31 |
Mucin and Gelatin Based Granular Hydrogels for Biofabrication / Muzin- und Gelatine basierte granulare Hydrogele für die BiofabrikationBrand, Jessica Sieglinde January 2024 (has links) (PDF)
The present work deals with the preparation of hydrogels in different size scales for various applications. Thus, macroscopic bulk hydrogels were prepared from differently modified pig gastric mucin (PGM), microgels were made from PGM in combination with hyaluronic acid (HA), as well as from gelatin in combination with poly(ethylene glycol) (PEG), and nanogels were fabricated from poly(glycidol) (PG). According to their size, each hydrogels have different applications. First, it was investigated whether previously existing studies involving the preparation of covalently crosslinked hydrogels via free radical polymerization from bovine submaxillary gland mucin (BSM) could also be carried out with the much cheaper alternative PGM. After this was successfully demonstrated and the hydrogels were systematically investigated for their mechanical properties and biocompatibility, a second hydrogel system was established. Here, PGM was functionalized with allyl glycidyl ether (AGE) and crosslinked in combination with thiolated HA via thiol-ene reaction. These hydrogels were also systematically evaluated and compared with the hydrogels prepared via free radical polymerization. It was confirmed that the more random free radical polymerization leads to more disordered networks than the thiol-ene reaction. In both systems, biocompatibility was demonstrated with both L929 CCL1 murine fibroblasts and human mesenchymal stem cells (hMSCs). Using this knowledge as background and the request to make mucin printable, microgels were prepared via the emulsion technique using the previously established thiol-ene hydrogel precursor solution. Here, applying the recently used photoinitiator 2-hydroxy-4-(2-hydroxyethoxy)-2- methylpropiophenone (Irgacure 2959), which is more soluble in oil than in water, was challenging and did not result in well-crosslinked microgels. Therefore, a third hydrogel system was established, which was based on thiol-ene crosslinked AGE functionalized pig gastric mucin (PGM-AGE)-thiolated hyaluronic acid (HASH) hydrogels and with lithium phenyl-2,4,6- trimethylbenzoylphosphinate (LAP) being used as photoinitiator. Hereby, stably crosslinked microgels could be prepared via the emulsion technique. After the jamming process, which means the extraction of the microgel solution by vacuum, the resulting so-called granular ink could be successfully printed via extrusion-based printing. The widely known challenge of printing living cells was also successfully managed. Cells were encapsulated in the microgels during microgel synthesis. Here, the stirring velocity had to be adjusted to avoid harming the cells during the manufacturing process. The cell-loaded microgels were successfully printed in the same way as the empty microgels in multiple layers resulting in dimensionally stable constructs. Live/dead experiments verified that many viable cells were printable after 24 hours. In the next part of this thesis, microgels were prepared from AGE-functionalized gelatin and thiol-functionalized PEG by the same procedure. Again, cells were incorporated and printed by extrusion-based printing. After the addition of hydroxypropyl-methylcellulose, the right conditions for viable cells and stable constructs were found. The printed constructs were further secondarily crosslinked by immersion in initiator solution after the printing process followed by re-irradiating with light. Hereafter, a strongly increased stability of the constructs could be observed. Microgels for use as cell sensor particles were produced as part of this thesis. Here, microfluidic was applied to prepare microgels with a monodisperse size distribution. After adjusting the oil phase, as well as optimizing the manufacturing parameters to the mucin hydrogel system, the microfluidic setup established by Ilona Paulus in this research group could be used. By setting very fast flow rates, microgels in the size range of cells could be obtained. Furthermore, various parameters affecting the stiffness of the particles were varied. This laid the foundation for follow-up studies within the framework of the SFB TRR225 to be able to produce cellmimicking particles. Further follow-up experiments could include the investigation of hydrogels being based only on mucin, like a crosslinking of thiolated mucin and mucin modified with an allyl function such as the PGM-AGE. Furthermore, the granular mucin ink could serve as a supporting material for other microgels or less stable inks during the printing process and thus expand the field of applicable materials for three dimensional (3D) printing. / Die vorliegende Arbeit befasst sich mit der Herstellung von Hydrogelen unterschiedlicher Größe für verschiedene Anwendungen. So wurden makroskopische Bulk-Hydrogele aus verschieden modifiziertem Muzin aus dem Schweinemagen (engl. PGM) hergestellt, während Mikrogele aus PGM in Kombination mit Hyaluronsäure (engl. HA), sowie aus Gelatine in Kombination mit PEG, und Nanogele aus PG synthetisiert wurden. Jedes Hydrogel hat entsprechend seiner Größe andere Funktionalitäten und damit auch andere Anwendungsmöglichkeiten. Zunächst wurde untersucht, ob bereits bestehende Studien zur Herstellung von kovalent vernetzten Hydrogelen durch radikalische Polymerisation aus Muzin aus Rinderspeicheldrüsen (engl. BSM) auch mit der wesentlich günstigeren Alternative PGM durchgeführt werden können. Nachdem dies erfolgreich nachgewiesen wurde und die Hydrogele systematisch auf ihre mechanischen Eigenschaften sowie auf Biokompatibilität untersucht wurden, folgte die Etablierung eines weiteren Hydrogelsystems. Hierfür wurde PGM mit Allylglycidylether funktionalisiert und in Kombination mit thiylierter HA über die Thiol-En-Reaktion vernetzt. Auch diese Hydrogele wurden systematisch untersucht und mit den Hydrogelen, die über die freie radikalische Polymerisation hergestellt wurden, verglichen. Es konnte bestätigt werden, dass die mehr zufällig ablaufende, freie radikalische Polymerisation zu ungeordneteren Netzwerken führt als die Thiol- En Reaktion. In beiden Systemen konnte sowohl mit L929 CCL1 Mausfibroblaten sowie mit humanen mesenchymalen Stammzellen eine gute Biokompatibilität nachgewiesen werden. Mit diesem Wissen als Grundlage und dem Ziel, Muzin druckbar zu machen, wurden mit der zuvor etablierten Thiol-En-Hydrogel-Lösung Mikrogele über die Emulsionstechnik hergestellt. Hier war die Anwendung des zuvor verwendeten Photoinitiators Irgacure 2959, der in Öl löslicher ist als in Wasser, eine Herausforderung und führte nicht zu gut vernetzten Mikrogelen. Deshalb wurde ein drittes Hydrogelsystem etabliert, welches auf Thiol-En vernetzten PGMAGE- HASH Hydrogelen basierte, jedoch LAP als Photoinitiator verwendete. Hiermit konnten stabil vernetzte Mikrogele über die Emulsionsmethode hergestellt werden. Nach dem Jamming Prozess, dem Absaugen der Mikrogellösung über Vakuum, konnte die resultierende sogenannte granulare Tinte erfolgreich über den Extrusions-basierten Druckprozess gedruckt werden. Für die im Bereich der Biofabrikation nach wie vor bestehende Herausforderung, lebendige Zellen zu drucken, konnte ebenfalls erfolgreich ein Lösungsansatz geliefert werden. Zellen wurden während der Mikrogelsynthese in die Mikrogele eingekapselt. Hierbei musste die Rührgeschwindigkeit angepasst werden, um den Zellen während des Herstellungsprozesses nicht zu schaden. Die zellbeladenen Mikrogele konnten erfolgreich, in gleicher Weise wie die leeren Mikrogele, in mehreren Lagen zu formstabilen Konstrukten gedruckt werden. In einem weiteren Teil dieser Doktorarbeit wurden auf dem selben Wege Mikrogele aus AGEfunktionalisierter Gelatine und thiol-funktionalisiertem PEG hergestellt. Auch hier wurden Zellen eingekapselt und über den Extrusions-basierten Druckprozess gedruckt. Nach Zugabe vonHydroxypropylmethylcellulose waren die richtigen Bedingungen für lebensfähige Zellen und stabile Konstrukte gefunden. Des Weiteren wurden die gedruckten Konstrukte sekundär vernetzt, indem sie nach dem Druckprozess in die Initiatorlösung gegeben und erneut mit Licht bestrahlt wurden. Hiernach konnte eine stark erhöhte Stabilität der Konstrukte beobachtet werden. Für eine Anwendung als Zell-Sensor-Partikel, wurden in einem weiteren Teil dieser Arbeit ebenfalls Mikrogele synthetisiert. Hierfür war eine monodisperse Größenverteilung der Mikrogele notwendig, weshalb diese über Mikrofluidic hergestellt wurden. Nach Anpassung der Ölphase, sowie der Optimierung der Herstellungsparameter an das Muzin-Hydrogel-System, konnte der in dieser Arbeitsgruppe von Ilona Paulus etablierte Mikrofluidic-Aufbau genutzt werden. Durch die Verwendung von sehr schnellen Flussraten konnten Mikrogele in der Größenordnung von Zellen hergestellt werden. Darüber hinaus wurden verschiedene Parameter variiert, die die Festigkeit der Partikel beeinflussen. So wurde die Grundlage für Folgestudien im Rahmen des SFB TRR225 gelegt, um zell-imitierende Partikel herstellen zu können. Weitere an diese Arbeit anschließende Experimente könnten die Untersuchung von einem rein Muzin-basierten Hydrogel sein, wie beispielsweise eine Vernetzung von thioliertem Muzin und einem mit einer Allylfunktion modifiziertem Muzin, wie dem PGM-AGE. Darüber hinaus könnte die körnige Muzin-Tinte während des Druckvorgangs als Trägermaterial für andere Mikrogele oder weniger stabile Tinten dienen und damit das Feld der anwendbaren Materialien für den 3D-Druck erweitern.
|
32 |
Design of polysaccharide-based nanogels for the controlled release of insulin / Conception de nanogels à base de polysaccharides pour la libération contrôlée d'insulinePoirot, Robin 21 December 2017 (has links)
La prise en charge du diabète de type I se fait à l’heure actuelle par des injections pluriquotidiennes d’insuline ou par l’utilisation d’une pompe à insuline qui va mimer l’activité pancréatique. Dans ce contexte, les nanogels sensibles au glucose représentent des candidats à fort potentiel pour une délivrance contrôlée de l’insuline.La majorité des matériaux développés à ce jour ne présentent pas d’études en vue d’application in vivo et ce, pour diverses raisons telles que la non validation du caractère biocompatible et biorésorbable de la matrice polymère. Afin de répondre à ces deux critères, nous avons choisi de développer des nanogels à base de polysaccharides biocompatibles et biodégradables.Des travaux antérieurs au sein du laboratoire ont porté sur la conception d’hydrogels à base d’acide hyaluronique. Le polysaccharide a été fonctionnalisé avec des dérivés de l’acide phénylboronique (PBA) et du maltose. Ces modifications permettent dans des conditions physiologiques de générer des réticulations boronate-ester. Ces liaisons permettent d’induire une modification de la structure des hydrogels en réponse à divers stimuli tel que le pH ou l’addition de composés saccharidiques.Afin de faciliter l’administration de tels matériaux, nous avons étendu ce concept à la formation de nanogels. Des nanogels sensibles au pH et/ou à l’addition de saccharides ont pu être obtenus en conditions physiologiques grâce au choix judicieux des polysaccharides partenaires modifiés par le PBA et des molécules portant des fonctions diol. Ces nanogels sont capables de piéger l’insuline lors de leur formation avec une efficacité d’encapsulation allant de 45% à 80% et une capacité d’encapsulation de 10% à 60%. Les premiers tests ont montré un faible relargage de l’insulin par nos nanogels.Finalement, au vue de la sensibilité au pH de nos nanogels et l’environnement acide présent autour des tumeurs, leur utilisation pour le traitement du cancer a été étudié. Des analyses in vitro ont démontré une faible toxicité de nos gels sur les cellules cancéreuses. Les premières expériences in vivo ont montré la capacité des nanogels à circuler dans le sang. / Type 1 diabetes management is currently done by multiple insulin injections or by the use of an insulin pump that will mimic pancreatic activity. In this context, glucose-sensitive nanogels represent high potential candidates for controlled delivery of insulin.The majority of materials developed so far are limited to biological in vitro studies, which is partly due to the non-biocompatibility and limited biodegradability of polymers used for the preparation of such materials. To fulfill these criteria, we proposed to develop nanogels based on biocompatible and biodegradable polysaccharides.Previous work in our laboratory focused on the design of boronate-crosslinked hydrogels based on hyaluronic acid. This polysaccharide was functionalized with derivatives of phenylboronic acid (PBA) and of maltose. The dynamic covalent boronate ester crosslinks between the polysaccharide chains enabled to induce a structural change of the hydrogel in response to various stimuli such as pH or addition of carbohydrate molecules.In order to facilitate administration of such materials, we extended the concept to the formation of nanogels. Sugar- and pH-sensitive nanogels could be successfully obtained in physiological conditions thanks to the judicious choice of the polysaccharide partners, bearing PBA moieties and diol-containing molecules.These nanogels can entrap insulin during their formation with an entrapment efficiency of 45% to 80% and a loading capacity ranging from 10% to 60%. Preliminary experiments indicated a low release of insulin from the nanogels.Finally, in view of the pH-sensitivity of these nanogels and the slight acidic pH of the tumor environment, we investigated their potential application for the treatment of cancer. In vitro experiment demonstrated a low toxicity of our nanogels on cancer cells. Preliminary in vivo experiments indicated that the nanogels can circulate in the bloodstream.
|
33 |
Conception et développement d’hydrogels pour l’ingénierie tissulaire appliquée au tissu osseux / Design and development of hydrogels for bone tissue engineeringMaisani, Mathieu 22 September 2017 (has links)
Le besoin clinique de nouvelles stratégies pour pallier les limites des techniques actuelles dans le cas de régénération osseuse a permis l’émergence de l’ingénierie tissulaire osseuse. Les stratégies basées sur les techniques d’ingénierie tissulaire semblent être une alternative à l’utilisation de greffes et ainsi de s’affranchir des limites qu’elles présentent. L’approche adoptée dans le cadre de cette thèse consiste en le développement et l’utilisation d’hydrogels comme matériaux d’échafaudage pour le comblement et la régénération de tissus osseux. De nombreuses approches utilisant elles aussi des hydrogels existent, chacune possède ses avantages et limites. Dans ce contexte, nos travaux ont consisté en l’utilisation d’un hydrogel non-polymérique comme matériau de base dans le développement des stratégies. Brièvement, plusieurs types cellulaires sont présents au sein du tissu osseux et vont participer aux processus de formation et de régénération osseuse. L’objectif de nos stratégies a été l’apport de cellules souches exogènes puis leur différenciation en cellules ostéoformatrices, ou le recrutement et la différenciation des cellules de l’hôte en cellules ostéoformatrices. Le gel de GNF a été utilisé comme matrice tridimensionnelle pour ses propriétés d’injectabilité, de gélification en l’absence d’agent de réticulation toxique et son potentiel ostéoinducteur. Ce travail a consisté au développement de stratégies pour l’ingénierie tissulaire osseuse en associant le gel de GNF à une matrice naturelle de collagène cellularisée ou à des molécules bioactives pour promouvoir la régénération de lésions osseuses. Ces travaux ont permis de développer et caractériser des stratégies pertinentes pour la régénération de lésions osseuses basées sur l’utilisation d’hydrogels. / New strategies to overcome the clinical limitations of current techniques for bone defect filling and regeneration has led to the involvement of bone tissue engineering. Indeed, strategies based on tissue engineering techniques seem to be an alternative to the use of grafts and thus to defeat their limits. The approach employed in this thesis consists in development and use of hydrogels as scaffold materials for bone defect filling and regeneration. There are many approaches that also use hydrogels, each one with its advantages and limitations. In this context, our work consisted in the use of a non-polymeric hydrogel as basic material in the development of strategies for bone tissue engineering. Briefly, several cell types are present within bone tissue and will participate in the processes of bone formation and regeneration. The objective of our strategies was the contribution of exogenous stem cells and then their differentiation into osteogenic cells or the recruitment and differentiation of the host cells into osteogenic cells within the material. The GNF gel was used as a three-dimensional matrix considering its properties of injectability, gelation in the absence of toxic crosslinking agent and its osteoinductive potential. The goal was to develop strategies for bone tissue engineering by combining the GNF gel with a natural matrix of cellular collagen or bioactive molecules to promote the regeneration of bone lesions. This work allowed to develop and characterize strategies relevant to the regeneration of bone lesions based on the use of hydrogels.
|
34 |
Muscles artificiels à base d’hydrogel électroactif / Artificial muscle fabrication based on electroactive hydrogelBassil, Maria 15 September 2009 (has links)
Les hydrogels de Polyacrylamide (PAAM) hydrolysés sont des matériaux électroactifs biocompatibles non biodégradables. Ils possèdent des propriétés très proches de celles du muscle naturel et leur mode opérationnel basé sur la diffusion d’ions est similaire à celui existant dans les tissus musculaires naturels. Compte tenu de ces caractéristiques, ces hydrogels sont de bons candidats pour la conception de nouveaux muscles artificiels. Le problème qui limite leur utilisation réside dans leur temps de réponse qui reste encore inférieur à celui du système de fibres musculaires naturelles. Leur fonction actuatrice est limitée par le phénomène de diffusion en raison de leur structure massique qui est à l’origine de cycles de fonctionnement relativement lents. Dans le but de développer un nouveau système artificiel mimant le comportement du muscle squelettique naturel cette étude se divise en deux grandes étapes. La première étape vise le développement d’une étude de la synthèse de l’hydrogel de PAAM et de son mode de fonctionnement. Dans cette étude les effets des paramètres gouvernant la polymérisation sur les propriétés des hydrogels sont évalués. Les propriétés électrochimiques et le mécanisme d’activation des actuateurs soumis à une excitation électrique sont étudiés et le mode de fonctionnement des actuateurs est caractérisé et expliqué. La seconde étape est la proposition et le développement d’une nouvelle architecture de muscle artificiel à base de PAAM. Cette architecture consiste en une structure fibreuse du gel encapsulée par une couche en gel conducteur jouant le rôle d’électrodes. La structure fibreuse permet au système d’exhiber une réponse rapide et la couche en gel améliore ses propriétés mécaniques. Comme un premier pas dans la réalisation du modèle nous avons mis en place un nouveau procédé basé sur la technique d’électrofilage qui permet la génération de fibres linéairement disposées. En utilisant ce processus nous avons réussi à fabriquer des microfibres de PAAM réticulées, électroactives montrant des réponses rapides. / Hydrolyzed Polyacrylamide (PAAM) hydrogels are electroactive, biocompatible and non-biodegradable materials. Their main attractive characteristic is their operative similarity with biological muscles and particularly their life-like movement. They suit better the artificial muscle fabrication despite their response time which stays low compared to natural human muscle due to their bulky structure and due to the kinetics of the size dependence of their volume change. In order to copy the natural skeletal muscle design into a new artificial muscle system this study is divided into two steps. The first step is the development of a comprehensive study of the hydrogel itself in order to obtain the elementary background needed for the design of actuating devices based on this material. The effect of polymerization parameter on the hydrogel properties is investigated. The electrochemical properties and actuation mechanisms of the hydrogel is studied, the bending of PAAM actuators induced by electric field is discussed and a mechanism for the bending phenomenon is proposed. The second step is the proposition of a new artificial muscle architecture based on PAAM hydrogel. The model consists on a fiber like elements of hydrolyzed PAAM, working in parallel, embedded in a thin conducting gel layer which plays the role of electrodes. The fiber-like elements enable the system to exhibit relatively rapid response and the gel layers enhance their mechanical properties. Aiming to realize the model we have put in place a new electrospinning setup which is a modified process for the production of micro to nanofibers via electrostatic fiber spinning of polymer solutions. The main advantage of this technology is to produce aligned electrospun fibers over large areas by simple and a low cost process making it possible to produce fiberbased devices efficiently and economically. Using this setup, we succeeded in the fabrication of electroactive crosslinked hydrogel microfibers that can achieve fast electroactive response
|
35 |
Hyperbranched polymers increase the stimuli-responsiveness of hydrogelsChimala, Prathyusha 23 August 2022 (has links)
No description available.
|
36 |
A muscle mimetic polyelectrolyte–nanoclay organic–inorganic hybrid hydrogel: its self-healing, shape-memory and actuation propertiesBanerjee, S.L., Swift, Thomas, Hoskins, Richard, Rimmer, Stephen, Singha, N.K. 2019 January 1917 (has links)
Yes / Here in, we describe a non-covalent (ionic interlocking and hydrogen bonding) strategy of self-healing in a covalently crosslinked organic-inorganic hybrid 15 nanocomposite hydrogel, with special emphasize on it's improved mechanical stability. The hydrogel was prepared via in-situ free radical polymerization of sodium acrylate (SA) and successive crosslinking in the presence of poly(2-(methacryloyloxy)ethyl trimethyl ammonium chloride) (PMTAC) grafted cationically armed starch and organically modified montmorillonite (OMMT). This hydrogel shows stimuli triggered self-healing following damage in both neutral and acidic solutions (pH=7.4 and pH=1.2). This was elucidated by tensile strength and rheological analyses of the hydrogel segments joined at their fractured points. Interestingly this hydrogel can show water based shape memory effects. It was observed that the ultimate tensile strength (UTS) of the self-healed hydrogel at pH = 7.4 was comparable to extensor digitorum longus (EDL) muscle of the New Zealand white rabbit. The as synthesized self-healable hydrogel was found to be non-cytotoxic against NIH 3T3 fibroblast cells. / Medical Research Council (MRC (MR/N501888/2))
|
37 |
Polymères et hydrogels à mémoire de forme ultrason-répondantsLi, Guo January 2016 (has links)
Résumé : Les polymères à mémoire de forme (PMFs) possèdent la capacité de changer leurs formes en réponse aux changements de conditions environnementales. Généralement, ces matériaux dans une forme permanente peuvent être manipulés et fixés dans une forme temporaire. Cette déformation temporaire reste stable jusqu'à ce qu’un stimulus soit appliqué pour déclencher la reprise de la forme permanente, induit par la libération de l'énergie élastique stockée dans la forme temporaire. Cette capacité de se souvenir des formes différentes dans des conditions différentes a suscité beaucoup d'intérêt de la part des scientifiques et des ingénieurs en raison de l'énorme potentiel des PMFs pour de nombreuses applications telles que les implants médicaux, appareils intelligents et actionneurs. Au cours des dernières années, la recherche et le développement sur les PMFs croissent rapidement. Toutefois, les méthodes de déclenchement pour la reprise de forme sont toujours limitées à l'utilisation d'une poignée de stimuli, y compris le chauffage direct, l'exposition à la lumière, au champ électrique, au champ magnétique, et à un changement de pH ou de l'humidité. Il y a encore un besoin de développer de nouvelles méthodes pour contrôler les PMFs. D'autre part, pour plus d'applications, il est intéressant d’avoir des PMFs combinés avec d'autres propriétés ou fonctionnalités stimuli-sensibles, telles que la conductivité, la perméabilité, la libération de médicaments ou l'auto-guérison. Le thème principal de cette thèse est de développer des PMFs avec un nouveau mécanisme de stimulation, à savoir, l'exposition aux ultrasons, et avec des fonctionnalités supplémentaires. Nous avons utilisé des ultrasons pour déclencher la reprise de forme des polymères, y compris l'usage des ultrasons focalisés de haute intensité (UFHI) pour un PMF amorphe et l'utilisation des ultrasons thérapeutiques pour un hydrogel biocompatible à mémoire de forme. L’utilisation des ultrasons pour contrôler la récupération de forme présente plusieurs avantages par rapport à d'autres stimuli, tels que l'activation à distance, le contrôle spatiotemporelle et, plus important encore, une pénétration profonde dans les tissus biologiques. Pour les PMFs multifonctionnels, nous avons développé des PMFs combinés avec la libération de médicaments ou la propriété d'auto-guérison. Les travaux de recherche accomplis dans cette thèse portent principalement sur deux sujets présentés dans quatre chapitres. La première partie est l'étude sur l’utilisation de l’UFHI pour contrôler la reprise de forme et, simultanément, la libération de médicaments à partir de PMFs solides. La deuxième partie est consacrée au développement de nouveaux hydrogels polymères possédant à la fois la capacité de mémoire de forme et la propriété d'auto-guérison, dont la mémoire de forme peut être déclenchée par un appareil à ultrasons thérapeutique. Dans notre première étude sur les PMFs contrôlés par l’UFHI, nous avons préparé un copolymère statistique composé de méthacrylate de méthyle et d’acrylate de butyle, P(MMA-BA), comme un PMF modèle. Sous l'exposition UFHI, le polymère peut être chauffé à plus de 100 °C en quelques secondes, permettant le controle de la mémoire de forme par les ultrasons. En faisant usage de ce chauffage rapide et localisé induit par l’UFHI, nous avons réalisé le contrôle spatiotemporel sur le processus de récupération de forme, démontrant que les différentes parties déformées peuvent être activées séparément pour entreprendre la récupération de forme, et que le processus de récupération de forme peut être interrompu à tout moment pour obtenir plusieurs formes intermédiaires stables. En outre, nous avons démontré que la libération contrôlée de médicaments peut être réalisée dans le processus de récupération de forme simultanément. En effet, le chauffage sous UFHI augmente la mobilité de chaînes ainsi que le coefficient de diffusion de la matrice polymère, ce qui entraîne la libération du composé chargé dans le PMF. Les caractéristiques intéressantes de l'utilisation de l’UFHI dans le contrôle de la mémoire de forme sont prometteuses pour une large gamme d'applications, notamment dans les domaines biomédicaux. Sur la base du premier projet, afin de mieux comprendre la mémoire de forme contrôlée par l’UFHI ainsi que la relation entre les propriétés des polymères et leurs comportements en réponse a l’UFHI, nous avons utilisé le P(MMA-BA) en tant que polymère modèle et préparé des échantillons en rajustant plusieurs paramètres ou propriétés, y compris l'épaisseur, la composition des deux monomères et la teneur en agent de réticulation. Les résultats indiquent que pour une puissance de sortie ultrasonore donnée, il existe une épaisseur optimale de l'échantillon pour l'effet thermique induit par l’UFHI et par conséquent le taux de récupération de forme. En outre, les résultats révèlent des effets significatifs de la composition de copolymère et de la densité de réticulation sur le comportement en mémoire de forme. Le plus important est qu'il y a une relation directe entre le paramètre viscoélastique de tangente de perte, tan δ, du polymère et l'élévation de la température induite par l’UFHI. Nous avons constaté qu’une valeur plus élevée de tan δ du polymère donne lieu à une élévation de température supérieure qui, à son tour, détermine le comportement de récupération de la forme sous UFHI. La conclusion de cette étude fournit une compréhension importante pour la conception et la préparation des PMFs UFHI-sensibles. Sur un autre front, nous avons développé deux méthodes simples et générales pour préparer l’hydrogel à base du poly(alcool de vinyle) (PVA) possédant à la fois la mémoire de forme et la propriété d'auto-guérison. Il est difficile de préparer un hydrogel à mémoire de forme en raison de la grande quantité d'eau présente dans le matériau. Lorsque le PVA est soumis à un traitement de congélation/décongélation, il peut former un hydrogel physique avec des micro-domaines cristallins jouant le rôle de points de réticulation. Une étude précédente de notre groupe a également trouvé que l’hydrogel physique du PVA a la capacité d'auto-guérison de manière autonome en raison de nombreux ponts-H entre les groupes hydroxyle dans le polymère. Basé sur ces connaissances, nous avons développé deux stratégies pour préparer des hydrogels à mémoire de forme. Dans le premier cas, nous avons mis en évidence qu’en ajoutant une petite quantité de mélamine comme agent de réticulation pour former de multiples liaisons-H avec le PVA, l'hydrogel résultant, étant mécaniquement renforcée, peut être déformé et la déformation peut ensuite être fixée par le traitement de congélation/décongélation. Cela signifie qu’une forme temporaire de l'hydrogel de PVA/mélamine peut être obtenue, et que la reprise de forme peut être déclenchée par chauffage au-dessus de la température de fusion des micro-domaines cristallins du PVA. Nous avons démontré, pour la première fois, que la récupération de forme d'un hydrogel polymère peut être déclenchée à l'aide d'un appareil à ultrasons thérapeutiques en vente dans les pharmacies pour le soulagement de la douleur. Cette réalisation est une étape importante vers des applications des PMFs contrôlés par les ultrasons. Dans la deuxième étude concernant les hydrogels à mémoire de forme, nous avons développé une nouvelle stratégie pour transmettre les propriétés recherchées de mémoire de forme et d'auto-guérison à des hydrogels réticulés chimiquement. Par voie d’interpénétration de deux réseaux, un réseau chimique du poly(éthylène glycol) (PEG) et un réseau physique du PVA, nous montrons que cet hydrogel de double-réseau est non seulement mécaniquement fort, mais aussi doté des propriétés de mémoire de forme et d’auto-guérison découlant du PVA. La forme temporaire, à nouveau, peut être obtenue en soumettant l'hydrogel déformé au traitement de congélation/décongélation. Par ailleurs, profitant de la structure à double-réseau, nous avons fait la première investigation sur l’effet de l’anisotropie sur le comportement d'auto-guérison dans un hydrogel allongé. Les résultats indiquent que l'efficacité d'auto-cicatrisation est différente selon la direction de mesure par rapport à la direction d’étirement de l’hydrogel (direction d'orientation de chaines), et que ce phénomène pourrait être issu de différentes densités des ponts-H le long de différentes directions dans un hydrogel anisotrope. / Abstract : Shape memory polymers (SMPs) have the ability to change their sizes or shapes in response to environmental condition changes. Usually these materials with an original (permanent) shape can be manipulated and fixed into a temporary and dormant shape. This temporary deformation is stable until a stimulus is applied to trigger the shape recovery of the material to go back to its original, stress-free condition, driven by the release of elastic energy stored during the temporary shape processing. The ability to remember different shapes at different conditions has arouse much interest from scientists and engineers because of the great potential of SMPs for applications in medical implants, smart devices, information recorders, actuators, and so on. In recent years there is a rapid development in this research field; versatile SMP systems with various formulations or functionalities have been produced. However, the shape recovery triggering methods are limited to the use of a handful of stimuli, including direct heating in most cases, and also exposure to light, electric field, magnetic field, pH change or moisture. There is still a need to develop novel triggering methods to control SMPs. On the other hand, for the development and utilization of SMPs in a broader application spectrum, producing polymer systems combining the shape memory property and other stimuli-responsive functionalities, such as conductivity, permeability, drug delivery or self-healing, is also of considerable interest. The main topic of this thesis is to develop SMPs with a new stimulation mechanism, namely, ultrasound, and with additional functionalities. We utilized ultrasound to trigger shape recovery of polymers, including the use of high intensity focused ultrasound (HIFU) to trigger an amorphous SMP and the use of therapeutic ultrasound to control a biocompatible shape memory hydrogel. Using ultrasound to control shape recovery has several advantages compared to other stimuli, such as remote activation, spatiotemporal control and, more importantly, deep penetration into biological tissues. For SMPs with additional functionalities, we developed SMP systems combined with drug delivery or self-healing properties. The research work s accomplished in this thesis mainly covers two topics, reported in four chapters. The first part is the investigation of HIFU in triggering the shape recovery and, simultaneously, controlling the drug delivery from polymers in the solid state. The second part is focused on the development of new polymer hydrogels possessing both the shape memory and self-healing functionalities and whose shape memory can be controlled using a therapeutic ultrasound device. In our first study regarding ultrasound-controlled SMPs, we prepared an amorphous random copolymer poly(methyl methacrylate-co- butyl acrylate) (P(MMA-BA)) as a model SMP because both its shape fixity ratio and shape recovery ratio are nearly ~ 100%. Under HIFU exposure the polymers can be heated to above 100 ° C within several seconds while the environmental temperature increases only moderately. This rapid and prominent ultrasound thermal effect makes it possible to control SMPs. By making use of HIFU-induced localized heating, we have realized spatiotemporal control over the shape recovery process, showing that different parts of deformed SMP can be triggered to undergo shape recovery separately, and that the shape recovery process can be halted at will to obtain several intermediate shapes. In addition, we have demonstrated that controlled drug release can be achieved in the shape recovery process simultaneously. Upon increase of the temperature chain mobility as well as the diffusion coefficient of the polymer matrix are both enhanced, resulting in release of loaded compound. The appealing features of using HIFU to trigger polymer shape recovery hold promise for a wide range of applications, especially in biomedical fields. On the basis of the first project, in order to further understand HIFU-controlled shape memory and the relationship between polymer properties and their behaviors under HIFU, we used P(MMA-BA) as a model polymer and adjusted several properties, including thickness, monomer composition and crosslinker content, to investigate the temperature rise and shape recovery behavior of the polymer under HIFU. The results indicate that for a given ultrasound output power, there is an optimal sample thickness for the ultrasound-induced thermal effect and thus the shape recovery ratio. Moreover, the results reveal significant effects of the copolymer composition and the crosslinking density on the shape recovery behavior, showing that there is a close relationship between the viscoelastic parameter loss tangent, tan δ, of the polymer and the HIFU-induced temperature rise. We found that a higher tan δ value of the polymer at the operating temperature gives rise to a greater temperature rise rate that, in turn, determines the shape recovery behavior under HIFU. The finding of this study provides useful guiding rules for the design and preparation of HIFU-responsive SMPs. On another front, we developed two simple and general methods to prepare poly(vinyl alcohol) (PVA) - based s hape memory hydrogels possessing both the shape memory and self-healing properties. It is challenging to prepare shape memory hydrogels because of the large amount of water present in the material. When PVA is subjected to freezing/thawing treatment, it can form a physical hydrogel with cryst allized micro-domains acting as crosslinks; a previous study of our group also found that such PVA hydrogel has the ability to autonomously self-heal due to the extensive H-bonding between hydroxyl groups on PVA chains. On the basis of the above knowledge, we developed two strategies to prepare shape memory PVA hydrogels. In the first case, we show that by adding a small amount of melamine as a small-molecule crosslinker to form multiple H-bonds with PVA, the mechanicall y enhanced hydrogel can be deformed, and the deformation can be subsequently fixed when the deformed hydrogel is treated with freezing/thawing due to the formed network structure. This means that temporary shape of the PVA/melamine hydrogel can be obtained, and that the shape recovery can be triggered by heating the hydrogel above the melting temperature of PVA crystalline micro-domains formed during the freezing/thawing treatment. We went to demonstrate, for the first time, that the shape recovery of a polymer hydrogel can be triggered using a therapeutic x ultrasound device on sale in drugstores for pain relief. This achievement is a significant step forward towards applications of ultrasound-controlled SMPs. In the second study concerning shape memory hydro gels, we further developed a new strategy to impart the shape memory and self-healing functionalities to chemically crosslinked polymer hydrogels. By interpenetrating a poly(ethylene glycol) (PEG) chemical network in the PVA physical network, we show that the shape memory property is enabled in this strong and tough double-network hydrogel, together with partial self-healing capability arising from PVA. The temporary shape again can be obtained using the freezing/thawing treatment on deformed hydrogel; high er shape fixation can be achieved using repeated freezing/thawing cycles as stable crystalline micro-domains of PVA with higher crystallinity are formed in the hydrogel. Moreover, taking advantage of the double-network structure, we made the first investigation on the anisotropic self-healing behavior in a n elongated hydrogel. The results indicate that the self-healing efficiency is different between the directions along or perpendicular to polymer chain orientation direction, and that this phenomenon could be originated from a difference in H-bonding density in the anisotropic hydrogel. / 摘要 : 形状记忆聚合物是刺激响应聚合物中的一类,他们具有响应外界环境刺激而改变自身形状的能力。通常情况下,这些材料的初始形状可以在特定环境下被改变并固定为其他临时形状,这些固定下来的临时形状在通常情况下是稳定的,只有当对其被施加一外界刺激之后,材料响应这一刺激并激活其链段运动能力,在之前编程过程中储存的弹性能的作用下材料最终回复到其最初的形状。这一具有“在不同环境下具有不同形状”能力的材料引起了科研人员们的巨大兴趣,因为这些材料在如智能器件,信息记录,传感器等许多领域都有着巨大的应用前景。近年来形状记忆聚合物领域有着巨大的发展,许多具有不同构成及功能的形状记忆材料被报道。然而,形状记忆材料的回复手段迄今为止只局限于少数几种刺激源,如光,电,磁场,pH,溶剂等。刺激手段的局限性正逐渐成为制约形状记忆在更广阔领域发挥作用的一个问题。另一方面,制备同时具有其他功能的形状记忆聚合物,如同时具有导电性,渗透性,药物释放或自修复等功能的形状记忆聚合物,也是形状记忆研究领域的一个热门方向。本论文的研究主旨是制备同时具有其他功能的新型刺激响应形状记忆聚合物,即超声响应的形状记忆聚合物。我们实现了聚焦超声装置作为刺激源,实现了无定型形状记忆聚合物定时,定位可控的形状记忆回复过程,以及利用理疗超声实现了形状记忆水凝胶的形状回复。与其他刺激手段相比,超声波具有几个方面的优势,例如,可以远程控制形状记忆回复过程,可以实现不同部位分别回复的定位可控形状记忆,形状记忆过程中的可控性,以及在生物组织中高穿透性等,因而这一手段在生物医用领域具有巨大前景。同时,我们同时将其他功能引入到了形状记忆聚合物体系中,包括药物的控制释放,与自修复性能等。本论文中所涉及的研究工作包括两个主题,分别在4章中进行论述。第一个主题是聚焦超声响应的固体形状记忆聚合物的形状记忆与药物释放行为。第二个主题是制备具有超声响应性的同时具有形状记忆与自修复功能的水凝胶。 在第一个关于超声响应形状记忆聚合物的研究工作中,我们制备了聚(甲基丙烯酸甲酯-co-丙烯酸丁酯)无归共聚物作为模型形状记忆聚合物,因为它的形状固定率 与形状回复率均接近100%。在聚焦超声的作用下,所用形状记忆聚合物可以在几十秒内被加热至100 °C以上,同时将材料周围的环境温度保持在一相对稳定的范围内。这一快速且显著的超声热效应使其用于刺激形状记忆聚合物成为可能。通过利用聚焦超声的局部加热效应,我们实现了定时定位可控的形状记忆过程:不同部位的形变可以分别利用超声刺激进行回复;单一形状回复过程也可被任意控制,获得回复过程中的多种临时形状。此外,我们还证明了药物控制释放可以与形状回复过程在在超声刺激下同时实现。聚焦超声的这些特点使其在许多相关领域,尤其是生物医学领域,有着巨大的应用前景。 在第一个项目的基础上我们进一步研究了聚合物在聚焦超声作用下的形状记忆行为,以及聚合物自身性质与其在聚焦超声作用下的升温效应及形状记忆行为的关系。我们使用聚(甲基丙烯酸甲酯-co-丙烯酸丁酯)作为模板聚合物,通过改变聚合物的厚度,聚合单体比例以及交联剂含量等,来研究这些性质对聚合物在聚焦超声下行为的影响。结果表明,在特定功率的超声作用下,聚合物存在着一最佳厚度值来达到最强的热效应以及最佳的形状回复率。此外,聚合物的单体组成以及交联剂含量对其在超声下的行为有显著的影响,且聚合物的粘弹性系数损耗因子(tan δ)与其超声响应行为有着密切联系,损耗因子(tan δ)值的大小决定了聚合物在某一特定温度值时的升温速率以及形状回复速率。这些结果将为设计与制备超声响应形状记忆聚合物提供重要参考。 另一方面,我们使用两种不同的方法制备了同时具有形状记忆与自修复功能的聚乙烯醇形状记忆水凝胶。与固体形状记忆聚合物相比,制备形状记忆水凝胶的难点在于大量水分子存在于水凝胶体系内。聚乙烯醇的水凝胶可以通过冷冻解冻循环工艺使水凝胶内形成微小的结晶相来制备。在我们之前的工作中,我们发现冷冻解冻循环方法制备的聚乙烯醇水凝胶具有优良的自修复性能,在材料形成断裂面之后水凝胶中聚乙烯醇分子链上的羟基可以通过再次形成氢键作用来修复断面。本论文中我们开发了两种不同的方法来制备聚乙烯醇形状记忆水凝胶。在第一种方法中,我们引入了一种小分子交联剂,它可以通过与聚乙烯醇分子链形成多重氢键来形成水凝 胶,同时当这种水凝胶变形后,形变可以通过冷冻解冻循环来固定。通过加热水凝胶使其温度升高至微晶区域融融温度以上,可诱导水凝胶回复至其初始形状。此外,我们还证明了形变后的聚乙烯醇形状记忆水凝胶的形状回复过程可以通过一种在药店中购买的,用于治疗肌肉疼痛的理疗超声器械来刺激实现。这一成果是超声刺激形状记忆聚合物在应用方向的巨大进步。 在另一工作中,我们研究出了一种制备具有形状记忆与自修复性能的化学交联水凝胶的新方法。通过在聚乙烯醇水凝胶中引入一化学交联网络,可形成具有互穿网络结构的水凝胶,并利用这一双网络结构,我们实现了形状记忆行为以及基于聚乙烯醇的自修复性能。形变通过冷冻解冻循环来固定,重复这一循环可形成更加稳定的微晶区域从而获得较高的形状固定率。此外,通过利用水凝胶的双网络结构,我们首次研究了拉伸形变后的水凝胶各向异性的自修复行为,我们发现在沿拉伸方向与垂直方向上具有不同的自修复效率,造成这一结果原因可能与水凝胶基体在这两个方向上氢键密度的不同有关。
|
38 |
Cell-compatible multi-functional crosslinker-based hydrogels for tissue engineeringYu, Lianlian Jr 08 January 2015 (has links)
The thesis showed preliminary evaluation of novel biodegradable and biocompatible agmatine-containing PAA crosslinkers. Hydrogels fabricated by this crosslinker can obtain controllable stiffness and excellent cell adhesion. The PAA contained thermo-sensitive hydrogel reported here is first employed as filler for depressed defects in rats. Results showed that such hydrogel can be injectable and biocompatible, might become a new material in plastic surgery in the clinic. The thesis also demonstrated a novel macro gels with self-healing capability and biocompatibility. The reversible photodimerization and photocleavage reactivity of coumarin has been successfully imparted to the polymer. / February 2015
|
39 |
Biomimetische Materialabscheidung in funktionalisierten Hydrogelmatrices / Biomimetic materials synthesis in functionalized hydrogel matricesGraßmann, Olaf January 2003 (has links) (PDF)
In Analogie zu natürlichen Proteingerüsten wurden poly-Acrylamid-Hydrogele mit polaren funktionellen Gruppen modifiziert, die in der Biomineralisation eine wichtige Rolle spielen. Durch gezielte Variation der Synthesebedingungen ist es möglich, Art, Gehalt und räumliche Anordnung der ionischen Funktionalitäten in den Copolymernetzwerken einzustellen. Die Hydrogele wurden in einer Doppeldiffusionsanordnung zur Mineralisation von CaCO3 eingesetzt und die Ergebnisse mit Gelatinegel als natürlichem Reaktionsmedium verglichen. Entgegen der ursprünglichen Erwartungen konnten in Gelatinegel keine Hinweise auf molekular-chemische Wechselwirkungen zwischen dem Proteinnetzwerk und den Mineralisationsprodukten nachgewiesen werden. Im Verlauf der Kristallisation wird die organische Matrix lediglich passiv inkorporiert. Allerdings bewirkt die heterogene Verteilung in den hantelähnlichen Kompositpartikeln die Auffächerung der Wachstumsfronten, so daß sich im Verlauf des Kristallwachstums eine Zwillingsstruktur der makroskopischen Produkte ausbildet. Der Netzwerkeffekt der organischen Matrix wird jedoch von dem lokalen chemischen Milieu in dem Gelkörper überlagert. Die Ähnlichkeit der Produkte mit natürlichen Biomineralen weist darauf hin, daß auch Biomineralisationsprozesse lediglich Folge eines unspezifischen chemischen Milieus sein können. Deutliche Analogien zu natürlichen Biomineralisationsprodukten wurden bei der Materialabscheidung in unfunktionalisierten poly-Acrylamid-Hydrogelen beobachtet. Die oktaedrische Form der Mineralisationsprodukte ist untypisch für Calcit und kennzeichnet einen spezifischen Kristallisationsmechanismus. Obwohl die Aggregate aus zahlreichen rhomboedrischen Calcit-Bausteinen zusammengefügt sind, weisen die makroskopischen Produkte eine gestörte einkristalline Struktur auf. Das große Mosaik der Röntgenbeugungsmaxima ist auf die Fehlorientierung kohärent streuender Bereiche zurückzuführen. Basierend auf den Untersuchungsergebnissen wurde ein Aggregationsmodell postuliert: Die simultane orientierte Verwachsung rhomboedrischer Untereinheiten sowie das Flächenwachstum dieser Bausteine führt zu der oktaedrischen Morphologie der Aggregate. Die prinzipielle Analogie der Mineralisationsprodukte mit vielen Biomineralen richtet den Blick auf die Frage, inwieweit alleine die physikalische Struktur extrazellulärer Matrices eine wichtige Rolle bei der Biomineralisation spielt. Die Ergebnisse der Mineralisationsversuche in Sulfonat-funktionalisierten Hydrogelen untermauern den dominanten Effekt der Netzwerkstruktur. Die stark polaren funktionellen Gruppen modifizieren lediglich die Morphologie der Aggregate, führen aber nicht zu einer grundlegenden Veränderung der Nukleation und des Wachstumsmechanismus. Demgegenüber zeigt sich in Carboxylat-funktionalisiertem poly-Acrylamid eine deutlich erhöhte Keimdichte und eine intermediäre Stabilisierung von Vaterit. Dieser spezifische Einfluß der Carboxylatgruppen auf die Keimbildung relativiert das oft für Biomineralisationsvorgänge postulierte ionotrope Nukleationsmodell und unterstreicht die Notwendigkeit einer stereochemischen Verwandtschaft zwischen den organischen Funktionalitäten und der entstehenden Kristallphase. Besonders deutlich wird die Bedeutung der Carboxylatgruppen bei der Mineralisation in Gelmatrices, die mit poly-L-Aspartat versetzt wurden. Die Wirkungsweise des Gelatinegels sowie der Kompartimenteffekt des poly-Acrylamid wird durch die Wechselwirkung des Additivs mit der anorganischen Phase überkompensiert: Im Verlauf der Doppeldiffusion entstehen in den untersuchten Hydrogelen Vaterit-Agglomerate, die permanent stabilisiert sind. Da die Kristallisationsmechanismen der reinen Gelmatrices rhomboedrische Calcit-Keimkristalle voraussetzen, werden die Netzwerkeffekte durch die Bildung sphärischer Vaterit-Partikel außer Kraft gesetzt. Möglicherweise beruht auch die Morphogenese natürlicher Biomineralisationsprodukte auf einem Wechselspiel des physikalischen Netzwerkeffekts einer extrazellulären Matrix und der Wirkungsweise modifikationsselektiver Makromoleküle. In den unterschiedlichen Hydrogelmatrices sind, trotz einheitlicher Versuchsbedingungen, drei grundsätzlich verschiedene Kristallisationsmechanismen des Calcits wirksam: In Gelatinegel kommt es zu lagenweisem Wachstum, die oktaedrischen Produkte aus poly-Acrylamid gehen auf die Aggregation vorgeformter Untereinheiten zurück und in Carboxylat-funktionalisierten Netzwerken entstehen sphärolithische Kristalle. Diese Ergebnisse belegen auf anschauliche Weise eine Wechselwirkung der organischen Matrix mit der anorganischen Phase. In natürlichen Systemen wird dieser Effekt durch komplexe genetische und zelluläre Prozesse gesteuert, die sich in-vitro nicht simulieren lassen. Allerdings weisen die Analogien der Mineralisationsversuche mit natürlichen Biomineralisationsprozessen auf vergleichbare Prinzipien hin. Demzufolge können die Mechanismen der Biomineralisation verhältnismäßig trivial sein, allein die biologische Reproduzierbarkeit der Materialabscheidung setzt ein hohes Maß an genetischer Steuerung voraus. Von einer weiterführenden Untersuchung der Mechanismen, die der Biomineralisation zugrunde liegen, sind wesentliche Impulse für eine biomimetische Materialsynthese zu erwarten. Wie die spezifische Wechselwirkung der Carboxylatgruppen mit der Kristallphase nahelegt, sollten die molekular-chemischen Effekte polarer funktioneller Gruppen im Mittelpunkt des Interesses stehen. Für ein besseres Gesamtverständnis muß daher eine Brücke zwischen der "mesoskopischen" Wirkung gelartiger Medien und entsprechenden Vorgängen auf atomarer Skala geschlagen werden. Die atomaren Mechanismen bei der Kristallisation von CaCO3 in Gegenwart verschiedener Additive werden in einem Partnerprojekt an der Universität Münster untersucht [Set03]. Die Zusammenführung dieser beiden Sichtweisen läßt ein tiefgreifendes Verständnis der allgemeinen Prinzipien der Biomineralisation erwarten. / By analogy to natural protein networks poly-acrylamide hydrogels were modified with polar functional groups, that are relevant for biomineralization processes. The copolymer synthesis is modified in order to adjust the type, content and spatial arrangement of ionic functional groups within the network. CaCO3 particles are grown in these matrices using a counter-diffusion arrangement. The results are compared to the mineralization in a natural reference medium of gelatin hydrogel. Although the microstructural analysis revealed a heterogeneous intergrowth of gelatin and inorganic phases within the particles, the composite growth is rather a consequence of the local chemical environment. The incorporated organic matrix, however, interacts with the crystal faces of a rhombohedral nucleus. For steric reasons, the lamellar assembly of the organic and inorganic material leads to twinning of the macroscopic products in the course of crystal growth. The analogy of the dumbbell-shaped composite particles to some biominerals suggests that biological crystallization may take place under comparable conditions. The crystal aggregates isolated from unfunctionalized poly-acrylamide hydrogel show striking similarities to natural biomineralization products. The octahedral morphology of the aggregates is unexpected for calcite crystals. Although the aggregates consist of independent rhombohedral calcite building blocks, the structure of the macroscopic products corresponds to distorted single crystals. The large mosaic spread of the X-ray diffraction spots is a consequence of the misalignment of coherent scattering domains within the macrocrystal structure. Based on the results a specific aggregate growth model is proposed: The observed octahedral morphology is attributed to the simultaneous oriented attachment of rhombohedral subunits and the layer-by-layer growth of these building blocks. Because of the general analogy of the hydrogel-grown aggregates with many biominerals the question arises, whether the physical structure of extracellular matrices is important for biomineralization as well. Experiments in copolymers containing sulfonate groups confirm the dominant effect of the network structure for the mineralization within hydrogel matrices. The morphology of the aggregates is just slightly altered by the highly polar functional groups. The aggregation-based growth of the products corresponds to the mechanism observed for the mineralization in unfunctionalized poly-acrylamide. On the other hand, the crystallization in matrices containing carboxylate groups is fundamentally different. Within these hydrogels the density of nucleation is increased and vaterite is intermediatly stabilized. This specific influence of the functional groups on the crystallization of CaCO3 extends the commonly proposed ionotropic model of biomineral nucleation. Within the biomimetic model system the mineralization is highly affected by the stereochemical matching of organic functional groups and the inorganic crystal phase. The significance of the carboxylate groups for the mineralization of CaCO3 is emphasized by the experimental results using hydrogels containing poly-L-aspartate. The addition of poly-L-aspartate to the pore solution of either gelatin or poly-acrylamide hydrogel appears to overcompensate the physical properties of the organic matrix, leading to permanently stabilized vaterite agglomerates. Since the crystal growth mechanism in pure hydrogel matrices is based on rhombohedral calcite nuclei, the morphogenetic effect of the physical hydrogel structure is suspended due to formation of spherical vaterite particles. Possibly, the interaction between the network structure of extracellular matrices and the polymorph selective effect of organic macromolecules is relevant for the morphogenesis in biological systems as well. Three fundamentally different mechanisms of crystal growth are observed for the mineralization in the matrices used: Corresponding to classical models of crystallization the products isolated from gelatin hydrogel grow by a layer-by-layer mechanism, assembly of preformed building blocks within unfunctionalized poly-acrylamide leads to octahedral aggregates and within networks containing carboxylate groups spherolitic crystal growth is observed. These results obviously prove extensive interactions between the organic matrix and the inorganic phase. In natural systems these effects are adjusted by complex genetic and cellular processes, that are not accessible for in-vitro methods. However, the analogies of the experiments with biomineralization processes indicate comparable principles. Whereas the biological reproducibility of biomineralization implies a high degree of genetic control, the underlying mechanisms could be rather trivial. It is expected that further investigations of the mechanisms of biomineralization will provide fundamental stimuli for the field of biomimetic materials synthesis. As indicated by the specific interactions of carboxylate groups and the evolving crystal phase, further research should focus on the molecular-chemical influence of polar functional groups. To unravel the mechanisms of biomineralization the described mesoscopic effects of the hydrogel matrices and the respective processes at an atomar scale should be combined. The molecular-chemical mechanisms in the course of CaCO3 crystallization in aqueous solutions containing various organic additives are studied within an associate project at the University of Münster [Set03]. The combination of both approaches should provide an improved understanding of the general principles of biomineralization.
|
40 |
Degradable poly(ethylene glycol) based hydrogels for pulmonary drug delivery and in vitro T cell differentiation applicationsFleury, Asha Tarika 08 October 2013 (has links)
Hydrogels, defined as three-dimensional, hydrophilic networks, offer extensive biomedical applications. The areas of application are heavily concentrated in drug delivery and tissue engineering because of the hydrogels’ ability to mimic extracellular matrixes of tissue while maintaining a high level of biocompatibility. Specifically, poly(ethylene glycol) (PEG) is a well-established biomaterial in hydrogel applications due to its high water-solubility, low toxicity, high biocompatibility, and stealth properties.
This thesis discusses two applications of PEG-based degradable hydrogels. The first is the targeted, site-specific, controlled release of biologic drugs administered by inhalation. There are many challenges to designing a pulmonary delivery system for inhalation of biologic drugs such as low respirable fractions and short resident time in the lungs. In this report, the hydrogel microcarriers for encapsulated drugs were formed by cross-linked PEG and peptide sequences synthesized during a mild emulsion process. The microgels underwent freeze-drying in the presence of cryoprotectants and formulated for dry powder inhalation. The microgels displayed swelling properties to avoid local macrophage clearance in the lungs and exhibited triggered release and degradation in response to enzyme for disease specific release. Dry formulations were tested for aerosolization properties and indicated ability to be delivered to the deep lung by a dry powder inhaler. Lastly, microgels were successfully delivered to mice lungs via intratracheal aerosol delivery.
This thesis also discusses the use of PEG-based hydrogel as a biomaterial microenvironment for encapsulated stem cells as a means of in vitro T cell differentiation. A 3D hydrogel system creates a biomimetic reconstruction of the cell’s natural microenvironment and allows us to adjust factors such as ligand density and mechanical properties of the hydrogel in order to promote cells differentiation. This report utilizes hydrogels of cross-linked hyaluronic acid and PEG to encapsulate mice bone marrow hematopoietic progenitor cells in the presence of notch ligands, displayed through stromal cells, magnetic microbeads, or immobilized within the hydrogel matrix. Mechanical properties of the hydrogels were tested and the release of encapsulated cells was performed by enzymatic degradation or dissolution. The differentiation data obtained indicated successful differentiation of stem cells into early T cells through the hydrogel system. / text
|
Page generated in 0.0685 seconds