• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 207
  • 42
  • 35
  • 24
  • 20
  • 7
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 467
  • 93
  • 63
  • 61
  • 51
  • 48
  • 45
  • 43
  • 41
  • 40
  • 39
  • 38
  • 38
  • 37
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

DEVICE FABRICATION USING POLYMER LITHOGRAPHY EDITOR

BECERRA MORA, NATHALIE 01 December 2022 (has links)
PLE presents an alternative or complementary probe-based tool to DPN, PPL, and NFL. Unlike most scanning probe techniques, where patterning by deposition is usually employed, PLE is unique because it is capable of deposition and removal in one or multiple steps. Therefore, PLE allows rectification of patterning errors, and it can be employed for both additive and subtractive patterning through molecular deposition and chemical and electrochemical etching, respectively. PLE is a technique that exploits the intrinsic porosity of hydrogels like agarose and polyacrylamide. The probes are made by polymerizing a liquid mixture of agarose or acrylamide monomers in a conical or pyramidal master. The polymeric probe is hydrated in deionized water or ink of interest after polymerization. For deposition, PLE has shown promising results in the selective deposition of fluorescent inks on bare or functionalized glass substrates. Erasing via PLE has been done in two ways: the first method involves selectively erasing the fluorescent molecules using a probe loaded with deionized water by bringing the probe in contact with the area of interest. Thus, solvation and transportation of the molecules into the polymeric probes render selective removal of materials (fluorescent inks) from a substrate. On the other hand, erasing or removal of metals deposited on a substrate was demonstrated using redox reactions. Here, the probe is loaded with an etchant, which is selectively delivered onto the substrate by bringing the probe close to or in contact with the surface. Thus, the etchant molecules passively diffuse from the probe to the substrate through a meniscus formed at the probe-substrate interface. Removal of molecules occurs after the redox reaction between the ink, and the substrate is completed. Many in-length microscale complex patterns can be easily made by translocating the probe over the substrate while the probe’s tip is in contact with the surface. Since the probes used in PLE are made of polymers, the probe-substrate contacting area can be easily modulated, and damage to the substrate by the probe is minimum. Moreover, it has been shown that the probes can be used multiple times, a hurdle frequently faced by probes made of hard materials such as silicon-based probes. We explored the capabilities of a polymeric probe made of PAAM to selectively deliver and remove (erase) material deposited on a surface. PLE, pioneered by our group, takes advantage of the hydrophilic and porous nature of polyacrylamide. In addition, the conformability of PAAM hydrogels was exploited to make patterns of various sizes and to the pattern on non-planar surfaces. The main advantage of PLE is removing materials from various substrates. Additionally, selective delivery of material to planar and non-planar substrates was demonstrated. Whereas DPN and sister techniques require multiple steps for patterning through the etching process, PLE can perform etching in one step. Therefore, using PLE, microscale patterning on surfaces can save considerable time, labor, and cost. Further, chemical and supplies waste are minima in PLE. Notably, the deposition and etching at the microscale level can be simultaneously achieved in one single step, providing an extremely high throughput patterning rate (on the order of 1000 mm2/s). The PLE patterning rate is two to three orders larger than DPN-based patterning. However, PLE inherently deposits and removes materials with features much larger (microscale) than that can be achieved with DPN (sub-nanoscale). Therefore, PLE is an alternative to DPN, PPL, and related probe-based deposition and erasing techniques, and in some cases, PLE provides enhanced capabilities than its contemporary techniques. In this dissertation, I intend to demonstrate the potential of PLE for fabricating working devices at a lower cost as an alternative to contemporary fabrication. Chapter 2 involves the fabrication of micro-electrodes on rigid and flexible substrates by selectively removing copper and ITO from a glass and a PET substrate. As proof of concept, substrates coated with the PLE patterned surfaces were used to fabricate a photodetector, and LEDs were assembled on the electrodes made on ITO-PET substrates. Chapter 3 describes a series of experiments involving the evaluation of ink withholding capacity, large area patterning, and the effect of modification of substrate surface energy on PLE patterning. These experiments an increased understanding of processes involved in PLE editing and microscale patterning. A potential pitfall of PLE-based etching was also observed in these experiments, where a thin layer of material was left behind after subtractive editing with a PLE probe. EDS analysis indicated that the material was composed of iron, chlorine, and copper ─ components of the etchant solution and the copper film. The ring structure was attributed to the coffee-ring effect pinning the water meniscus to the substrate. By understanding the potential causes of the formation of the coffee-ring possible solutions to this problem were formulated. Chapter 4 describes the physical and mechanical properties of the hydrogel PAAM probes at the nanoscale. ESEM and AFM were employed to investigate the structural and mechanical properties of the probes after impregnation with metal etchants of various concentrations. The effect of local RH on PLE patterns was also investigated. More importantly, these experiments show critical structural differences of PAAM hydrogels composed of various monomer and crosslinker concentrations. ESEM showed the significant influence exerted by RH on meniscus size and its interaction with the substrate. The behavior of the water meniscus observed in ESEM shows that large RH promotes water spreading on the substrate generating larger patterning features. Chapter 5 describes the capability of PLE to selectively deliver metallic inks on a non-linear curved substrate to fabricate a microscale battery. PLE was used to deposit silver nitrate onto a non-planar flexible substrate which was used to grow a thin electrically conductive copper film via copper electroless deposition. Electrodeposition of zinc on the copper substrate was accomplished. By coupling a zinc electrode to a manganese oxide-graphite composite cathode, we demonstrated a working Zn-MnO2 aqueous microscale battery.
62

Production of TEMPO-oxidized cellulose nanofibers from cotton stalks and its utilization in different industrial applications

Soni, Bhawna 08 December 2017 (has links)
Cellulose nanofibers (CNFs) have established widespread attention in various industries with their potential applications. Production of CNFs from agricultural post harvesting wastes has several cost-effective and eco-friendly benefits. The objective of this research was to prepare four different types of CNFs from cotton stalks by different chemical treatments followed by ultra-sonication. CNFs via untreated bleached pulp, sulfuric acid hydrolysis, and TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl) oxy radical]-mediated oxidation process were produced. Physical and chemical properties of these CNFs were investigated by morphological (FE-SEM, AFM), structural (FTIR), and thermal gravimetric analysis (TGA). Developed TEMPO-oxidized cellulose nanofibers (TEMPO-CNFs) were brighter and higher in yields (>90%). It was the first time uniform and very small sized (3-15 nm diameter and 10-100 nm length) nanofibers were produced. In application purpose, TEMPO-CNFs were introduced into chitosan matrix (prepared from shrimp exoskeletons) for the development of bionanocomposite food packaging films and into chitin for hydrogels preparation in order to eliminate heavy metals from water bodies. Development of bionanocomposite films (chitosan/TEMPO-CNFs compositions) was an effective and complete green approach with enhanced mechanical and barrier properties. Also use of TEMPO-CNFs in this method makes it possible to produce flexible, transparent, and low cost food packaging films with good antimicrobial activity against Salmonella enterica, E. coli O157:H7, and Listeria monocytogenes. In a similar way, generation of recyclable biobased adsorbents (chitin/TEMPO-CNFs compositions) with superior adsorption capacity and high surface area were effectively used in lead (Pb2+) removal from aqueous solutions, thus provide new opportunities as economical and environmentally friendly green remediation.
63

Microbial Detection in Surface Waters: Creating a Remote-Controlled Mobile Microbial Biosensor

Gregory, Jarod 16 October 2015 (has links)
No description available.
64

Cell Death Characterization In Tumor Constructs Using Irreversible Electroporation

Prokop, Katherine Jane 04 October 2013 (has links)
Pancreatic and prostate cancer are both prevalent cancers in the United States with pancreatic being one of the most aggressive of all cancers and prostate cancer being one of the most common, ranking as the number one cancer in men. Treatment of both cancers can be quite challenging as the anatomy of the pancreas and prostate, as well as the development and diagnosis of the disease can greatly limit treatment options. Therefore, it is necessary to develop new cancer treatments to help manage and prevent these cancers. Irreversible electroporation is a new non-thermal focal ablation therapy utilizing short, pulsed electric fields to damage cell membranes leading to cell death. The therapy is minimally invasive, involving the insertion of needle electrodes into the region of interest and lasts less than two minutes. Heat sink effects that thermal therapies experience near large blood vessels do not affect irreversible electroporation. This allows the treatment to be used on tumors near vasculature as well as critical structures without harming these vital regions. While irreversible electroporation is a promising new cancer therapy, further developments are necessary to improve treatment planning models. This work aims to further understand the electric field thresholds necessary to kill different types of cancer cells with a focus on pancreatic and prostate cancer. The work is done using an in vitro tumor (hydrogel) model as this model is better than traditional cell suspension studies, with added benefits over the immediate use of tissue and animal models. / Master of Science
65

Compatibilité et co-structuration dans des systèmes contenant des scléroprotéines et des polysaccharides / Compatibility and co-structuration of systems containing scleroproteins and polysaccharides

Ignat, Cristina Mihaela 26 September 2012 (has links)
L’obtention de substrats „cyto-favorables”, aptes à soutenir la régénération tissulaire, impose l’utilisation de biomatériaux qui portent des domaines de reconnaissance cellulaire, comme par exemple les scléroprotéines et certains polysaccharides. La membrane des cellules spécifiques aux tissus conjonctifs dispose de mécanismes qui facilitent l’ancrage aux substrats solides ou à l’état de gel où se retrouvent des macromolécules ou des fibrilles de (atelo) collagène, associées ou non à l’acide hyaluronique. On peut générer de tels substrats par des techniques de rassemblement moléculaire spontané ordonné (tout comme dans le cas de la restructuration du collagène quasi-natif pour former des fibrilles), ou induite physico-chimiquement ensuite stabilisé morphologiquement (tout comme dans le cas de la préparation des hydrogels mixtes, atelocollagène–hyaluronate de sodium, diversement réticulés ensuite transformés en cryo- ou vitri-gels). Dans le cadre de la thèse, nous étudions les moyens d’obtention et de purification des précurseurs bio-macromoléculaires nécessaires, par la suite, à l’obtention de substrats „cyto-favorables”, ainsi que leurs modalités de génération et de caractérisation. Les méthodes de restructuration auxquelles on en appelle sont de nature physico-chimique (la co-précipitation contrôlée dans des mélanges binaires et ternaires d’atelocollagène et d’hyaluronate de sodium), ou chimique (la réticulation par des ponts moléculaires à longueur minimale). On a étudié les possibilités de mélanger de l’atelocollagène (aK) avec deux types de polysaccharides, le hyaluronate de sodium (NaHyal) et le gellane. On a établi des formulations et les procédures optimales pour obtenir des hydrogels avec des caractéristiques rhéologiques contrôlables, et avec la réactivité et la morphologie capables de permettre la fixation et la prolifération des fibroblastes. On constate que les hydrogels et cryogels obtenus à partir des mélanges 5:1 aK:NaHyal réticulés avec du 1,4-butanediol diglycidyl éther ont des propriétés rhéologiques qui permettent leurs manipulation dans les conditions des techniques de culture cellulaire. Ils ne présentent pas de cytotoxicité et ils assurent la viabilité cellulaire dans les milieux de culture standards. La morphologie des cryogels obtenus montre une macro-porosité qui dépend de la formulation des mélanges et peu la technique d'obtention. La présence de gellane dans les mélanges conduit à une séparation de phases, même à faible concentration, soulignant la diversité des caractéristiques de substrats. / Obtaining "cyto-favourable" substrates able to support tissue regeneration leads to use biomaterials holding cellular recognition domains, as scleroproteins and some polysaccharides as examples. Cellules membranes specific to conjunctive tissues have mechanisms making easier the anchoring to solid or gel substrates where macromolecules or fibrils of (aceto)collagen, associated or not to hyaluronic acid, are found. Such substrates may be generated using spontaneous molecular gathering (as in native collagen restructuration to fibrils), or physico-chemically induced (as the preparation of mixed hydrogels then transformed in cryo- or vitri-gels). In this thesis, were studied the obtaining and purification of bio-macromolecular presursors necessary to obtaining "cyto-favourable" substrates, and the procedures to generate and characterize them. Used restructuration methods are of physico-chemical nature (controlled co-precipitation in binary and ternary mixtures of acetocollagen and sodium hyaluronate) or chemical one (crosslinking).The mixture of acetocolagen (aK) with two polysaccharides, sodium hyaluronate (NaHyal) and gellan were investigated. Formulations and optimal conditions were established to obtain hydrogels with controlled rheological characteristics, and reactivity and morphology able to allow fibroplast fixation and proliferation. Hydrogels and cryogels prepared from 5:1 aK:NaHyal crosslinked with 1,4-butanediol diglycidyl ether were defined as the best materials we have prepared. They do not show any cytotoxicity and they ensure the cellular viability within standard cellule culture media. The cryogel morphology shows macro-porosity depending on the formulation but a few on the obtaining process. The presence of gellan in the mixtures leads to a phase separation, even at low concentration.
66

Low molecular weight hydrogels : une stratégie de revêtement de biopiles enzymatiques pour augmenter la fonctionnalité et la biocompatibilité / Low molecular weight hydrogels as a strategy to coat enzymatic biofuel cells to enhance functionality and biocompatibility

Sindhu, Kotagudda Ranganath 19 April 2019 (has links)
Les biopiles enzymatiques miniatures représentent un potentiel important pour la future génération de dispositifs médicaux implantables, utilisés pour le diagnostic, le pronostic et le traitement. Ces derniers fonctionnent actuellement avec des sources d'énergie externes. Ces biopiles utilisant les molécules présentes dans les fluides biologiques sont des dispositifs médicaux prometteurs. Le glucose, qui est abondamment disponible dans le corps, est à l’étude comme biocarburant permettant de produire de l’énergie. Les enzymes utilisées pour produire l'énergie à partir des produits biochimiques sont immobilisées sur des électrodes en or par des médiateurs redox. Cependant, la faible puissance actuellement disponible et la sensibilité des enzymes à l'environnement limitent leur application in vivo. Malgré des recherches intensives, de nombreux problèmes restent à résoudre, notamment l'amélioration de la puissance, de la stabilité et de la biocompatibilité des biopiles.La réaction à corps étranger et l'isolement du dispositif médical par la formation d'une capsule fibreuse peuvent d'une part dénaturer les enzymes et, d'autre part, entraver la diffusion des analytes et de l'oxygène. Le travail décrit dans cette thèse vise à protéger les biopiles fonctionnant à base de glucose. Afin de résoudre les problèmes mentionnés ci-dessus, les hydrogels, actuellement développés pour diverses applications telles que l'administration de médicaments, l'ingénierie tissulaire et les dispositifs médicaux, offrent des propriétés prometteuses en tant que matériaux de revêtement.La première partie de la thèse est centrée sur l'évaluation de différents hydrogels injectables de faible poids moléculaire, en analysant à la fois la gélification in vitro et in vivo, la cinétique de dégradation, la réaction à corps étranger et l'angiogenèse. Les hydrogels présentent une dégradation lente et une intégration tissulaire optimale. Une angiogenèse accrue a été observée en raison de la libération d'une molécule pro-angiogénique pendant la dégradation de l'hydrogel.Dans la seconde partie de la thèse, l'un des hydrogels étudiés a été utilisé pour recouvrir l'électrode en or : le choix de l'enzyme a été basé sur des études de stabilité in vitro. En parallèle, le processus de revêtement a été optimisé, à la fois pour son uniformité et son épaisseur. Même si un revêtement plus épais présente l’avantage de protéger l’électrode contre la réaction à corps étranger, il est nécessaire de limiter l’épaisseur afin de maintenir une diffusion efficace des analytes et de l’oxygène.Les expériences en cours décrites dans la dernière partie de la thèse sont axées sur l'optimisation de l'implantation chez le rat et la mesure de l'activité des biopiles. De plus, les électrodes ont été connectées à une antenne pour établir une communication sans fil ; en effet, cela permettrait une mesure non invasive de l'activité enzymatique.En conclusion, ces travaux ont permis d'identifier un hydrogel pouvant être utilisé pour revêtir les électrodes de biopiles. Le sous-produit libéré lors de la biodégradation favorise l'angiogenèse au voisinage du matériau. Grâce à ce revêtement, on peut donc s'attendre à un échange accru d'analytes et d'oxygène, préalable indispensable à l'activité enzymatique. / Miniature enzymatic biofuel cells hold great potential to power the future generation of implantable medical devices, which are currently working on external power sources used for diagnosis, prognosis and treatment. Enzymatic biofuel cells appear to be promising in harvesting the energy from biochemicals present in physiological body fluids. Glucose, which is abundantly available in the body, is being explored as a biofuel to harvest energy. The enzymes employed to harvest the energy from the biochemicals are electrically wired on gold electrodes by redox mediators. However, the limitation of insufficient power, and the sensitivity of the enzymes towards host environment restrict their in vivo application. Despite several attempts, numerous challenges remain to be addressed such as improved current density, increased stability, and biocompatibility of enzymatic biofuel cells.Foreign body reaction and isolation of the medical device by formation of a fibrous capsule may firstly denature the enzymes, and secondly hinder the diffusion of analytes and oxygen. The work described in this thesis aims at protecting glucose based biofuel cells. As a strategy for combatting the bottlenecks mentioned above, hydrogels, currently developed for various applications such as drug delivery, tissue engineering, and medical device, offer promising properties as coating materials.The first part of the thesis is focused on evaluating different low molecular weight injectable hydrogels by analysing both in vitro and in vivo gel formation, degradation kinetics, foreign body reaction and angiogenesis. The hydrogels exhibit slow degradation, and optimal tissue integration. Enhanced angiogenesis was observed due to a pro-angiogenic molecule released during hydrogel degradation.In the second part of the thesis, one of the studied hydrogels was used to coat the gold electrode functionalised with enzyme: the selection of the enzyme was based on in vitro stability studies. In parallel, the process of coating was optimised, both for uniformity and thickness. Although a thicker coating should protect the electrode against foreign body reaction, it was necessary to limit the thickness in order to maintain an efficient analyte and oxygen diffusion.Ongoing experiments described in the last part of the thesis are focused on the optimisation of implantation in rat and measurement of the biofuel cell activity. In addition, the electrodes were connected to an antenna for wireless communication; indeed, such a device would allow for a non-invasive measurement of enzyme activity.To conclude, this work allowed for the identification of a hydrogel that can be used to coat the electrodes of biofuel cells. The byproduct released during the biodegradation favours angiogenesis in the vicinity of the material. Thanks to this coating, we can therefore expect an enhanced exchange of analytes and oxygen, which is a prerequisite for enzyme activity.
67

Systèmes biocompatibles et biodégradables par modification chimique contrôlée de polysaccharides pour le traitement de patients diabétiques / Glucose-responsive nanogels based on modified polysaccharides for the self-regulated release of insulin

Hachet, Emilie 08 March 2013 (has links)
Ce travail de thèse s'inscrit dans un domaine de recherche actuellement en pleine expansion, celui des nanomatériaux stimulables. Il vise à concevoir de nouveaux matériaux biocompatibles et biodégradables par modification chimique contrôlée de polysaccharides pour le traitement de patients diabétiques. Le diabète est un problème de santé publique majeur qui affecte environ 250 millions de personnes dans le monde actuellement contre 30 millions il y a 20 ans. Cette maladie se traduit par un taux de glucose anormalement élevé dans le sang dû à un manque d'insuline. Cette protéine est habituellement injectée de manière sous-cutanée, 2 à 4 fois par jour. Les hydrogels/nanogels visés dans ce travail doivent donc être capables de libérer l'insuline en fonction du taux de glucose dans le sang. Ce projet comporte plusieurs volets : (i) la synthèse contrôlée de polysaccharides porteurs de groupements permettant la réticulation des polymères ainsi que des molécules sensibles au glucose , (ii) la synthèse et la caractérisation d'hydrogels et nanogels (en utilisant des liposomes comme nanoréacteurs). / This PhD thesis belongs to the area of stimuli-responsive materials, which have attracted a growing interest since several years. Its aim is to design biocompatible and biodegradable stimuli-responsive nanogels obtained from chemically modified polysaccharides to treat diabetic patients. These systems may be used to release insulin in a self-regulated manner. This common disorder of blood glucose regulation due to a lack of insulin is a major public health problem affecting about 250 millions of people in the world today, as compared to 30 millions twenty years ago. Patients diagnosed with insulin-dependent diabetes must take insulin by injecting themselves with a needle at least twice a day. The nanogels targeted in this work are thus expected to release insulin as a function of blood glucose concentration.This project will thus consist in the controlled synthesis of polysaccharides bearing cross-linkable groups and a sugar sensor. These biopolymers will be then used to prepare hydrogels and nanogels (using liposomes as nanoreactors).
68

Conception et élaboration de matériaux à biodégradabilité contrôlée pour la médecine régénérative / Design and development of materials with controlled biodegradability for regenerative medicine

Goczkowski, Mathieu 18 December 2017 (has links)
Les gels de fibrine présentent un fort intérêt en médecine régénérative, puisqu’ils miment la matrice temporaire créée lors de la cicatrisation. Cependant, quand préparés à concentration physiologique, ils ne sont pas manipulables, ni conservables à sec. Pour contrer ces désavantages, ils peuvent être associés à un autre réseau de polymères, dans une architecture de Réseaux Interpénétrés de Polymères (RIP). Cette approche a été utilisée pour associer à un réseau de fibrine, un coréseau semi-synthétique d’albumine de sérum bovin (BSA) et de poly(oxyde d’éthylène) (POE), obtenu par photopolymérisation de BSA et PEG modifiés avec des fonctions méthacrylate (BSAm, PEGDM).Il a été démontré par des tests ex vivo et in vitro que ces matériaux ont de multiples applications potentielles, puisqu’ils supportent à leur surface, la croissance de nombreux types cellulaires. De plus, il a été observé que ces matériaux peuvent servir comme vecteurs pour la délivrance de molécules d’intérêt thérapeutique.La technologie a d’ailleurs été optimisée, en utilisant non plus des précurseurs modifiés avec des fonctions méthacrylate, mais acrylate. Cette modification a permis de réduire la toxicité du procédé de synthèse, tout en conservant les performances des matériaux. Il a également été démontré que divers matériaux optimisés ont des mécanismes de dégradation différents, et contrôlables par leur formulation initiale.Enfin, deux nouvelles familles de RIPs à base de fibrine ont été développées, en associant à un réseau de fibrine, un autre réseau de protéine, la fibroïne de soie. Des RIPs parfaitement manipulables ont été obtenus, supportant à leur surface la culture de fibroblastes. Ces matériaux sont donc prometteurs pour l’ingénierie tissulaire de la peau et d’autres applications. / Fibrin gels are of interest in regenerative medicine, as they mimic the provisory matrix synthesized during wound healing process. However, when prepared at physiologic concentration, these gels cannot be handled, nor stocked in dry state. To face these drawbacks, they can be associated with another polymer network, in an Interpenetrating Polymer Network (IPN). This strategy was used to associate to a fibrin network, a semi-synthetic conetwork composed of bovine serum albumin (BSA) and poly(ethylene oxide) (PEO), obtained by photopolymerization of methacrylate-modified BSA and PEG.It was demonstrated through ex vivo and in in vitro experiments that these materials have numerous potential applications, as they support on their surface, the culture of numerous cell types. Moreover, it was observed that they may be used as drug carrier for drug release applications.Moreover, the technology was optimized by modifying the methacrylate functions on the precursors for acrylate functions. This modification allowed to reduce the toxicity of the process, while preserving materials performances. It was also demonstrated that these optimized materials have different degradation mechanisms, which are controllable by their initial formulation.Finally, 2 new groups of fibrin-based IPNs were developed, by associating to a fibrin network, another protein network, the silk fibroin. Perfectly handable IPNs were obtained, which support on their surface the culture of fibroblasts. These materials are then very promising for skin tissue engineering, and most likely other applications.
69

Rheological study of a new semi-rigid giant polysaccharide for the mechanical reinforcement of hydrogels / Etude rhéologique d'un nouveau polysaccharide semi-rigide géant pour le renforcement mécanique d'hydrogels

Saint-Martin, Tom 19 September 2017 (has links)
Nous étudions la relation structure/propriétés d'hydrogels rigides composés d'un nouveau polysaccharide géant, le sacran. Ce nouveau polysaccharide possède une longueur de contour supérieure à 10 µm et une longueur de persistance intrinsèque d'à peu près 60 nm. Ainsi la réticulation de ces chaines polysaccharides est capable de former des réseaux dits rigides, dans lesquels la taille de maille est contrôlée par des segments de chaines rigides. A partir du sacran, des hydrogels physiques (liaisons transitoires) et chimiques (liaisons covalentes) ont été fabriqué dans l'optique d'observer des différences comportementales entre ces réseaux. La formation de réseaux rigides de sacran à être démontrée par l'utilisation de la microrhéologie non-conventionnelle par DWS permettant le suivi de la dynamique d'une chaine polymère individuelle composant le réseau. Différentes signatures rhéologiques propres à ces réseaux rigides ont été mises en évidence et des propriétés de strain-hardening ont été observées dans le régime non-linéaire des gels chimiques de sacran, et plus étonnamment des gels physiques également. Les strain-hardening observés pour les gels chimiques de sacran, grands devant ceux reportés dans la littérature, ont pu être modélisés permettant l'obtention des paramètres structurant ces réseaux et conduisant à leur durcissement. / We study the relationship structure/properties of rigid hydrogels composed of a new giant polysaccharide, sacran. This novel polysaccharide has a contour length larger than 10 μm and an intrinsic length of persistence of approximately 60 nm. By crosslinking the chains of this polysaccharide we expect prepare rigid networks, in which the mesh size is controlled by rigid chain segments. Physical (transient bonds) and chemical hydrogels of sacran have been prepared and their rheological properties have been studied. The formation of rigid networks of sacran has been demonstrated by using the non-conventional microrheology by DWS allowing to characterize the dynamics at single chain scale of the network. Different specific rheological signatures of these rigid networks have been highlighted and strain-hardening properties have been observed in the non-linear regime for the chemical gels, as well as for the physical gels. The strain-hardening observed for the chemical gels, which are large compared to those of other biopolymers reported in the literature, were modeled to obtain the structural parameters of these networks which lead to their hardening.
70

Validation pré-clinique d'un produit d'ingénierie vasculaire à base d'hydrogel de chitosane / Pre-clinical validation of chitosan hydrogels for vascular engineering

Biscay-Aussel, Audrey 05 December 2017 (has links)
Objectifs. Les substituts vasculaires synthétiques sont à l’origine de nombreux échecs pour le remplacement des vaisseaux de petit calibre. L'émergence de l'ingénierie vasculaire ouvre des perspectives face à ce problème de santé publique. Le chitosane, polymère naturel, peut être utilisé comme matrice en ingénierie vasculaire. L'objectif de cette thèse était de produire des hydrogels de chitosane et d’étudier les propriétés mécaniques, biologiques et la biointégration. Matériel et Méthodes. Les hydrogels ont été caractérisés mécaniquement in vitro. En augmentant la concentration en chitosane, la résistance à la suture, à l’éclatement et les modules élastiques augmentaient de manière significative. Une série d'expériences, allant de l’évaluation in vitro à l’analyse in vivo de la biocompatibilité a été réalisée. In vitro, les hydrogels permettaient la prolifération des progéniteurs endothéliaux (EPCs) et étaient hémocompatibles. In vivo, les hydrogels n’étaient pas résorbés après 60 jours, dans un modèle d'implantation hétérotopique chez le rat. De plus, la biointégration du chitosane a été étudiée. In vitro, l’endothélium à la surface des hydrogels se comportait comme celui d’un vaisseau natif. In vivo, les hydrogels de chitosane étaient capables de moduler la réponse inflammatoire, dans un modèle d'implantation ectopique chez le rat, en favorisant la polarisation des macrophages vers le phénotype M2. Enfin, 2 tubes de chitosane ont été implantés avec succès pour des pontages carotidiens pendant 3 jours chez le mouton. Conclusion. En modulant la concentration de chitosane, nous avons produit des matrices avec des propriétés adaptées pour l’ingénierie vasculaire. / Aims. Vascular grafts made of synthetic polymers perform poorly in small-diameter applications. Consequently, there is strong clinical to produce small caliber vessels with better patency. The emergence of vascular engineering opens new possibilities. Chitosan, a natural polymer, can provide a scaffold for vascular engineering. The goal of this thesis was to produce chitosan-based hydrogels and to assess their biological and mechanical properties and their biointegration. Methods and Results. Hydrogels were mechanically characterized in vitro. By increasing chitosan concentration, suture retention value, average burst strength and elastic moduli increased significantly. A series of experiments ranging from in vitro biocompatibility tests to in vivo studies was performed. In vitro, chitosan supported human endothelial progenitor cells (EPCs) proliferation and was hemocompatible. In vivo, no resorption of chitosan was observed in a rat heterotopic implantation model. In addition biointegration of chitosan hydrogels were investigated. In vitro, chitosan endothelialized with EPCs behave as a native endothelium. In vivo, chitosan hydrogels were able of modulating the inflammatory response of injured host tissue by favouring polarization of macrophages towards the beneficial M2 phenotype in a rat ectopic implantation model. Finally, as a proof of concept, 2 chitosan tubes were implanted successfully as carotid interposition grafts for 3 days in sheep. Conclusion. By modulating chitosan concentration, we produced scaffolds with suitable properties to be implanted in vivo.

Page generated in 0.06 seconds