• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 143
  • 106
  • 14
  • 11
  • 9
  • 6
  • 4
  • 3
  • 1
  • Tagged with
  • 334
  • 334
  • 132
  • 130
  • 122
  • 107
  • 82
  • 42
  • 38
  • 35
  • 31
  • 29
  • 29
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Impact of hydropower regulation on river water geochemistry and hyporheic exchange

Siergieiev, Dmytro January 2013 (has links)
Hydropower regulation of rivers exhibits a threat to the riverine ecosystems. Fragmentation of flow, landscape disturbances, and water retention are key features of regulated catchments, resulting in reduced floods and geochemical tr¬ansport, non-natural water level fluctuations, and thus disturbed exchange between the river and the aquifer. Storing of water in reservoirs reduces peak flow and turbidity, which increases particle settling and sometimes favours enhanced primary production and formation of a clogging layer. This in turn alters the interaction between surface water and groundwater, with potential secondary effects on the entire watershed. In Scandinavia, only eight large rivers (16%) remain entirely unregulated. The Lule River, the primary focus of this study, belongs to the most regulated rivers of Eurasia with a degree of regulation (i.e. the volume of water that can be stored in the reservoirs and used for regulation) of 72%, and is exposed to both seasonal and short-time regulation.Using hydrogeochemical analysis of two adjacent boreal rivers (pristine Kalix and regulated Lule River) discharging into the Gulf of Bothnia, the effects of regulation on river geochemistry were investigated. For the Lule River, the average maximum runoff was almost halved while the average minimum runoff was tripled as a result of the regulation. The winter transport fraction of total organic carbon, Fe, Si, suspended Mn and P in the Lule River was at least two to three times higher than in the pristine river. During summer, the suspended C/N ratio in the regulated river was 10-20, compared to <10 for the pristine river, suggesting a presence of predominantly decaying organic material due to longer residence times for the regulated river. This was supported by a virtually constant suspended P/Fe ratio throughout the year in the Lule River, indicating low abundance of phytoplankton. Hence, a pronounced impact on the ecosystem of the river, the hyporheic/riparian zone, and the Gulf of Bothnia is expected.In spite of vast anthropogenic pressure on riverine ecosystems, the knowledge regarding the hyporheic zone (the interface between rivers and aquifers where exchange between surface water and groundwater occurs) is limited for regulated rivers. Therefore, this study was extended to also cover the hyporheic exchange along the Lule River. Temporal changes in hyporheic fluxes across the river channel (rates and directions) were determined using seepage measurements and continuous observations of water stages, temperatures, and electrical conductivity for both the river and the groundwater. While the river water level changed frequently (typically twice a day with up to ± 0.5 m), the river remained gaining 90% of the time, and the largest number of observed changes in flow direction (observed at 5 m orthogonal distance from the river) was six times per week. Flow velocities ≤10-4 m d-1 ( zero flow) constituted 1.5% of the total observation time.Although no changes in water temperature were observed for the hyporheic zone, effects of river level variations were detected up to 5 m inland, where electrical conductivity occasionally decreased to surface water levels indicating infiltration of river water into the aquifer (negative fluxes). River discharge regulation may therefore have severe implications on biogeochemical processes and deteriorate the hydroecological functions of the hyporheic zone.
32

Temporal variability of riverbed conductance at the Bolton Well Field along the Great Miami River, Southwest Ohio: Characterization of riverbed sediments during low-flow conditions

Idris, Omonigho 04 May 2006 (has links)
No description available.
33

TEMPORAL VARIABILITY OF RIVERBED HYDRAULIC CONDUCTIVITY ALONG THE GREAT MIAMI RIVER, SOUTHWEST OHIO: A CONTINUANCE OF DATA GATHERING AND INSTRUMENTATION

Windeler, Britton 30 November 2006 (has links)
No description available.
34

TEMPORAL AND SPATIAL VARIABILITY OF RIVERBED CONDUCTANCE AT THE BOLTON WELLFIELD ALONG THE GREAT MIAMI RIVER, SOUTHWEST OHIO

Agyei, Festus O. 14 December 2006 (has links)
No description available.
35

SPATIAL PATTERNS OF SATURATED HYDRAULIC CONDUCTIVITY AND ITS CONTROLLING FACTORS FOR FORESTED SOILSCAPES

SOBIERAJ, JOSEF ALLEN 04 September 2003 (has links)
No description available.
36

Numerical simulation of ground-water flow and advective transport at Woburn, Massachusetts, based on a sedimentological model of glacial and glaciofluvial deposition

Metheny, Maura Agnew January 1998 (has links)
No description available.
37

Preferential and Non-Darcy Flows in the Hyporheic Zone: Surface Water-Groundwater Hydraulics and Effects on Stream Functions

Menichino, Garrett Thomas 21 November 2013 (has links)
Surface water-groundwater interaction can provide various stream functions including temperature regulation, nutrient cycling, pollutant attenuation, and habitat creation. However previous literature is divided on the extent and conditions of these benefits. This dissertation has explored the dominance of hydraulic conductivity (K) on hyporheic hydraulics and implications to hyporheic zone functions through a series of modeling studies and field experiments. Computational Fluid Dynamics (CFD) software was used to model the effect of varying K on weir-induced hyporheic exchange hydraulics and heat transport. Fundamental shifts in hydraulics and temperature dynamics occurred at threshold K's. Surface water began noticeably sinking into the bed above a threshold of K=10-3 m/s and inertial forces caused deviation from Darcy's Law. The heat transport model indicated net downstream surface water cooling from weir-induced exchange was maximized by maximizing K (flow-limited function) and thermal heterogeneity increased with K, particularly above K=10-5 m/s. Results suggest that using CFD to predict surface water-groundwater interaction may be important to accurately predict hyporheic hydraulics and functions dependent on flow-rate or residence time. The importance of macropores to hyporheic transport through meander bends was explored. Transport velocities, hydraulic head gradients, and solute transport rates through the meander bend were increased by macropores. Results indicate that macropores can dictate solute or pollutant transport through meander bends and in the hyporheic zone, which in turn may influence biogeochemical cycling and pollutant attenuation. Surface-connected macropores along streams were studied as hydrologically important subsurface heterogeneities for surface water-groundwater interaction. Macropores were common geomorphic features in the Appalachian province of southwestern Virginia, and were inundated during storm events over a one-year period. Banks with macropores experienced increased hydraulic head fluctuations, temperature fluctuations, and K. Macropores increased bank storage rates and solute transport between the channel and riparian groundwater zones, which in turn may influence biogeochemical cycling, pollutant attenuation, and hyporheic habitat. Macropores may be important to hyporheic flow and solute transport in a wide range of conditions and may broaden the portion of the landscape in which hyporheic exchange is important. Future work is needed to further assess the impacts of macropores on hyporheic functions and explore new methods to map and quantify macropore geometries and inter-connectivity. / Ph. D.
38

Estimativa de propriedades hidráulicas de solos a partir do ensaio de ascensão capilar / Estimating the hydraulic properties of soils from capillary rise test

Zapata Coacalla, Tania 31 August 2012 (has links)
O presente trabalho teve por objetivo avaliar o potencial do ensaio de ascensão capilar e de uma técnica de otimização de parâmetros para estimar os parâmetros hidráulicos dos solos. O ensaio de ascensão capilar é de execução simples e rápida e reflete um fenômeno condicionado pelas propriedades hidráulicas do solo. Na representação matemática da ascensão capilar, utilizou-se o modelo de Terzaghi (1943) que considerou tratar-se de uma condição de fluxo governada pela condutividade hidráulica saturada (ks), e o modelo de Lu & Likos (2004b), que utilizaram a equação de Gardner (1958) para representar a função condutividade hidráulica, considerando que o fluxo se dá em meio não saturado. O processo de otimização utilizou a rotina SOLVER componente do programa EXCEL, e foi testado utilizando-se os dados experimentais de Lane & Washburn (1946) e de Zhang & Fredlund (2009). Em seguida, resultados de ascensão capilar de oito amostras de solos típicos do Estado do São Paulo, Brasil, foram modelados com os parâmetros derivados da técnica. Observou-se que tanto o modelo de Terzaghi (1943) quanto o de Lu & Likos (2004b) conseguiram reproduzir os resultados experimentais de ascensão capilar, com melhores resultados associados ao modelo de Lu & Likos (2004b) para a maior parte dos solos analisados. A previsão da condutividade hidráulica saturada, de forma geral, diferiu menos de uma ordem de grandeza dos valores medidos experimentalmente, embora maiores discrepâncias tenham sido notadas para determinados tipos de solos. O parâmetro de Gardner da função condutividade hidráulica resultou em valores da mesma ordem de grandeza dos valores reportados na literatura para solos similares. Os resultados sobre a aplicação do ensaio de ascensão capilar e da técnica de otimização mostraram-se promissores para a determinação de parâmetros hidráulicos dos solos analisados, com a vantagem de ter-se um procedimento simples e rápido para a finalidade descrita. / This study evaluates the potential of capillary rise test and a parameter optimization technique to estimate soil hydraulic parameters. The capillary rise is a simple and expedite test that is conditioned by soil hydraulic properties. In the mathematical representation of the capillary rise we used the model of Terzaghi (1943), who considered that saturated hydraulic conductivity commands the phenomeno and the model of Lu & Likos (2004b) who used the Gardner equation (1958) to represent the hydraulic conductivity function, considering that the flow takes place in a non-saturated condition. The optimization process used the SOLVER routine, component of the EXCEL program, that was firstly tested using experimental data of Lane & Washburn (1946) and Zhang & Fredlund (2009). Then, results of capillary rise of eight samples of typical soils of the State of São Paulo, Brazil, were modeled with the parameters derived from the technique. It was observed that both the Terzaghi (1943) and Lu & Likos (2004b) models were able to reproduce the experimental results of capillarity, although the best results were yielded by the model Lu & Likos (2004b) for most soils. The prediction of saturated hydraulic conductivity, in general, differed less than one order of magnitude of experimentally measured values, although larger discrepancies have been noted for certain types of soils. The resulting Gardner parameter of the hydraulic conductivity function were of the same order of magnitude of the values reported in the literature for similar soils. The results on the application of capillary rise test and optimization technique proved promising for the determination of soil hydraulic parameters analyzed, with the advantage of having a simple and rapid procedure for the purpose described.
39

Estimativa de propriedades hidráulicas de solos a partir do ensaio de ascensão capilar / Estimating the hydraulic properties of soils from capillary rise test

Tania Zapata Coacalla 31 August 2012 (has links)
O presente trabalho teve por objetivo avaliar o potencial do ensaio de ascensão capilar e de uma técnica de otimização de parâmetros para estimar os parâmetros hidráulicos dos solos. O ensaio de ascensão capilar é de execução simples e rápida e reflete um fenômeno condicionado pelas propriedades hidráulicas do solo. Na representação matemática da ascensão capilar, utilizou-se o modelo de Terzaghi (1943) que considerou tratar-se de uma condição de fluxo governada pela condutividade hidráulica saturada (ks), e o modelo de Lu & Likos (2004b), que utilizaram a equação de Gardner (1958) para representar a função condutividade hidráulica, considerando que o fluxo se dá em meio não saturado. O processo de otimização utilizou a rotina SOLVER componente do programa EXCEL, e foi testado utilizando-se os dados experimentais de Lane & Washburn (1946) e de Zhang & Fredlund (2009). Em seguida, resultados de ascensão capilar de oito amostras de solos típicos do Estado do São Paulo, Brasil, foram modelados com os parâmetros derivados da técnica. Observou-se que tanto o modelo de Terzaghi (1943) quanto o de Lu & Likos (2004b) conseguiram reproduzir os resultados experimentais de ascensão capilar, com melhores resultados associados ao modelo de Lu & Likos (2004b) para a maior parte dos solos analisados. A previsão da condutividade hidráulica saturada, de forma geral, diferiu menos de uma ordem de grandeza dos valores medidos experimentalmente, embora maiores discrepâncias tenham sido notadas para determinados tipos de solos. O parâmetro de Gardner da função condutividade hidráulica resultou em valores da mesma ordem de grandeza dos valores reportados na literatura para solos similares. Os resultados sobre a aplicação do ensaio de ascensão capilar e da técnica de otimização mostraram-se promissores para a determinação de parâmetros hidráulicos dos solos analisados, com a vantagem de ter-se um procedimento simples e rápido para a finalidade descrita. / This study evaluates the potential of capillary rise test and a parameter optimization technique to estimate soil hydraulic parameters. The capillary rise is a simple and expedite test that is conditioned by soil hydraulic properties. In the mathematical representation of the capillary rise we used the model of Terzaghi (1943), who considered that saturated hydraulic conductivity commands the phenomeno and the model of Lu & Likos (2004b) who used the Gardner equation (1958) to represent the hydraulic conductivity function, considering that the flow takes place in a non-saturated condition. The optimization process used the SOLVER routine, component of the EXCEL program, that was firstly tested using experimental data of Lane & Washburn (1946) and Zhang & Fredlund (2009). Then, results of capillary rise of eight samples of typical soils of the State of São Paulo, Brazil, were modeled with the parameters derived from the technique. It was observed that both the Terzaghi (1943) and Lu & Likos (2004b) models were able to reproduce the experimental results of capillarity, although the best results were yielded by the model Lu & Likos (2004b) for most soils. The prediction of saturated hydraulic conductivity, in general, differed less than one order of magnitude of experimentally measured values, although larger discrepancies have been noted for certain types of soils. The resulting Gardner parameter of the hydraulic conductivity function were of the same order of magnitude of the values reported in the literature for similar soils. The results on the application of capillary rise test and optimization technique proved promising for the determination of soil hydraulic parameters analyzed, with the advantage of having a simple and rapid procedure for the purpose described.
40

Systematic Variability of Soil Hydraulic Conductivity Across Three Vertisol Catenas

Rivera, Leonardo Daniel 2010 August 1900 (has links)
Soil hydraulic properties, such as saturated hydraulic conductivity (Ks), have high spatial variation, but little is known about how to vary a few measurements of Ks over an area to model hydrology in a watershed with complex topography and multiple land uses. Variations in soil structure, macropores (especially in soil that shrink and swell), land use, and soil development can cause large variations in Ks within one soil type. Characterizing the impacts of soil properties that might vary systematically with land use and terrain attributes on Ks rates would provide insight on how management and human activity affect local and regional hydrology. The overall objective of this research was to develop a strategy for using published infiltration and Ks measurements by the Natural Resources Conservation Service for watershed hydrology applications in a Vertisol, and to extend this knowledge toward developing recommendations for future infiltration measurements. To achieve this goal, soil infiltration measurements were collected across three catenas of Houston Black and Heiden clays (fine, smectitic, thermic Udic Haplusterts) under three land uses (improved pasture, native prairie, and conventional tillage row crop). Measurement locations were selected to account for variation in terrain attributes. Overall, Ks values were not significantly different across different landscape positions; however, in fields under similar land uses, Ks values were found to be lower in the footslope positions and higher in the backslope positions. The pedotransfer function, ROSETTA, provided estimates of 64 percent of the overall variability in Ks while also providing accurate estimates of the mean of Ks when particle size distribution and bulk density are used as inputs in the model. Through the use of multiple regression analysis, soil antecedent water content, bulk density, clay content, and soil organic carbon along with two indicator variables for the catenas were highly correlated (r2 = 0.59) with Ks. The indicator variables explained 17 percent of the variation in Ks that could not be explained by measured soil properties. It is recommended that when NRCS measures Ks on benchmark soils, especially high clay soils, that they collect particle size distribution, bulk density, organic carbon, and antecedent water content data.

Page generated in 0.0844 seconds