• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 208
  • 42
  • 35
  • 24
  • 20
  • 7
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 468
  • 93
  • 63
  • 61
  • 51
  • 49
  • 45
  • 43
  • 41
  • 40
  • 39
  • 38
  • 38
  • 37
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Poly(N-Isopropylacrylamide) based BioMEMS/NEMS for cell manipulation

Mier, Alexandro Castellanos 01 June 2006 (has links)
In recent years, BioMEMS/NEMS have been primary elements associated with the research and development efforts in the bioengineering area. International and federal funding has effected an enormous increase in the development of state-of-the-art bioengineering and biomedical technologies. Most of the BioMEMS/NEMS related applications are associated with diagnostics, sensing and detection. Procedures for separation and manipulation of biological components play a paramount role in the function of these bioengineering mechanisms. This research was concerned with the development of a novel BioMEMS device for cell manipulation. The functioning of the device is based on the use of thermally responsive polymer networks, which differs dramatically from existing approaches. This approach is cost effective, requires low power and uses a minimal amount of on-device area, which makes it suitable for personal medical diagnostics and battle field scenarios. The device integrates the technologies associated with reversibly binding surfaces and dielectrophoresis, (DEP). The DEP field drives a sample into contact with a binding surface. This surface can be controlled to provide different levels of target selectivity. This system provides a separation strategy that does not suffer from fouling issues. The binding surfaces are fabricated from LCST polymers. The LCST polymers experience hydration-dehydration changes in response to temperature fluctuations. Therefore, separation efficiency can be "dialed in" as a function of temperature to prompt the selection of targets. Furthermore, size-exclusion "trenches" were patterned into the binding surfaces. The trenches permit the passage of the small objects in order to provide size-exclusion separations. In order to expand the discrimination size range from the micron to the submicron scale, two techniques for submicron patterning of cross-linked reversibly binding surfaces were investigated. The patterning techniques associated with electron-beam lithography and the combination of softlithography and a focused ion beam patterning were found to generate well-defined patterns that retained their thermo-responsiveness. The combination of DEP and reversibly binding surfaces for bio-particle manipulation is a significant contribution to microfluidic based separations in BioMEMS/NEMS. The developments associated with this research provide a novel technology platform that facilitates separations, which would be difficult to achieve by any other existing methods.
92

Dynamic Hybrid Materials: Hydrogel Actuators and Catalytic Microsystems

Zarzar, Lauren Dell 30 September 2013 (has links)
Dynamic materials which can sense changes in their surroundings and subsequently respond or adapt by autonomously altering their functionality, surface chemistry, transparency, color, wetting behavior, adhesiveness, shape, etc. are primed to be integral components of future "smart" technologies. However, such systems can be quite complex and often require intricate coordination between both chemical and mechanical inputs/outputs as well as the combination of multiple materials working cooperatively to achieve the proper functionality. It is critical to not only understand the fundamental behaviors of existing dynamic chemo-mechanical systems, but also to apply that knowledge and explore new avenues for design of novel materials platforms which could provide a basis for future adaptive technologies. Part 1 explores the use of environmentally-sensitive hydrogels, either alone or within arrays of high-aspect-ratio nano/microstructures, as chemo-mechanical actuators. Chapters 1 through 7 describe a bio-inspired approach to the design of hybrid actuating surfaces in which the volume-changing hydrogel acts as the “muscle” that reversibly actuates the microstructured "bone". In particular, the different actuation mechanisms arising from variations in how the hydrogel is integrated into the structure array, how chemical signals can be used to manipulate actuation parameters, and finally how such a system may be used for applications ranging from adaptive optics to manipulation of chemical reactions are described. Chapter 8 discusses the use of responsive hydrogel scaffolds as a means to mechanically compress cells and direct differentiation. Part II explores dynamic microsystems involving the integration of catalytic sites within intricately structured 3D microenvironments. Specifically, we explore a generalizable and straightforward route to fabricate microscale patterns of nanocrystalline platinum and palladium using multiphoton lithography. The catalytic, electrical, and electrochemical properties are characterized, and we demonstrate high resolution integration of catalysts within 3D-defined microenvironments to generate directed particle and fluid transport. / Chemistry and Chemical Biology
93

Photopolymerizable scaffolds of native extracellular matrix components for tissue engineering applications

Suri, Shalu 24 January 2011 (has links)
In recent years, significant success has been made in the field of regenerative medicine. Tissue engineering scaffolds have been developed to repair and replace different types of tissues. The overall goal of the current work was to develop scaffolds of native extracellular matrix components for soft tissue regeneration, more specifically, neural tissue engineering. To date, much research has been focused on developing a nerve guidance scaffold for its ability to fill and heal the gap between the damaged nerve ends. Such scaffolds are marked by several intrinsic properties including: (1) a biodegradable scaffold or conduit, consisting of native ECM components, with controlled internal microarchitecture; (2) support cells (such as Schwann cells) embedded in a soft support matrix; and (3) sustained release of bioactive factors. In the current dissertation, we have developed such scaffolds of native biomaterials including hyaluronic acid (HA) and collagen. HA is a nonsulphated, unbranched, high-molecular weight glycosaminoglycan which is ubiquitously secreted by cells in vivo and is a major component of extracellular matrix (ECM). High concentrations of HA are found in cartilage tissue, skin, vitreous humor, synovial fluid of joints and umbilical cord. HA is nonimmunogenic, enzymatically degradable, non-cell adhesive which makes HA an attractive material for biomedical research. Here we developed new photopolymerizable HA based materials for soft tissue repair application. First, we developed interpenetrating polymer networks (IPN) of HA and collagen with controlled structural and mechanical properties. The IPN hydrogels were enzymatically degradable, porous, viscoelastic and cytocompatible. These properties were dependent on the presence of crosslinked networks of collagen and GMHA and can be controlled by fine tuning the polymer ratio. We further developed these hydrogel constructs as three dimensional cellular constructs by encapsulating Schwann cells in IPN hydrogels. The hydrogel constructs supported cell viability, spreading, proliferation, and growth factor release from the encapsulated cells. Finally, we fabricated scaffolds of photopolymerizable HA with controlled microarchitecture and developed designer scaffolds for neural repair using layer-by-layer fabrication technique. Lastly, we developed HA hydrogels with unique anisotropic swelling behavior. We developed a dual-crosslinking technique in which a super-swelling chemically crosslinked hydrogel is patterned with low-swelling photocrosslinked regions. When this dual-crosslinked hydrogel is swelled it contorts into a new shape because of differential swelling among photopatterned regions. / text
94

Synthesis and characterization of thermosensitive hydrogels derived from polysaccharides

Santan, Harshal Diliprao January 2013 (has links)
In this work, thermosensitive hydrogels having tunable thermo-mechanical properties were synthesized. Generally the thermal transition of thermosensitive hydrogels is based on either a lower critical solution temperature (LCST) or critical micelle concentration/ temperature (CMC/ CMT). The temperature dependent transition from sol to gel with large volume change may be seen in the former type of thermosensitive hydrogels and is negligible in CMC/ CMT dependent systems. The change in volume leads to exclusion of water molecules, resulting in shrinking and stiffening of system above the transition temperature. The volume change can be undesired when cells are to be incorporated in the system. The gelation in the latter case is mainly driven by micelle formation above the transition temperature and further colloidal packing of micelles around the gelation temperature. As the gelation mainly depends on concentration of polymer, such a system could undergo fast dissolution upon addition of solvent. Here, it was envisioned to realize a thermosensitive gel based on two components, one responsible for a change in mechanical properties by formation of reversible netpoints upon heating without volume change, and second component conferring degradability on demand. As first component, an ABA triblockcopolymer (here: Poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol) (PEPE) with thermosensitive properties, whose sol-gel transition on the molecular level is based on micellization and colloidal jamming of the formed micelles was chosen, while for the additional macromolecular component crosslinking the formed micelles biopolymers were employed. The synthesis of the hydrogels was performed in two ways, either by physical mixing of compounds showing electrostatic interactions, or by covalent coupling of the components. Biopolymers (here: the polysaccharides hyaluronic acid, chondroitin sulphate, or pectin, as well as the protein gelatin) were employed as additional macromolecular crosslinker to simultaneously incorporate an enzyme responsiveness into the systems. In order to have strong ionic/electrostatic interactions between PEPE and polysaccharides, PEPE was aminated to yield predominantly mono- or di-substituted PEPEs. The systems based on aminated PEPE physically mixed with HA showed an enhancement in the mechanical properties such as, elastic modulus (G′) and viscous modulus (G′′) and a decrease of the gelation temperature (Tgel) compared to the PEPE at same concentration. Furthermore, by varying the amount of aminated PEPE in the composition, the Tgel of the system could be tailored to 27-36 °C. The physical mixtures of HA with di-amino PEPE (HA·di-PEPE) showed higher elastic moduli G′ and stability towards dissolution compared to the physical mixtures of HA with mono-amino PEPE (HA·mono-PEPE). This indicates a strong influence of electrostatic interaction between –COOH groups of HA and –NH2 groups of PEPE. The physical properties of HA with di-amino PEPE (HA·di-PEPE) compare beneficially with the physical properties of the human vitreous body, the systems are highly transparent, and have a comparable refractive index and viscosity. Therefore,this material was tested for a potential biological application and was shown to be non-cytotoxic in eluate and direct contact tests. The materials will in the future be investigated in further studies as vitreous body substitutes. In addition, enzymatic degradation of these hydrogels was performed using hyaluronidase to specifically degrade the HA. During the degradation of these hydrogels, increase in the Tgel was observed along with decrease in the mechanical properties. The aminated PEPE were further utilised in the covalent coupling to Pectin and chondroitin sulphate by using EDC as a coupling agent. Here, it was possible to adjust the Tgel (28-33 °C) by varying the grafting density of PEPE to the biopolymer. The grafting of PEPE to Pectin enhanced the thermal stability of the hydrogel. The Pec-g-PEPE hydrogels were degradable by enzymes with slight increase in Tgel and decrease in G′ during the degradation time. The covalent coupling of aminated PEPE to HA was performed by DMTMM as a coupling agent. This method of coupling was observed to be more efficient compared to EDC mediated coupling. Moreover, the purification of the final product was performed by ultrafiltration technique, which efficiently removed the unreacted PEPE from the final product, which was not sufficiently achieved by dialysis. Interestingly, the final products of these reaction were in a gel state and showed enhancement in the mechanical properties at very low concentrations (2.5 wt%) near body temperature. In these hydrogels the resulting increase in mechanical properties was due to the combined effect of micelle packing (physical interactions) by PEPE and covalent netpoints between PEPE and HA. PEPE alone or the physical mixtures of the same components were not able to show thermosensitive behavior at concentrations below 16 wt%. These thermosensitive hydrogels also showed on demand solubilisation by enzymatic degradation. The concept of thermosensitivity was introduced to 3D architectured porous hydrogels, by covalently grafting the PEPE to gelatin and crosslinking with LDI as a crosslinker. Here, the grafted PEPE resulted in a decrease in the helix formation in gelatin chains and after fixing the gelatin chains by crosslinking, the system showed an enhancement in the mechanical properties upon heating (34-42 °C) which was reversible upon cooling. A possible explanation of the reversible changes in mechanical properties is the strong physical interactions between micelles formed by PEPE being covalently linked to gelatin. Above the transition temperature, the local properties were evaluated by AFM indentation of pore walls in which an increase in elastic modulus (E) at higher temperature (37 °C) was observed. The water uptake of these thermosensitive architectured porous hydrogels was also influenced by PEPE and temperature (25 °C and 37 °C), showing lower water up take at higher temperature and vice versa. In addition, due to the lower water uptake at high temperature, the rate of hydrolytic degradation of these systems was found to be decreased when compared to pure gelatin architectured porous hydrogels. Such temperature sensitive architectured porous hydrogels could be important for e.g. stem cell culturing, cell differentiation and guided cell migration, etc. Altogether, it was possible to demonstrate that the crosslinking of micelles by a macromolecular crosslinker increased the shear moduli, viscosity, and stability towards dissolution of CMC-based gels. This effect could be likewise be realized by covalent or non-covalent mechanisms such as, micelle interactions, physical interactions of gelatin chains and physical interactions between gelatin chains and micelles. Moreover, the covalent grafting of PEPE will create additional net-points which also influence the mechanical properties of thermosensitive architectured porous hydrogels. Overall, the physical and chemical interactions and reversible physical interactions in such thermosensitive architectured porous hydrogels gave a control over the mechanical properties of such complex system. The hydrogels showing change of mechanical properties without a sol-gel transition or volume change are especially interesting for further study with cell proliferation and differentiation. / In der vorliegenden Arbeit wurden thermosensitive Hydrogele mit einstellbaren thermo-mechanischen Eigenschaften synthetisiert. Im Allgemeinen basiert der thermische Übergang thermosensitiver Gele auf einer niedrigsten kritischen Löslichkeitstemperatur (LCST) oder kritischer Mizellkonzentration bzw. –temperatur(CMC/ CMT). Der temperaturabhängige Übergang von Sol zu Gel mit großer Volumenänderung wurde im ersten Fall bei thermosensitiven Hydrogelen beobachtet und ist vernachlässigbar für CMC/ CMT abhängige Systeme. Die Änderung des Volumens führt zum Ausschluss von Wassermolekülen, was zum Schrumpfen und Versteifen des Systems oberhalb der Übergangstemperatur führt. Die Volumenänderung kann unerwünscht sein, wenn Zellen in das Gel eingeschlossen werden sollen. Die Gelierung im zweiten Fall beruht hauptsächlich auf der Mizellbildung oberhalb der Übergangstemperatur und weiterem kolloidalem Packen von Mizellen im Bereich der Gelierungstemperatur. Weil die Gelierung hauptsächlich von der Polymerkonzentration abhängt, kann sich das Gel bei Zugabe von Lösungsmittel leicht wieder lösen. Hier sollten thermosensitive Gele entwickelt werden, die auf zwei Komponenten beruhen. Eine Komponente sollte aus einem ABA-Triblockcopolymer mit thermosensitiven Eigenschaften bestehen, dem Poly(ethylen glycol)-b-Poly(propylenglycol)-b-Poly(ethylen glycol) (PEPE), dessen Sol-Gel-Übergang auf Mizellierung und kolloidalem Jamming der gebildeten Mizellen basiert, und einer weiteren makromolekularen Komponente, einem Biopolymer, dass die Mizellen vernetzt. Auf diese Weise sollten thermosensitive Gele realisiert werden, die keine oder nur eine kleine Volumenänderung während der Änderung der mechanischen Eigenschaften zeigen, die stabiler gegenüber Verdünnung sein sollten als klassische Hydrogele mit einem CMC-basierten Übergang und die jedoch gezielt abgebaut werden können. Die Hydrogele wurden auf zwei Arten vernetzt, entweder durch physikalisches Vermischen, bei dem die Vernetzung durch elektrostatische Wechselwirkungen erfolgte, oder durch kovalente Kopplung der beiden Komponenten. Als makromolekulare Komponente zur Vernetzung der Mizellen wurden Biopolymere (hier: die Polysaccharide Hyaluronsäure (HA), Chondroitinsulfat oder Pektin oder das Protein Gelatin) verwendet, um die Hydrogele enzymatisch abbaubar zu gestalten. Um eine starke ionische/elektrostatische Wechselwirkung zwischen dem PEPE und den Polysachariden zu erzielen, wurde PEPE aminiert, um hauptsächlich monoaminiertes bzw. diaminiertes PEPE einsetzen zu können. Die Gele, die auf der physikalischen Mischung von aminierten PEPE mit HA bestehen, zeigten im Vergleich zu PEPE bei gleicher Konzentration eine Zunahme der mechanischen Eigenschaften, wie beispielsweise dem elastischem Modulus (G′) und dem Viskositätsmodulus (G′′) bei gleichzeitiger Abnahme der Gelierungstemperatur (Tgel). Durch Variation des Gehalts an aminierten PEPE-, konnte die Tgel in einem Bereich von 27-36 °C eingestellt werden. Interessanterweise zeigten die physikalischen Mischungen mit diaminierten PEPE (HA·di-PEPE) höhere mechanische Eigenschaften (elastischer Modulus G′) und eine höhere Stabilität gegenüber Verdünnungseffekten als Mischungen mit monoaminiertem PEPE (HA·mono-PEPE). Dies zeigt den starken Einfluss der elektrostatischen Wechselwirkungen zwischen der Carboxylgruppe der HA und der Amingruppe von PEPE. Die physikalischen Eigenschaften HA·di-PEPE sind vergleichbar mit den physikalischen Eigenschaften des Glaskörpers im Auge hinsichtlich Transparenz, Brechungsindex und Viskosität. Deswegen wurde das Material hinsichtlich seiner biologischen Anwendung getestet und zeigte sich sowohl im Überstand als auch im direkten Kontakt als nichtzytotoxisch. Zukünftig wird dieses Material in weiteren Untersuchungen bezüglich seiner Eignung als Glaskörperersatz geprüft werden. Zusätzlich konnte der enzymatische Abbau der Hydrogele mit Hyaluronidase gezeigt werden, die spezifisch HA abbaut. Beim Abbau der Hydrogele stieg Tgel bei gleichzeitiger Abnahme der mechanischen Eigenschaften. Aminiertes PEPE wurde zusätzlich zur kovalenten Bindung unter Verwendung von EDC als Aktivator an Pektin und Chondroitinsulfat eingesetzt. Tgel konnte auf 28 – 33 °C eingestellt werden durch Variation der Pfropfungsdichte am Biopolymer bei gleichzeitiger Zunahme der thermischen Stabilität. Die Pec-g-PEPE Hydrogele waren enzymatisch abbaubar, was zu einer leichten Erhöhung von Tgel und zu einer Abnahme von G′ führte. Die kovalente Bindung der aminierten PEPE an HA erfolgte unter Verwendung von DMTMM als Aktivator, der sich in diesem Fall als effektiver als EDC herausstellte. Die Reinigung mittels Ultrafiltration führte zu einer deutlich besseren Aufreinigung des Produkts als mittels Dialyse. Die gegrafteten Systeme waren in Nähe der Körpertemperatur bereits im Gelstadium und zeigten eine Erhöhung der mechanischen Eigenschaften bereits bei sehr geringen Konzentrationen von 2.5Gew.%. Die höheren mechanischen Eigenschaften dieser Hydrogele erklären sich durch die Kombination der Mizellbildung (physikalische Wechselwirkung) des PEPE und der Bildung kovalenter Netzpunkte zwischen PEPE und HA. PEPE bzw. entsprechende physikalische Mischungen derselben Komponenten zeigten kein thermosensitives Verhalten bei einer Konzentration unterhalb von 16 Gew%. Diese thermosensitiven Hydrogele zeigten auch eine Löslichkeit auf Abruf durch enzymatischen Abbau. Das Konzept der Thermosensitivität wurde in 3D strukturierte, poröse Hydrogele (TArcGel)eingeführt, bei dem PEPE kovalent an Gelatin gebunden wurde und mit LDI vernetzt wurde. Das gepfropfte PEPE führte zu einer Erniedrigung der Helixbildung der Gelatinketten. Nach Fixierung der Gelatinketten durch Vernetzung zeigte das System eine Erhöhung der mechanischen Eigenschaften bei Erwärmung (34-42 °C). Dieses Phänomen war reversibel beim Abkühlen. Eine mögliche Erklärung der reversiblen Änderungen bezüglich der mechanischen Eigenschaften sind die starken physikalischen Wechselwirkungen zwischen den Mizellen des PEPE, die kovalent an Gelatin gebunden wurden. Ferner wurde durch AFM Untersuchungen festgestellt, dass bei Temperaturerhöhung (37 °C) die örtlichen elastischen Moduli (E) der Zellwände zugenommen haben. Zusätzlich wurde die Wasseraufnahme der TArcGele durch PEPE und die Temperatur (25 °C und 37 °C) beeinflusst und zeigte eine niedrigere Wasseraufnahme bei höherer Temperatur und umgekehrt. Durch die niedrigere Wasseraufnahme bei hohen Temperaturen erniedrigte sich die Geschwindigkeit des hydrolytischen Abbaus im Vergleich zu dem strukturierten Hydrogel aus reiner Gelatin. Diese temperatursensitiven ArcGele könnten bedeutsam sein für Anwendungen im Bereich Stammzellkultivierung, Zelldifferenzierung und gerichteter Zellmigration. Zusammenfassend konnte bei den thermosensitiven Hydrogelen gezeigt werden, dass die Vernetzung von Mizellen mit einem makromolekularen Vernetzer die Schermoduli, Viskosität und Löslichkeitsstabilität im Vergleich zu reinen ABATriblockcopolymeren mit CMC-Übergang erhöht. Dieser Effekt konnte durch kovalente und nichtkovalente Mechanismen, wie beispielsweise Mizell- Wechselwirkungen, physikalische Interaktionen von Gelatinketten und physikalische Interaktionen von Gelatinketten und Mizellen, realisiert werden. Das Pfropfen von PEPE führte zu zusätzlichen Netzpunkten, die die mechanischen Eigenschaften der thermosensitiven architekturisierten, porösen Hydrogele beeinflussten. Insgesamt ermöglichten die physikalischen und chemischen Bindungen und die reversiblen physikalischen Wechselwirkungen in den strukturierten, porösen Hydrogelen eine Kontrolle der mechanischen Eigenschaften in diesem sehr komplexen System. Die Hydrogele, die eine Veränderung ihrer mechanischen Eigenschaften ohne Volumenänderung oder Sol-Gel-Übergang zeigen sind besonders interessant für Untersuchungen bezüglich Zellproliferation und –differenzierung.
95

Development of Multilayer Vascular Grafts Based on Collagen-Mimetic Hydrogels

Browning, Mary Beth 16 December 2013 (has links)
Current synthetic vascular grafts have high failure rates in small-diameter (<6 mm) applications due to inadequate cell-material interactions and poor matching of arterial biomechanical properties. To address this, we have developed a multilayer vascular graft design with a non-thrombogenic inner layer that promotes endothelial cell (EC) interactions and a reinforcing layer with tunable biomechanical properties. The blood-contacting layer of the graft is based on a Streptococcal collagen-like protein (Scl2-1). Scl2-1 has the triple helical structure of collagen, but it is a non-thrombogenic protein that can be modified to have selective cell adhesion. For this application, Scl2-2 has been modified from Scl2-1 to contain integrin binding sites that promote EC adhesion. We have developed the methodology to incorporate Scl2 proteins into a poly(ethylene glycol) (PEG) hydrogel matrix. PEG-Scl2 hydrogels facilitate optimization of both bioactivity and substrate modulus to offer unique control over graft endothelialization. However, scaffold properties that promote endothelialization may not be consistent with the mechanical properties necessary to withstand physiological loading. To address this issue, we have reinforced PEG-Scl2-2 hydrogels with an electrospun polyurethane mesh. This multilayer vascular graft design decouples requisite mechanical properties from endothelialization processes and permits optimization of both design goals. We have confirmed the thromboresistance of PEG-Scl2-2 hydrogels in a series of whole blood tests in vitro as well as in a porcine carotid artery model. Additionally, we have shown that the electrospun mesh biomechanical properties can be tuned over a wide range to achieve comparable properties to current autologous grafts. Traditional acrylate-derivatized PEG (PEGDA) hydrogels were replaced with PEG diacrylamide hydrogels with similar properties to increase biostability for long-term implantation. These findings indicate that this multilayer design shows promise for vascular graft applications. As vascular graft endothelialization can significantly improve success rates, the ability to alter cell-material interactions through manipulations in PEG-Scl2-2 hydrogel properties was studied extensively. By reducing Scl2-2 functionalization density and utilizing a biostable PEG functionalization linker, Acrylamide-PEG-I, significantly improved initial EC adhesion was achieved that was maintained over 6 weeks of swelling in vitro. Additionally, increases in Scl2-2 concentration and in hydrogel modulus provided increased EC interactions. It was found that PEG-Scl2-2 hydrogels promoted enhanced EC proliferation over 1 week compared to PEG-collagen gels. In summary, we have developed a vascular graft with a biostable, non-thrombogenic intimal layer that promotes EC adhesion and migration while providing biomechanical properties comparable to current autologous grafts. This design demonstrates great potential as an off-the-shelf graft for small diameter arterial prostheses that improves upon current clinically available options.
96

Chitin nanofibers, networks and composites : Preparation, structure and mechanical properties

Mushi, Ngesa Ezekiel January 2014 (has links)
Chitin is an important reinforcing component in load-bearing structures in many organisms such as insects and crustaceans (i.e. shrimps, lobsters, crabs etc.). It is of increasing interest for use in packaging materials as well as in biomedical applications. Furthermore, biological materials may inspire the development of new man-made material concepts. Chitinmolecules are crystallized in extended chain conformations to form nanoscale fibrils of about 3 nm in diameter. In the present study, novel materialshave been developed based on a new type of chitin nanofibers prepared from the lobster exoskeleton. Improved understanding about effects of chitin from crustaceans and chitin material preparation on structure is provided through Atomic Force Microscopy(AFM) (paper I&amp;II), Scanning Transmission Electron Microscopy(STEM) (paper I&amp;II), X-Ray Diffraction (XRD), Intrinsic Viscosity, solid state 13C Nuclear Magnetic Resonance (NMR) (paper II), Field Emission Scanning Electron Microscopy(FE-SEM) (paper I, II, III, IV &amp; V), Ultraviolet-Visible Spectrophotometryand Dynamic Light Scattering (DLS) (paper III). The presence of protein was confirmed through colorimetric method(paper I &amp; II). An interesting result from the thesis is the new features of chitin nanofiber including small diameter, high molar mass or nanofiber length,and high purity. The structure and composition of the nanofibers confirms this (paper I &amp; II). Furthermore, the structure and properties of the corresponding materials confirm the uniqueness of the present nanofibers: chitin membrane (I &amp; II), polymer matrix composites (III),and hydrogels (paper IV). Improved mechanical properties compared with typical data from the literature were confirmed for chitin nanofiber membranes in paper II, chitin-chitosan polymer matrix composites in paper III, and chitin hydrogel in paper IV. Mechanical tests included dynamic mechanical analysis and uniaxial tensile tests. Mechanical properties of chitin hydrogels were evaluated based onrheological and compression properties (paper IV). The values were the highest reported for this kind of chitin material. Furthermore, the relationships between materials structure and properties were analyzed. For membranes and polymer matrix nanocomposites, the degree of dispersion is an important parameter. For the hydrogels, the preparation procedure is very simple and has interesting practical potential. Chitin-binding characteristics of cuticular proteins areinteresting fornovel bio-inspired material development. In the present work(paper V), chitin nanofibers with newfeaturesincluding high surface area and low protein content were combined with resilin-like protein possessing the chitin-binding characteristics. Hydrated chitin-resilin nanocomposites with similar composition as in rubber-like insect cuticles were prepared. The main objective was to improve understanding on the role of chitin-binding domain on mechanical properties. Resilin is a rubber-like protein present in insects. The exon I (comprising 18 N-terminal elastic repeat units) together with or without the exon II (a typical cuticular chitin-binding domain) from the resilin gene CG15920 found in Drosophila melanogasterwere cloned and the encoded proteins were expressed as soluble products in Escherichia coli.Resilin-like protein with chitin-binding domain (designated as ResChBD) adsorbedin significant amount to chitin nanofiber surface andprotein-bound cuticle-like soft nanocomposites were formed. Although chitin bindingwas taking place only in proteinswith chitin-binding domain, the global mechanical behavior of the hydrated chitin-resilin nanocomposites was not so sensitive to this chitin-resilin interaction. In summary, chitin is an interesting material component with high potential as mechanical reinforcement in a variety of nanomaterials. The present study reports the genesisof novel chitin nanofibers and outlines the basic relationships between structure and properties for materials based on chitin. Future work should be directed towards both bio-inspired studies of the nanocomposite chitin structures in organisms, as well as the industrial applications of chitin waste from the food industry. Chitin nanofibers can strengthen the properties of materials, andprovide optical transparency as well as biological activities such as antimicrobial properties. / <p>QC 20141110</p>
97

Synthesis of Stimuli-responsive Hydrogels from Glycerol

Salehpour, Somaieh 18 January 2012 (has links)
Due to an increased environmental awareness and thus, concerns over the use of fossil-based monomer for polymer production, there is an ongoing effort to find alternatives to non-renewable traditional monomers. This has ushered in the rapid growth in the development of bio-based materials such as green monomers and biodegradable polymers from vegetable and animal resources. Glycerol, as a renewable bio-based monomer, is an interesting candidate for sustainable polymer production. Glycerol is a renewable material that is a by-product of the transesterification of vegetable oils to biodiesel. Utilization of the excess glycerol derived from the growing biodiesel industry is important to oleochemical industries. The main objective of this thesis was to produce high molecular weight polyglycerol from glycerol and synthesize stimuli-responsive polyglycerol hydrogels. The work began with an investigation of the step-growth polymerization of glycerol to relatively high molecular weight polyglycerol using several catalysts. The catalytic reaction mechanisms were compared and the polymer products were fully analyzed. High molecular weight partially branched polyglycerol with multimodal molecular weight distributions was obtained. The polymerization of glycerol proceeded fastest with sulphuric acid as catalyst as indicated by the highest observed conversion of monomer along with the highest molecular weights. Theoretical models were used to predict the gel point and to calculate monomer functionality. High molecular weight polyglycerol was used to synthesize novel stimuli-responsive hydrogels. Real-time monitoring of step-growth polymerization of glycerol was investigated using in-line and off-line Attenuated Total Reflectance/Fourier Transform infrared (ATR-FTIR) technique.
98

Bio-Inspired Supramolecular Hydrogels Comprising Multi-Component and/or Out-of-Equilibrium Systems / 多成分・非平衡なバイオインスパイアード超分子ヒドロゲル

Nakamura, Keisuke 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23924号 / 工博第5011号 / 新制||工||1782(附属図書館) / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 浜地 格, 教授 古川 修平, 教授 杉安 和憲 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
99

Poly(vinyl alcohol) PVA hydrogel characterization as a potential nucleus pulposus replacement candidate

Liang, Chun Ying, January 1900 (has links)
Thesis (M.Eng.). / Written for the Dept. of Biomedical Engineering. Title from title page of PDF (viewed 2008/07/29). Includes bibliographical references.
100

Sintese, caracterizacao e citotoxicidade de hidrogeis polimericos para imobilizacao de farmaco empregado no tratamento de Leihmaniose / Synthesis, characterization and citoxicity of polymeric hydrogels for use to imombilization and drug release on Leishmaniose treatment

OLIVEIRA, MARIA J.A. de 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:55:24Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:04:56Z (GMT). No. of bitstreams: 0 / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Dissertação (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP / FAPESP:06/53634-3

Page generated in 0.0544 seconds