• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 12
  • 9
  • 9
  • 7
  • 4
  • 4
  • 4
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 143
  • 22
  • 18
  • 17
  • 15
  • 14
  • 14
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Conducting Polymers Containing In-Chain Metal Centres : Electropolymerisation and Charge Transport

Hjelm, Johan January 2003 (has links)
Conjugated polymers that exhibit high electronic conductivities play key roles in the emerging field of molecular electronics. In particular, linking metal centres with useful electrochemical, photophysical, or catalytic properties to the backbone, or within the polymer chain itself, is a topic which has attracted a significant amount of interest lately. Structurally rigid monomers that can be electropolymerised to form highly conducting molecular wires may provide new insights into conduction mechanisms, e.g., exploiting resonant superexchange (electron-hopping) by tuning the energies of redox centre and bridge states. The focus of this thesis lies on the electrochemical investigation of preparation, growth dynamics, and charge transport dynamics of oligothiophene/transition metal hybrid materials. The incorporation of ruthenium(II) and osmium(II) terpyridine complexes into such polymeric assemblies was accomplished by an electropolymerisation procedure, to produce rod-like oligothienyl-bridged metallopolymers. The properties of the monomers used were characterised by optical spectroscopy and electrochemical techniques. Charge transport was studied in detail for some of the materials created, and it was found that the electron transport rate and dc conductivity was enhanced by up to two orders of magnitude compared to relevant non-conjugated polymers, demonstrating the usefulness of this approach for optimization of charge transport in metallopolymers. The charge transport diffusion coefficent was determined to (2.6 ± 0.5) x 10-6 cm2 s-1 for a quaterthienyl-bridged {Os(tpy)2} polymer by use of an electrochemical steady-state method carried out using a transistor-like experimental geometry. It was found that charge transport in these materials is concentration-gradient driven. The rate limiting step of the charge transport process was investigated using electrochemical impedance spectroscopy. The electropolymerisation dynamics of one of the monomers was studied using microelectrodes, and the results obtained shows that electropolymerisation is highly efficient, and indicate that mass transport controls this process. Through a combination of controlled potential deposition and SEM imaging it was demonstrated that it is possible to exploit the edge effect of microelectrodes to promote film growth in a direction co-planar with the electrode surface.
82

Low-Energy Charge and Spin Dynamics in Quantum Confined Systems

Rice, William 06 September 2012 (has links)
Condensed matter systems exhibit a variety of dynamical phenomena at low energy scales, from gigahertz (GHz) to terahertz (THz) frequencies in particular, arising from complex interplay between charge, spin, and lattice. A large number of collective and elementary excitations in solids occur in this frequency range, which are further modified and enriched by scattering, interactions, and disorder. Recent advancements in spectroscopic methods for probing low-energy dynamics allow us to investigate novel aspects of charge and spin dynamics in solids. In this dissertation work, we used direct current (DC) conductivity, GHz, THz, and mid-infrared (MIR) techniques to provide significant new insights into interaction and disorder effects in low-dimensional systems. Specifically, we have studied temperature-dependent magnetoresistance (MR) and electron spin resonance (ESR) in single-wall carbon nanotubes (SWCNTs), intra-exciton scattering in InGaAs quantum wells, and high-field MIR-induced band gaps in graphene. Temperature-dependent resistance and MR were measured in an ensemble of SWCNTs from 0.3 to 350 K. The resistance temperature behavior followed a 3D variable range hopping (VRH) behavior from 0.3 to ~100 K. A positive MR was observed at temperatures above 25 K and could be fit with a spin-dependent VRH model; negative MR was seen at low temperatures. In the GHz regime, the ESR linewidth for SWCNTs was observed to narrow by as much as ~50% as the temperature was increased from 3 to 300 K, a phenomenon known as motional narrowing, suggesting that we are detecting the ESR of hopping spins. From the linewidth change versus temperature, we find the hopping frequency to be 285 GHz. For excitons in InGaAs quantum wells, we demonstrate the manipulation of intra-excitonic populations using intense, narrow-band THz pulses. The THz radiation temporarily quenches the 1s emission, which is then followed by an enhancement and subsequent decay of 2s emission. After the quenching, the 1s emission recovers and then eventually becomes enhanced, a demonstration of energy storage in intra-exciton states known as excitonic shelving. We show that the diffusive Coulomb scattering between the 2p and 2s states produces a symmetry breaking, leading to a THz-field-induced 1s-to-2s exciton population transfer.
83

Primary Effects of X-ray and Photo-Absorption Induced Excitations in Biomolecules

Burmeister, Carl Friedrich 11 April 2013 (has links)
No description available.
84

Koordinuotų žvilgsnio šuolinių judesių parametrai esant antriniams taikiniams (trikdžiams) / Parameters of coordinated saccadic movements in presence of non-targets (distracters)

Butvilas, Valdas 04 August 2011 (has links)
Šiame tyrime buvo tiriama trikdžio įtaka sakadiniams akių judesiams. Eksperimentų serijoje, tiriamieji sekė taikinį, kai kartu su taikiniu atsirasdavo ir trikdis. Trikdis atsirasdavo arčiau taikinio per vidurį kelio arba arčiau fiksacijos taško. Visi trikdžiai buvo ant trajektorijos nuo fiksacijos iki taikinio. Taip pat trikdžių atsiradimo laikas skirdavosi. Siekiamieji akių judesiai buvo paveikti trikdžių. Rezultatai parodė kad trikdis labiau įtakoja horizontalius akies judesius ir kad akių judesiai buvo labiau paveikti kai trikdis buvo per vidurį trajektorijos iki taikinio. / In this research distracter influence for saccadic eye movements was studied. In a series of experiments, participants reached to targets in the presence of visual distracters that were either adjacent to the target or either adjacent to the fixation point. Distracters were located through the reach path. The distracters were presented at different times too. The reaching eye movements were affected by the presence of the distracters The results showed that the distracters affects more horizontal eye movements. And the eyes movements are more affected when distracters were in a middle of path to the target.
85

Nonadiabatic quantum molecular dynamics with hopping. I. General formalism and case study

Fischer, Michael, Handt, Jan, Schmidt, Rüdiger 09 September 2014 (has links) (PDF)
An extension of the nonadiabatic quantum molecular dynamics approach is presented to account for electron-nuclear correlations in the dynamics of atomic many-body systems. The method combines electron dynamics described within time-dependent density-functional or Hartree-Fock theory with trajectory-surface-hopping dynamics for the nuclei, allowing us to take into account explicitly a possible external laser field. As a case study, a model system of H++H collisions is considered where full quantum-mechanical calculations are available for comparison. For this benchmark system the extended surface-hopping scheme exactly reproduces the full quantum results. Future applications are briefly outlined.
86

Design, testing, and performance of a hybrid micro vehicle - the Hopping Rotochute

Beyer, Eric W. 04 May 2009 (has links)
A new hybrid micro vehicle, called the Hopping Rotochute, was developed to robustly explore environments with rough terrain while minimizing energy consumption over extended periods of time. Unlike traditional robots, the Hopping Rotochute maneuvers through complex terrain by hopping over or through impeding obstacles. A small coaxial rotor system provides the necessary lift while a movable internal mass controls the direction of travel. In addition, the low mass center and egg-like shaped body creates a means to passively reorient the vehicle to an upright attitude when in ground contact while protecting the rotating components. The design, fabrication, and testing of a radio-controlled Hopping Rotochute prototype as well as an analytical study of the flight performance are documented. The aerodynamic, mechanical, and electrical design of the prototype is outlined which were driven by the operational requirements assigned to the vehicle. The aerodynamic characteristics of the rotor system as well as the damping characteristics of the foam base are given based on experimental results using a rotor test stand and a drop test stand respectively. Experimental flight testing results using the prototype are outlined which demonstrate that all design and operational requirements are satisfied. A dynamic model associated with the Hopping Rotochute is then developed including a soft contact model which estimates the forces and moments on the vehicle during ground contact. A comparison between the vehicle's motion measured using a motion capture system and the simulation results are presented to determine the validity of the experimentally-tuned dynamic model. Using this validated simulation model, key parameters such as system weight, rotor speed profile, internal mass weight and location, as well as battery capacity are varied to explore the flight performance characteristics. The sensitivity of the hopping rotochute to atmospheric winds is also investigated as well as the ability of the device to perform trajectory shaping.
87

Telekrig mot bandspridningsteknik / Electronic Warfare against Spread-Spectrum technology

Andrén, Alexander January 2012 (has links)
I denna uppsats betraktas två olika bandspridningstekniker och vilken påverkan de har på telekrigsförmågan. Uppsatsen svarar på frågan: Vilka möjligheter finns att bedriva signalspaning och störning mot radiokommunikation som använder bandspridningsteknikerna frekvenshopp eller direktsekvens? Inledningsvis beskrivs en modell för telekrig mot radiokommunikation, ”telekrigcykeln”. Därefter beskrivs principer för ett radiosystem samt de två bandspridningsteknikerna frekvenshopp och direktsekvens. Slutligen analyseras bandspridningsteknikernas påverkan med hjälp av telekrigcykeln och resultaten diskuteras. Uppsatsen kommer fram till att båda signalerna går att spana mot, direktsekvens innebär större svårigheter för signalspaningen än frekvenshopp. Störning av båda signalerna görs bäst med störsändare som befinner sig nära radiomottagaren, dock är det svårt att placera störsändare nära motståndarens mottagare. / This essay examines two spread-spectrum technologies and what their effects are on the electronic warfare ability. The essay seeks to answer this question: What are the possibilities for signals intelligence and communications jamming against radio communications using one of the two spread-spectrum technologies frequency-hopping and direct sequence? The essay initially describes a model for how electronic warfare against radio communication is conducted, “telekrigcykeln”. It then describes the principles of a radio system as well as the two spread-spectrum technologies frequency-hopping and direct sequence. Using the model “telekrigcykeln” the essay finally analyses and discusses the impact of the spread-spectrum technologies. The essay finds that it is possible to conduct signals intelligence towards both signals, however direct sequence pose bigger problems than frequency-hopping. Both signals are easiest to jam using a jammer in close proximity to the radio receiver. However, close-proximity jammers are harder to place close to the opponent’s receiver.
88

Fractal Properties and Applications of Dendritic Filaments in Programmable Metallization Cells

January 2015 (has links)
abstract: Programmable metallization cell (PMC) technology employs the mechanisms of metal ion transport in solid electrolytes (SE) and electrochemical redox reactions in order to form metallic electrodeposits. When a positive bias is applied to an anode opposite to a cathode, atoms at the anode are oxidized to ions and dissolve into the SE. Under the influence of the electric field, the ions move to the cathode and become reduced to form the electrodeposits. These electrodeposits are filamentary in nature and persistent, and since they are metallic can alter the physical characteristics of the material on which they are formed. PMCs can be used as next generation memories, radio frequency (RF) switches and physical unclonable functions (PUFs). The morphology of the filaments is impacted by the biasing conditions. Under a relatively high applied electric field, they form as dendritic elements with a low fractal dimension (FD), whereas a low electric field leads to high FD features. Ion depletion effects in the SE due to low ion diffusivity/mobility also influences the morphology by limiting the ion supply into the growing electrodeposit. Ion transport in SE is due to hopping transitions driven by drift and diffusion force. A physical model of ion hopping with Brownian motion has been proposed, in which the ion transitions are random when time window is larger than characteristic time. The random growth process of filaments in PMC adds entropy to the electrodeposition, which leads to random features in the dendritic patterns. Such patterns has extremely high information capacity due to the fractal nature of the electrodeposits. In this project, lateral-growth PMCs were fabricated, whose LRS resistance is less than 10Ω, which can be used as RF switches. Also, an array of radial-growth PMCs was fabricated, on which multiple dendrites, all with different shapes, could be grown simultaneously. Those patterns can be used as secure keys in PUFs and authentication can be performed by optical scanning. A kinetic Monte Carlo (KMC) model is developed to simulate the ion transportation in SE under electric field. The simulation results matched experimental data well that validated the ion hopping model. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2015
89

Etude d'un Oscillateur Local agile pour une transmission multi-bandes etréduction des interférences associées / A study of a fast switching Local Oscillator for multi-band transmission and cancellation of the associated interferences

Milevsky, Borislav 18 December 2012 (has links)
L'objectif de cette thèse est d'étudier la faisabilité et les performances d'un synthétiseur de fréquences agile pour les transmissions multi-bandes multi-utilisateurs destinées aux systèmes de transmission fournissant un très grand débit tout en répondant aux exigences de faible consommation et d'intégration facile. Dans ce contexte, les solutions classiques de synthétiseur de fréquences ne sont pas applicables et il est nécessaire de développer de nouvelles structures qui génèrent les fréquences centrales en permanence. La commutation d'une fréquence à l'autre peut se faire alors très rapidement par simple modification de la configuration des multiplexeurs. Dans la première partie de ce travail nous nous consacrons à l'analyse d'une telle architecture à fort potentiel. Une partie de sa structure est réalisée en technologie conventionnelle BiCMOS afin de valider sa faisabilité ainsi que le fonctionnement des solutions schématiques développées. Grâce à la caractérisation des composants, une analyse de la structure complète est réalisée. Cependant, la complexité de la structure du synthétiseur proposé fait de sorte qu'il existe pour les fréquences générées un grand nombre de fréquences parasites qui induisent des interférences entre utilisateurs. La réduction de leurs effets sur la transmission est l'objet de la deuxième partie de notre travail. Deux solutions numériques de réduction des interférences sont proposées. Elles permettent de rendre le design de la partie analogique moins contraignant en allégeant le cahier des charges et nous ont ainsi permis de simplifier l'architecture du synthétiseur. / The aim of this thesis is to study the feasibility and the performances of a fast switching frequency synthesizer designed for high debit multi-band multi-user transmission and used in transmission systems requiring a low consumption and an easy IC integration. In this context, the use of the classical synthesizer structures does not apply and there is a need to develop new architectures capable of generating all the frequencies permanently. Thus, the switching between frequencies can be easily done by changing multiplexors' state.In the first part of this study, we focus on the analysis of such high potential OL architecture. The main part of the proposed structure is implemented in a conventional BiCMOS technology in order to validate its feasibility and the operation of the developed blocks. Thanks to the measurements of the OL components, a complete analysis of the synthesizer is made. However, the complexity of the architecture of the proposed synthesizer induces the generation of large number of parasitic frequencies, creating interferences between the active users. The reduction of their effect on the transmission is the subject of the second part of the manuscript. Two digital methods are proposed to reduce the interferences. Lowering the requirements on the analog part, they allow a simplified design. This property was used to reduce the complexity of the frequency synthesizer.
90

Integration von Geodaten in ein Planungssystem

Buchwald, Björn 22 January 2018 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Konzeption einer prototypischen Softwarelösung, welche durch die Integration von Geodaten ein Planungssystem zur Routenfindung zwischen verschiedenen hintereinander stattfindenden Veranstaltungsorten ermöglicht. Der konkrete Anwendungsfall ist das „Dinner-Hopping“.

Page generated in 0.0468 seconds