31 |
New Approach in Characterizing Accessory Drive Belts for Finite Element ApplicationsNassiri, Farbod 12 January 2011 (has links)
Multi-ribbed serpentine belt is the core of the automotive accessory drive system, which distributes the engine power to other auxiliary systems of the car. Development of a belt life model is of a significant importance to the accessory drive system manufacturers, in order to prevent any premature failures of these belts. However, any numerical analysis on the belt life is heavily dependent on gaining an understanding of stress distribution in the belts under the operational loading conditions.
The presented work demonstrates a new systematic approach for determining the hyperelastic material parameters of rubber with specific application in Finite Element Analysis (FEA) of serpentine accessory drive belts. This new approach can be used as a stand-alone tool by manufacturers to determine the stress distribution in the belt under operational conditions; the results of which can be applied to assess the life of accessory drive belts, in a relatively short time.
|
32 |
New Approach in Characterizing Accessory Drive Belts for Finite Element ApplicationsNassiri, Farbod 12 January 2011 (has links)
Multi-ribbed serpentine belt is the core of the automotive accessory drive system, which distributes the engine power to other auxiliary systems of the car. Development of a belt life model is of a significant importance to the accessory drive system manufacturers, in order to prevent any premature failures of these belts. However, any numerical analysis on the belt life is heavily dependent on gaining an understanding of stress distribution in the belts under the operational loading conditions.
The presented work demonstrates a new systematic approach for determining the hyperelastic material parameters of rubber with specific application in Finite Element Analysis (FEA) of serpentine accessory drive belts. This new approach can be used as a stand-alone tool by manufacturers to determine the stress distribution in the belt under operational conditions; the results of which can be applied to assess the life of accessory drive belts, in a relatively short time.
|
33 |
Behaviour and Design of Profiled Steel Cladding Systems Subject to Pull-through FailuresMahaarachchi, Dhammika January 2003 (has links)
The common profiled steel cladding systems used in Australia and its neighboring countries are made of very thin (0.42 mm) high strength steel (G550 with a minimum yield stress of 550 MPa) and are crest-fixed. However, these claddings often suffer from local pull-through failures at their screw connections during high wind events such as storms and cyclones. Past experience and researches have shown that the loss of steel roofs has often occurred due to local pull-through failures of their screw connections under uplift or suction loading. Loss of claddings always led to a progressive collapse of the entire building. This situation is continuing because of the lower priority given to the design of roof and wall cladding systems. At present, steel design codes do not provide guidelines for the design of crest-fixed steel roof or wall claddings. Past research has shown that European and American recommendations for steel claddings cannot be used for Australian crest-fixed cladding systems as they were developed mainly for valley-fixed claddings subjected to gravity loading instead of crest-fixed claddings subjected to wind uplift/suction loading. Therefore at present the design of thin steel cladding systems is based on laboratory tests and is expensive. These situations inhibit the innovative design and advances in the steel cladding industry. Since the local pull-through failures in the less ductile G550 steel claddings are initiated by transverse splitting at the fastener hole, analytical studies have not been able to determine the pull-through failure loads accurately. Therefore in the first stage of this research an appropriate fracture/splitting criterion was developed using a series of large scale and small scale experiments of crest-fixed steel claddings. A shell finite element model of crest-fixed steel cladding was then developed that included the new fracture/splitting criterion and advanced features such as hyperelastic material modelling, contact simulations, residual stresses and geometric imperfections. The improved finite element analyses were able to model the pull-through failures associated with splitting as evident from the comparison of their results with the corresponding full-scale experimental results. An extensive series of parametric studies considering the effects of material properties and geometric parameters of the two commonly used trapezoidal cladding profiles was undertaken using finite element analysis. Appropriate design formulae for the pull-through and dimpling failure load of trapezoidal profiles were then derived for optimization purposes and to simplify the current design method. This will then lead to modification and optimisation of cladding profiles to satisfy the requirements of both strength (safety during cyclones and storms) and economy. This thesis presents the details of large scale experimental studies undertaken and the results including the criterion for the splitting/fracture failure of high strength steel cladding systems. It describes the many advances made in the finite element modelling of crest-fixed steel cladding systems including the effects of localised pull-through and dimpling failures. Finally, it presents a simple design method for trapezoidal steel cladding systems under wind uplift or suction loading.
|
34 |
Etude du comportement mécanique multiaxial de matériaux cellulaires / Investigation of cellular materials multiaxial mechanical behaviorDonnard, Adrien 18 June 2018 (has links)
Les travaux de cette thèse s’intéressent au comportement mécanique d’une mousse destinée à l’absorption d’énergie dans une assise de siège pilote. Les méthodes de caractérisation habituelles proposent de solliciter le matériau suivant une seule direction. Cependant, cette caractérisation ne permet pas d’être représentatif des sollicitations lors de l’utilisation de l’assise, qui sont multiaxiales. Cette étude s’intéresse donc à la caractérisation du comportement multiaxial d’une mousse. L’approche originale utilisée est une séparation du comportement en deux contributions: changement de volume (pression-volume) et de forme (distorsion-cisaillement). Un premier moyen d’essais de compression hydrostatique a été développé afin de caractériser le changement de volume. Les résultats mettent en évidence une forte influence de la contribution en changement de volume, lors d’une sollicitation de compression uniaxiale. Un deuxième moyen d’essais a été développé permettant d’appliquer des sollicitations radiales suivant un angle cinématique ϑε, imposant une proportion de volume et de distorsion. Les résultats montrent une forte influence de l’angle cinématique sur les comportements des contributions de changement de volume et de forme. D’autres sollicitations impliquant de la compression et du cisaillement d’une manière séquentielle ont montré une influence du niveau de volume sur le comportement en changement de forme. Enfin, un modèle de simulation 2D par assemblage d’éléments finis 1D, montre une bonne représentation des différents comportements des contributions de changement de volume et de forme obtenus expérimentalement. / This thesis is focused on the mechanical behavior of foam designed to absorb energy in an airplane pilot seat cushion. Usually, these materials are characterized using uniaxial compressive test. Nevertheless, this uniaxial characterization doesn’t represent the real in-use loading of cushion. To complete these data, this work focuses on multiaxial behavior characterization of foam. The analysis of behavior is realized by using a separation into two contributions linked to the volume (pressure-volume) and the shape (distortion-shear) change. A hydrostatic testing system was developed with the aim to characterize the volume change behavior. Results highlight a strong influence of the volume change behavior during an uniaxial compression solicitation. A second testing system was developed allowing to apply radial solicitations following a kinematic angle, which imposes a non-proportional variation of volume and distortion. A kinematic angle influence is observed on the volume and shape change behavior. Other solicitations composed of compression and shear applied in a sequential way, permit to observe a volume influence on the shape change behavior. Finally, a 2D simulation model composed of 1D element composition shows a good representation of the volume and shape changes behavior obtained from experimentation.
|
35 |
Avaliação experimental das relações tensão-deformação de um tecido de fibra de vidro recoberto com PTFE. / Experimental evaluation of the stress-strain relationships of a PTFE coated fiberglass fabric.Maurício Roberto de Pinho Chivante 16 October 2009 (has links)
Com o crescente uso de estruturas de membrana tensionada, as relações tensãodeformação do tecido utilizado em sua fabricação devem ser bem entendidas. Deste modo, esta dissertação apresenta um estudo sobre o comportamento mecânico de um tecido arquitetônico PTFE-vidro, ressaltando seu complexo mecanismo de deformação que engloba efeitos de anisotropia, não-linearidade física, troca de ondulações, histerese, remoção do espaçamento entre os fios e variação de temperatura. Diferentes métodos para modelagem do material foram estudados, com ênfase no modelo de material ortótropo representado por um funcional energia de deformação hiperelástico. Além disso, vários protocolos para ensaios de tração em tecidos recobertos foram analisados e uma série de ensaios biaxiais com amostras cruciformes foram realizados no Centro de Pesquisa e Desenvolvimento da Birdair, Inc. Um determinado funcional energia de deformação foi então ajustado aos dados de campo obtidos nestes testes, cujos resultados foram então comparados diretamente aos dados obtidos em campo e a um ajuste direto de uma superfície suave tensão-deformação. A performance do modelo ajustado não se encontra ainda em um patamar de aplicação industrial, entretanto este estudo permite um entendimento global dos mecanismos de deformação do tecido PTFEvidro, fornecendo também uma massa de dados consistentes que podem ser utilizados em situações práticas. / Considering the growing use of tensioned membrane structures, the stress-strain relation of the fabric used on its construction must be well understood. This dissertation presents a study of the mechanical behavior of a PTFE coated fiberglass fabric, emphasizing its complex strain mechanism which is influenced by the material anisotropy, physical non-linearity, crimp interchange, hysteresis, removal of yarn spacing and changes in temperature. Different material models were studied, focusing on an orthotropic material model represented by a hyperelastic strain energy function. Also, different test protocols were reviewed and a series of biaxial tests on cruciform samples were performed at the Birdair, Inc.s Research and Development Center. A strain energy function was adjusted to the collected data and than its results compared to the data itself and to another stress-strain function directly adjusted to the data. The performance of the strain-energy function chosen is not on a level of industrial application; however this study gives a global understanding of the PTFE coated fiberglass strain mechanism and also provides a consistent database that may be used on real situations.
|
36 |
Sur l'analyse des déformations homogènes et héterogènes des structures en élastomères / On the analysis of the homogeneous and heterogeneous deformations of the elastomerIdjeri, Mourad 29 April 2013 (has links)
L'identification du comportement des polymères et notamment des élastomères reste un problème délicat. Dans ce travail, nous proposons une méthode d'identification qui associe la mesure de champ de déformation par analyse d'images avec l'optimisation d'un champ de contraintes adapté à l'essai. L'essai retenu est un étirage biaxial réalisé sur une éprouvette en forme de croix. L'approche proposée transforme l'inconvénient de l'hétérogénéité en avantage puisqu'il permet de réaliser l'identification simultanée sur plusieurs états de déformation : typiquement traction uniaxiale, plane et biaxiale. Le champ de contrainte est approché par la somme d'un champ homogène et d'un champ complémentaire vérifiant les conditions de bords libres et qui décroît lorsqu'on pénètre dans l'échantillon. La longueur caractéristique de la décroissance est optimisée de telle sorte que le champ approché vérifie au mieux les équations d'équilibre. En combinant l'analyse d'images avec le champ de contrainte optimisé, on identifie le potentiel hyperélastique en calculant explicitement les deux dérivées f=∂W/∂I1 et g=∂W/∂I2 où et sont les deux 1er invariants du tenseur de Cauchy droit. Enfin, un algorithme spécifique est mis en oeuvre par éléments finis pour une simulation 2D des matériaux hyperélastiques incompressibles. Cet algorithme est utilisé pour valider l'identification en comparant les résultats de la simulation et ceux de l'expérience / The identification of the polymer's behaviour and especially rubber-like materials remains a challenging task. In this work, we propose a method for the identification which combines strain field obtained by digital image analysis and the optimisation of an approximated stress field adapted to the specimen geometry. A biaxial stretching test is performed on a crosshair rubber specimen. With the proposed approach, heterogeneity of the strain field during this equi-biaxial tension test becomes an advantage. It allows the simultaneous identification of several strain states: uniaxial, biaxial and planar elongations as well as shear. The stress field is approximated by the sum of a homogeneous field and an additional field. The latter, checking the boundary conditions on the free edge is decreasing when entering the sample. The characteristic decreasing length is optimized so that the approximate field verifies the equilibrium equations. Combining image analysis with an optimized stress field, we manage the identification the hyperelastic potential by calculating explicitly the two derivatives f=∂W/∂I1 and g=∂W/∂I2 and conclude on their dependence on I1 and I2 the two first invariants of the rigth Cauchy-Green tensor. Finally, a specific finite element algorithm has been developed to similate a 2D-incompresible hyperelastic material. This algorithm is used to validation the identification potentiel by comparing simulation results and experimental data
|
37 |
Development of a Thick Continuum-Based Shell Finite Element for Soft Tissue DynamicsMomenan, Bahareh January 2017 (has links)
The goal of the present doctoral research is to create a theoretical framework and develop a numerical implementation for a shell finite element that can potentially achieve higher performance (i.e. combination of speed and accuracy) than current Continuum-based (CB) shell finite elements (FE), in particular in applications related to soft biological tissue dynamics. Specifically, this means complex and irregular geometries, large distortions and large bending deformations, and anisotropic incompressible hyperelastic material properties.
The critical review of the underlying theories, formulations, and capabilities of the existing CB shell FE revealed that a general nonlinear CB shell FE with the abovementioned capabilities needs to be developed. Herein, we propose the theoretical framework of a new such CB shell FE for dynamic analysis using the total and the incremental updated Lagrangian (UL) formulations and explicit time integration. Specifically, we introduce the geometry and the kinematics of the proposed CB shell FE, as well as the matrices and constitutive relations which need to be evaluated for the total and the incremental UL formulations of the dynamic equilibrium equation. To verify the accuracy and efficiency of the proposed CB shell element, its large bending and distortion capabilities, as well as the accuracy of three different techniques presented for large strain analysis, we implemented the element in Matlab and tested its application in various geometries, with different material properties and loading conditions. The new high performance and accuracy element is shown to be insensitive to shear and membrane locking, and to initially irregular elements.
|
38 |
Modelling of the Fletcher-Gent effect and obtaining hyperelastic parameters for filled elastomersÖsterlöf, Rickard January 2014 (has links)
The strain amplitude dependency , i.e. the Fletcher-Gent effect and Payne effect, and the strain rate dependency of rubber with reinforcing fillers is modelled using a modified boundary surface model and implemented uniaxially. In this thesis, a split of strain instead of stress is utilized, and the storage and loss modulus are captured over two decades of both strain amplitudes and frequencies. In addition, experimental results from bimodal excitation are replicated well, even though material parameters were obtained solely from harmonic excitation. These results are encouraging since the superposition principle is not valid for filled rubber, and real-life operational conditions in general contain several harmonics. This means that formulating constitutive equations in the frequency domain is a cumbersome task, and therefore the derived model is implemented in the time domain. Filled rubber is used irreplaceable in several engineering solutions, such as tires, bushings, vibrations isolators, seals and tread belts, to name just a few. In certain applications, it is sufficient to model the elastic properties of a component during finite strains. However, Hooke’s law is inadequate for this task. Instead, hyperelastic material models are used. Finally, the thesis presents a methodology for obtaining the required material parameters utilizing experiments in pure shear, uniaxial tension and the inflation of a rubber membrane. It is argued that the unloading curve rather than the loading curve is more suitable for obtaining these parameters, even at very low strain rates. / <p>QC 20140917</p>
|
39 |
Nitsche method for frictional contact and self-contact : Mathematical and numerical study / Méthode de Nitsche pour le contact de frottement et auto-contact : Mathématique et étude numériqueMlika, Rabii 24 January 2018 (has links)
Dans cette thèse, nous présentons et étudions une nouvelle formulation du problème de contact frottant entre deux corps élastiques se basant sur la méthode de Nitsche. Dans cette méthode les conditions de contact sont imposées faiblement, grâce à un terme additionnel consistant et stabilisé par un paramètre gamma. En premier lieu, nous introduisons, l’étude effectuée en petites déformations pour une version non biaisée de la méthode. La non-distinction entre une surface maître et une surface esclave permettera à la méthode d’être plus générique et applicable directement au problème d’auto-contact. Le cadre restrictif des petites déformations nous permet d’obtenir des résultats théoriques sur la stabilité et la convergence de la méthode. Ces résultats sont complétés par une validation numérique. Ensuite, nous introduisons l’extension de la méthode de Nitsche au cadre des grandes déformations qui est d’avantage pertinent pour les applications industrielles et les situations d’auto-contact. La méthode de Nitsche est formulée pour un matériau hyper-élastique avec frottement de Coulomb et se décline en deux versions : biaisée ou non. La formulation est généralisée à travers un paramètre theta pour couvrir toute une famille de méthodes. Chaque variante particulière a des propriétés différentes du point de vue théorique et numérique, en termes de précision et de robustesse. La méthode est testée et validée à travers plusieurs cas tests académiques et industriels. Nous effectuons aussi une étude de l’influence de l’intégration numérique sur la précision et la convergence de la méthode. Cette étude couvre une comparaison entre plusieurs schémas d’intégration proposés dans la littérature pour d’autres méthodes intégrales. / In this thesis, we present and study a new formulation of frictional contact between two elastic bodies based on Nitsche’s method. This method aims to treat the interface conditions in a weak sense, thanks to a consistent additional term stabilized with the parameter gamma. At first, we introduce the study carried out in the small strain framwork for an unbiased version of the ethod. The non-distinction between a master surface and a slave one will allow the method to be more generic and directly applicable to the self-contact problem. The restrictive framework of small strain allowed us to obtain theoretical results on the consistency and convergence of the method. Then, we present the extension of the Nitsche method to the large strain case more relevant for industrial applications and situations of self-contact. This Nitsche’s method is formulated for an hyper-elastic material and declines in the two versions: biased and unbiased. We describe a class of methods through a generalisation parameter theta . Particular variants have different properties from a numerical point of view, in terms of accuracy and robustness. To prove the accuracy of the method for large deformations, we provide several academic and industrial tests. We also study the influence of numerical quadrature on the accuarcy and convergence of the method. This study covers a comparison of several integration rules proposed in the literature for other integral methods.
|
40 |
A fracture mechanics approach to accelerated life testing for cathodic delamination at polymer/metal interfacesMauchien, Thomas Kevin 29 October 2013 (has links)
This work presents a fracture mechanics analysis of the cathodic delamination problem for the polyurethane/titanium and polyurea/steel interfaces. The nonlinear behavior of both polymers was investigated. The recent Marlow model was used to define the strain energy function of the polymers. Viscoelastic effects of the polyurea were also studied. The Marlow model was associated with a nine-term Prony series. This model was seen to represent experimental data relatively well for a wide range of strain rates both in tension and compression. The driving force for delamination, the strain energy release rate G, is presented for both interfaces. Cathodic delamination data for several temperatures are presented as crack growth rate as a function of crack driving force. The approach recognizes that both temperature and stress can be used as accelerated life testing parameters. / text
|
Page generated in 0.19 seconds