Spelling suggestions: "subject:"burst parameter""
1 |
The Hurst parameter and option pricing with fractional Brownian motionOstaszewicz, Anna Julia 01 February 2013 (has links)
In the mathematical modeling of the classical option pricing models it is assumed that the underlying stock price process follows a geometric Brownian motion, but through statistical analysis persistency was found in the log-returns of some South African stocks and Brownian motion does not have persistency. We suggest the replacement of Brownian motion with fractional Brownian motion which is a Gaussian process that depends on the Hurst parameter that allows for the modeling of autocorrelation in price returns. Three fractional Black-Scholes (Black) models were investigated where the underlying is assumed to follow a fractional Brownian motion. Using South African options on futures and warrant prices these models were compared to the classical models. / Dissertation (MSc)--University of Pretoria, 2012. / Mathematics and Applied Mathematics / unrestricted
|
2 |
A Study on the Embedded Branching Process of a Self-similar ProcessChu, Fang-yu 25 August 2010 (has links)
In this paper, we focus on the goodness of fit test for self-similar property of two well-known processes: the fractional Brownian motion and the fractional autoregressive integrated moving average process. The Hurst parameter of the self-similar process is estimated by the embedding branching process method proposed by Jones and Shen (2004). The goodness of fit test for self-similarity is based on the Pearson chi-square test statistic. We approximate the null distribution of the test statistic by a scaled chi-square distribution to correct the size bias problem of the conventional chi-square distribution. The scale parameter and degrees of freedom of the test statistic are determined via regression method. Simulations are performed to show the finite sample size and power of the proposed test. Empirical applications are conducted for the high frequency financial data and human heart rate data.
|
3 |
Video Distribution Over Ip NetworksOzdem, Mehmet 01 February 2007 (has links) (PDF)
As applications like IPTV and VoD (Video on demand) are gaining popularity, it is becoming
more important to study the behavior of video signals in the Internet access infrastructures
such as ADSL and cable networks. Average delay, average jitter and packet loss in these
networks affect the quality of service, hence transmission and access speeds need to be
determined such that these parameters are minimized.
In this study the behavior of the above mentioned IP networks under variable bit rate (VBR)
video traffic is investigated. ns-2 simulator is used for this purpose and actual as well as
artificially generated signals are applied to the networks under test. Variable bit rate (VBR)
traffic is generated synthetically using ON/OFF sources with ON/OFF times taken from
exponential or Pareto distributions. As VBR video shows long range dependence with a Hurst
parameter between 0.5 and 1, this parameter was used as a metric to measure the accuracy of
the synthetic sources. Two different topologies were simulated in this study: one similar to
ADSL access networks and the other behaving like cable distribution network. The
performance of the networks (delay, jitter and packet loss) under VBR video traffic and
different access speeds were measured. According to the obtained results, minimum access
speeds in order achieve acceptable quality video delivery to the customers were suggested.
|
4 |
Option Pricing With Fractional Brownian MotionInkaya, Alper 01 October 2011 (has links) (PDF)
Traditional financial modeling is based on semimartingale processes with stationary and independent
increments. However, empirical investigations on financial data does not always
support these assumptions. This contradiction showed that there is a need for new stochastic
models. Fractional Brownian motion (fBm) was proposed as one of these models by Benoit
Mandelbrot. FBm is the only continuous Gaussian process with dependent increments. Correlation
between increments of a fBm changes according to its self-similarity parameter H. This
property of fBm helps to capture the correlation dynamics of the data and consequently obtain
better forecast results. But for values of H different than 1/2, fBm is not a semimartingale and
classical Ito formula does not exist in that case. This gives rise to need for using the white noise
theory to construct integrals with respect to fBm and obtain fractional Ito formulas. In this
thesis, the representation of fBm and its fundamental properties are examined. Construction of
Wick-Ito-Skorohod (WIS) and fractional WIS integrals are investigated. An Ito type formula
and Girsanov type theorems are stated. The financial applications of fBm are mentioned and
the Black& / Scholes price of a European call option on an asset which is assumed to follow a
geometric fBm is derived. The statistical aspects of fBm are investigated. Estimators for the
self-similarity parameter H and simulation methods of fBm are summarized. Using the R/S methodology of Hurst, the estimations of the parameter H are obtained and these values are used to evaluate the fractional Black& / Scholes prices of a European call option with different
maturities. Afterwards, these values are compared to Black& / Scholes price of the same option
to demonstrate the effect of long-range dependence on the option prices. Also, estimations
of H at different time scales are obtained to investigate the multiscaling in financial data. An
outlook of the future work is given.
|
5 |
Forecasting Highly-Aggregate Internet Time Series Using Wavelet TechniquesEdwards, Samuel Zachary 28 August 2006 (has links)
The U.S. Coast Guard maintains a network structure to connect its nation-wide assets. This paper analyzes and models four highly aggregate traces of the traffic to/from the Coast Guard Data Network ship-shore nodes, so that the models may be used to predict future system demand. These internet traces (polled at 5â 40â intervals) are shown to adhere to a Gaussian distribution upon detrending, which imposes limits to the exponential distribution of higher time-resolution traces. Wavelet estimation of the Hurst-parameter is shown to outperform estimation by another common method (Sample-Variances). The First Differences method of detrending proved problematic to this analysis and is shown to decorrelate AR(1) processes where 0.65< phi1 <1.35 and correlate AR(1) processes with phi1 <-0.25. The Hannan-Rissanen method for estimating (phi,theta) is employed to analyze this series and a one-step ahead forecast is generated. / Master of Science
|
6 |
ARFIMA modely časových řad / ARFIMA time series modelsVdovičenko, Martin January 2014 (has links)
The thesis deal with long-memory processes which are defined by several ways. The main concern is dedicated to ARFIMA model, to its basic properties and its application. Next, graphical, semiparametric and parametric estimation methods of ARFIMA parameters are described in detail. Five selected R packages are introduced that are suitable for modeling long-memory processes. We discuss their basic functions with description of input arguments and output. Finally, the application of the packages on real data is discussed according to results of~each function. Data sample comes from the Nile River and represents its yearly minimal water levels. Powered by TCPDF (www.tcpdf.org)
|
7 |
Studies in the electrocardiogram monitoring indices.Guo, Chin-yuan 16 July 2004 (has links)
An recent finding shows that heart rate data possess self-similar property, which is characterized by a parameter H, as well as a long range dependent parameter d. We estimate H by the EBP(Embedded Branching Process) method to derive the fractional parameter d in the first part. The heart rate and R-R interval data are found to have high differencing parameter(d=0.8 ~0.9) and against the
normality assumption. Thus the heart rate and R-R interval data are first fractionally differenced of order 0.5 to achieve stationarity. In the second part, we analyze the
RR-interval data on the physionet and obtain the long range
parameters. After fractionally differencing 0.5 order, the EBP method is adapted to estimate the long range parameter d.
The EWMA and EWRMS control charts of the I(d) processes are constructed to monitor the heart rate mean level and variability, respectively for the 18 RR-interval data sets from the physionet. For the EWMA control chart the out of control percentages are chosen to the nominal probability. However, the out of control percentages are affected by the skewness and kurtosis of the process distribution for the EWRMS control carts. Generally speaking, the I(d)-EWMA and I(d)-EWRMS control charts provide a proper monitor system for heart rate mean level and variability.
|
8 |
A Study on the Estimation of the Parameter and Goodness of Fit Test for the Self-similar ProcessChiang, Pei-Jung 05 July 2006 (has links)
Recently there have been reports that certain physiological data seem to have the properties of long-range correlation and self-similarity. These two properties can be characterized by a long-range dependent parameter d, as well as a self-similar parameter H. In Peng et al (1995), the alteration of long-range correlations with life-threatening pathologies are studied by analyzing the heart rate data of different groups of subjects. The self-similarity properties of two well-known processes, namely the Fractional Brownian Motion (FBM) and the Fractional ARIMA (FARIMA), are of interest to see if it is suitable to be used to model the heart rate data in order to examine the health conditions of some patients. The Embedded Branching Process (EBP) method for estimating parameter $H$ and a goodness of fit test for examining the self-similarity of a process based on the EBP method are proposed in Jones and Shen (2004). In this work, the performance of the goodness of fit test are examined using simulated data from the FBM and FARIMA processes. A modification of the distribution of the test statistics under null hypothesis is proposed and has been modified to be more appropriate. Some simulation comparisons of different estimation methods of the parameter $H$ for some FARIMA processes are also presented and applied to heart rate data obtained from Kaohsiung Veterans General Hospital.
|
9 |
Modélisation et détection de ruptures des signaux physiologiques issus de compétitions d'enduranceKammoun, Imen 19 December 2007 (has links) (PDF)
Ce travail de thèse porte sur la modélisation et l'estimation de paramètres pertinents pour les signaux de fréquences cardiaques (FC) instantanées. Nous nous intéressons à un paramètre (appelé grossièrement "fractal"), qui témoigne de la régularité locale de la trajectoire et de la dépendance entre les données. Les propriétés asymptotiques de la fonction DFA (Detrended Fluctuation Analysis) et de l'estimateur de H sont étudiées pour le bruit gaussien fractionnaire (FGN) et plus généralement pour une classe semi-paramétrique de processus stationnaires à longue mémoire avec ou sans tendance. On montre que cette méthode n'est pas robuste. On propose la modélisation des séries de FC par une généralisation du FGN, appelée bruit gaussien localement fractionnaire. Un tel processus stationnaire est construit à partir du paramètre dit de fractalité locale (une sorte de paramètre de Hurst avec des valeurs dans IR) sur une bande de fréquences. L'estimation du paramètre est faite par une analyse par ondelettes, tout comme le test d'adéquation. On montre la pertinence du modèle et une évolution du paramètre pendant la course. Une détection des changements de ce paramètre pourrait être extrêmement appropriée. On propose alors une méthode de détection de multiples ruptures du paramètre de longue mémoire (respectivement d'autosimilarité, de fractalité locale). Un estimateur des points de changements est construit, il vérifie un théorème limite. Un théorème de la limite centrale est établi pour l'estimateur des paramètres et un test d'ajustement est mis en place dans chaque zone où le paramètre est inchangé. Enfin, on montre la même évolution du paramètre de fractalité locale sur les FC.
|
10 |
Financial Modelling Using Fractional Processes And The Wiener Chaos Expansion / Undersökning Av Finasiella Modeller Med Fraktionella Processer Och Wiener's KaosexpansionHummelgren, Olof January 2022 (has links)
The aim of this thesis is to simulate stochastic models that are driven by a fractional Brownian motion process and to apply these methods to financial applications related to yield rate and asset price modelling. Several rough volatility processes are used to model the asset price and yield dynamics. Firstly fractional processes of Cox-Ingersoll-Ross, CEV and Vasicek types are introduced as models for volatility and yield data. In this framework it holds that the Hurst parameter that determines the covariance structure of the fBM process can be directly estimated from observed data series using a least squares log-periodogram approach. The remaining parameters in the model are estimated using a combination of Maximum Likelihood estimates and expectation estimations. In the modelling and pricing of assets one model that is studied is the fractional Heston model, that is used to model an asset price process using both observed asset and volatility data. Similarly two other similar rough volatility models are also studied, which are constructed so as to have log-Normal returns. These processes which in the thesis are called the exponential models 1 and 2 have rough volatility that are characterized by the CEV and Vasicek processes. Additionally the first order Wiener Chaos Expansion is implemented and explored in two ways. Firstly the Chaos Expansion is applied to a parametric fractional stochastic model which is used to generate a Wick product process, which is found to resemble the underlying process. It is also used to generate an approximate expansion of real yield rate data using a bootstrap sampling approach. / Den här uppsatsen syftar till att simulera stokastiska modeller som drivs av fraktionell Brownsk rörelse och att använda dessa modeller i finansiella tillämpningar relaterade till räntor och finansiella tillgångar. Flera volatilitetsprocesser som är rough används för att modellera ränte- och aktiedynamiken. Först introduceras de fraktionella varianterna av Cox-Ingersoll-Ross, CEV och Vasicek processer, vilka används för att modellera volatilitet och ränteprocesser. Med detta tillvägagångssätt gäller det att Hurstparametern, vilken bestämmer covariansstrukturen för den fraktionella Brownska rörelsen, kan uppskattas direkt från observerad data med en minsta kvadrat log-periodogram-metod. Samtliga andra parametrar i modellen uppskattas med en kombination av Maximum Likelihood och uppskattning av väntevärden. I modelleringen och prissättningen av finansiella tillgångar är en model som studeras den fraktionella Hestonmodellen, som används för att modellera en tillgång baserat på både volatilitets- och aktiedata. Ytterligare två liknande modeller studeras, vilka också har volatilitet som är rough och är konstruerade så att deras avkastning är log-Normal. Dessa processer, vilka i uppsatsen är benämnda som de exponentiella modellerna 1 och 2 har volatilitet som karaktäriseras av CEV- och Vasicekprocesser. Ytterligare är Wiener's Kaosexpansion av första ordningen också implementerad och undersöks från två håll. Först används den på en parameterbestämd fraktionell stokastisk modell, vilken används för att generera en Wickproduktprocess. Expansionen används även med hjälp av en bootstrap-metod för att generera en process från observerad data.
|
Page generated in 0.0645 seconds