hinges and a plastic collapse mechanism. An advanced plastic zone structural analysis which accounted for second order effects, material non-linearity and member imperfections slightly overestimated the strength of the frames. The analysis slightly underestimated the deflections, and hence the magnitude of the second order effects. A second order plastic zone analysis, which did not account for the effects of structural imperfections, provided the best estimates of the strengths of the frames, but also underestimated the deflections. While cold-formed RHS did not satisfy the material ductility requirements specified for plastic design in some current steel design standards, plastic hinges and plastic collapse mechanisms formed. This suggests that the restriction on plastic design for cold-formed RHS based on insufficient material ductility is unnecessary, provided that the connections are suitable for plastic hinge formation, if required. A large number of finite element analyses were performed to simulate the bending tests summarised above, and to examine various parameters not studied in the experimental investigation. To simulate the experimental rotation capacity of the RHS beams, a sinusoidally varying longitudinal local imperfection was prescribed. The finite element analysis determined similar trends as observed experimentally, namely that the rotation capacity depended on both the web slenderness and flange slenderness, and that for a given section aspect ratio, the relationship between web slenderness and rotation capacity was non-linear. The main finding of the finite element study was that the size of the imperfections had an unexpectedly large influence on the rotation capacity. Larger imperfections were required in the more slender sections to simulate the experimental results. There should be further investigation into the effect of varying material properties on rotation capacity.
27

Santvarų nelakštinių mazgų skaičiavimo ir konstravimo ypatumai / Design and estimation of welded truss joints between square hollow sections

Misiūnaitė, Ieva 25 June 2008 (has links)
Baigiamajame magistro darbe nagrinėjami santvarinių konstrukcijų iš kvadratinių vamzdžių tiesioginio jungimo mazgų skaičiavimo ir konstravimo ypatumai. Analizuojama konstrukcinių elementų elgsena mazge ir jos sąlygojamas jungties irties pobūdis. Nagrinėjamos takumo linijos teorijos taikymo galimybės sudarant analitinius modelius. Pateikiami analitiniai modeliai, taikomi mazgų ašinės laikomosios galios skaičiavimo algoritmams sudaryti, pateikiamiems projektavimo norminiuose dokumentuose. Aprašomas mazgą sudarančių konstrukcinių elementų projektavimas pagal STR 2.05.08:2005 ir EN 1993-1-1 reikalavimus, bei mazgų ašinės laikomosios galios nustatymas pagal STR 2.05.08:2005 8-tą priedą, bei EN 1993-1-8. Darbe atlikta skaitinė projektavimo normose pateikiamų santvarinių konstrukcijų tiesioginio jungimo mazgų ašinės laikomosios galios nustatymo lyginamoji analizė. Suprojektuota santvarinė konstrukcija, kurios skaičiuojamoji schema parinkta tokia, kad būtų išanalizuoti visi projektavimo normose pateikiami tiesioginio jungimo mazgų tipai. Įrąžoms konstrukciniuose elementuose nustatyti pasinaudota kompiuterine skaičiavimo programa Staad.pro. Konstrukcinių elementų elgsenos mazge analizei pasinaudota kompiuterine programa CosmosWorks. Ištirta pagrindinių skaičiavimo algoritmuose pateikiamų rodiklių įtaka mazgo laikomąjai galiai. Norint parinkti santvaros konstrukcinius elementus ir nustatyti mazgų skaičiuotinę ašinę laikomąją galią bei atlikti skaitinę analizę buvo pasinaudota... [toliau žr. visą tekstą] / This master thesis considers design and estimation of truss joints between square hollow sections. Behaviuor of joints and its failure modes analyzed. The posibility to apply the yield line theory for analytical models considered. Analytical models used for determining the design capacity of the joint formulae in design guids presented. Truss members design following STR 2.05.08:2005 and EN 1993-1-1 and joint design capacity calculation following STR 2.05.08:2008 8-th annex and EN 1993-1-8 presented. It was made numerical convergence analysis between diferent design guidilines for estimating design capacity of the joint in this study. Truss structure designed, including all most commonly known joint types. Truss member loiding estimated using structural design and analysis software Staad.Pro. The behaviuor of the joint designed using finite element analysis software Cosmos.Works. Also the influence of governing joint parameters for the design capacity equations analysed. For truss structure design, capacity of the joint calculations and numerical analysis the calculation program was made using Microsoft Office Exel software.
28

Infuence of the modelling of truss joints made of hollow tube sections in finite element models / Inverkan av modelleringen av fackverksleder uppbyggda av ihåliga rör proler i nita elementmetoden

Lucassen, Mattheüs January 2019 (has links)
Several boom segments form the crane boom. These segments are often truss structures formed out of circular hollow sections, which are welded together forming the truss joints. A adequate modelling of these truss joints is very important for operational strength and life. Due to the large boom sizes, efficient models are used in the finite element method, generally built of beam elements. These models have problems capturing the proper bending moments working in the truss joints. This is caused by a insufficient portrayal of the joint stiffness. In the literature several modelling techniques with beam elements are proposed, which capture the joint stiffness better. These different modelling methods are implemented in a parametric boom section and compared with a shell element FE model. From this comparison the most appropriate modelling method is selected, which improve the portrayal of internal loads and nominal stresses. With these improved nominal stress values, it is investigated to implement a different fatigue assessment. The structural stress can be calculated from the nominal stress in combination with stress concentration factor (SCF) equations. To implement the structural stress method as fatigue assessment, several modelling and extrapolation methods have been compared. Which lead to a method for evaluating the structural stress in a efficient matter. This method is compared with existing SCF K truss joint equations, from which a new set of SCF equations is derived. These equations are constructed from a larger dataset, hold a wider validity range and fit better with the FE models. When applying these SCF equations with the improved beam modelling method in a boom section, the structural stress is not adequately captured. This is caused by unsymmetrical stressed braces in the K truss joints. Both the modelling methods and SCF equations account for uniformly stressed braces forming the truss joints. More research needs to be conducted to this uneven behaviour. If the structural stress method needs to be implemented with efficient FE models, submodels out of shell elements combined with beam elements are recommended. For fatigue evaluation with the nominal stress method, beam models which account for the local joint flexibility give sufficient realistic results. / Flera kranarmsegment bildar kranarmen. Dessa segment är ofta fackverk utformade av cirkulära ihåliga profiler, som är sammansvetsade och bildar fackverkslederna. En ordentlig modellering av dessa fackförband är mycket viktig för dess driftsstyrka och livslängd. På grund av storleken används finita elementmetoden, vanligtvis uppbyggt av balkelement. Dessa modeller har problem med att beräkna de korrekta böjmomenten som uppstår i fackverkslederna. Detta orsakas av en otillräcklig beskrivning av ledstyvheten. I litteraturen föreslås flera modelleringstekniker med balkelement som tar hänsyn till ledens styvhet bättre. Dessa olika modelleringsmetoder implementeras i en parametrisk kranarmsektion och jämförs med en FE-modell med skalelement. Med denna jämförelse väljs den mest lämpliga modelleringsmetoden, vilket bör förbättra skildringen av interna belastningar och nominella spänningar. Med dessa förbättrade nominella spänningsvärden, undersöks det att genomföra en annan utmattningsbedömning. Den strukturella spänningen kan beräknas utifrån den nominella spänningen i kombination med spänningskoncentrationsfaktor- (SCF) ekvationerna. För att implementera strukturella spänningsmetoden som utmattningsbedömning, har flera modellerings- och extrapoleringsmetoder jämförts. Detta leder till en metod för att utvärdera den strukturella spänningen effektivt. Denna metod jämförs med befintliga SCF-ekvationer, från vilka en ny uppsättning SCF-ekvationer härleds. Dessa ekvationer är konstruerade från en större datauppsättning, har ett bredare giltighetsområde och passar bättre med FE-modellerna. När man applicerar dessa SCF-ekvationer med den förbättrade balkmodelleringsmetoden i en kranarmsektion, uppsamlas strukturella spänningar inte tillräckligt, detta orsakas av ojämna spänningar i diagonalelementen i fackverkslederna. Både modelleringsmetoderna och SCF-ekvationerna tar hänsyn till jämnt spända diagonalelement som uppstår i fackverkslederna. Mer forskning bör göras över detta ojämna beteende. Om den strukturella spänningsmetoden måste implementeras med effektiva FE-modeller, rekommenderas undermodeller av skalelement kombinerade med balkelement. För utmattningsutvärdering med den nominella spänningsmetoden, ger balkmodeller som tar hänsyn till den lokala ledflexibiliteten tillräckligt realistiska resultat.

Page generated in 0.1011 seconds