Spelling suggestions: "subject:"hyperspectral""
91 |
Approche coopérative et non supervisée de partitionnement d’images hyperspectrales pour l’aide à la décision / Unsupervised cooperative partitioning approach of hyperspectral images for decision makingTaher, Akar 20 October 2014 (has links)
Les images hyperspectrales sont des images complexes qui ne peuvent être partitionnées avec succès en utilisant une seule méthode de classification. Les méthodes de classification non coopératives, paramétriques ou non paramétriques peuvent être classées en trois catégories : supervisée, semi-supervisée et non supervisée. Les méthodes paramétriques supervisées nécessitent des connaissances a priori et des hypothèses sur les distributions des données à partitionner. Les méthodes semi-supervisées nécessitent des connaissances a priori limitées (nombre de classes, nombre d'itérations), alors que les méthodes de la dernière catégorie ne nécessitent aucune connaissance. Dans le cadre de cette thèse un nouveau système coopératif et non supervisé est développé pour le partitionnement des images hyperspectrales. Son originalité repose sur i) la caractérisation des pixels en fonction de la nature des régions texturées et non-texturées, ii) l'introduction de plusieurs niveaux d'évaluation et de validation des résultats intermédiaires, iii) la non nécessité d'information a priori. Le système mis en ouvre est composé de quatre modules: Le premier module, partitionne l'image en deux types de régions texturées et non texturées. Puis, les pixels sont caractérisés en fonction de leur appartenance à ces régions. Les attributs de texture pour les pixels appartenant aux régions texturées, et la moyenne locale pour les pixels appartenant aux régions non texturées. Le deuxième module fait coopérer parallèlement deux classifieurs (C-Moyen floue : FCM et l'algorithme Adaptatif Incrémental Linde-Buzo-Gray : AILBG) pour partitionner chaque composante. Pour rendre ces algorithmes non supervisés, le nombre de classes est estimé suivant un critère basé sur la dispersion moyenne pondérée des classes. Le troisième module évalue et gère suivant deux niveaux les conflits des résultats de classification obtenus par les algorithmes FCM et AILBG optimisés. Le premier identifie les pixels classés dans la même classe par les deux algorithmes et les reportent directement dans le résultat final d'une composante. Le second niveau utilise un algorithme génétique (GA), pour gérer les conflits entre les pixels restant. Le quatrième module est dédié aux cas des images multi-composantes. Les trois premiers modules sont appliqués tout d'abord sur chaque composante indépendamment. Les composantes adjacentes ayant des résultats de classification fortement similaires sont regroupées dans un même sous-ensemble et les résultats des composantes de chaque sous-ensemble sont fusionnés en utilisant le même GA. Le résultat de partitionnement final est obtenu après évaluation et fusion par le même GA des différents résultats de chaque sous-ensemble. Le système développé est testé avec succès sur une grande base de données d'images synthétiques (mono et multi-composantes) et également sur deux applications réelles: la classification des plantes invasives et la détection des pins. / Hyperspectral and more generally multi-component images are complex images which cannot be successfully partitioned using a single classification method. The existing non-cooperative classification methods, parametric or nonparametric can be categorized into three types: supervised, semi-supervised and unsupervised. Supervised parametric methods require a priori information and also require making hypothesis on the data distribution model. Semi-supervised methods require some a priori knowledge (e.g. number of classes and/or iterations), while unsupervised nonparametric methods do not require any a priori knowledge. In this thesis an unsupervised cooperative and adaptive partitioning system for hyperspectral images is developed, where its originality relies i) on the adaptive nature of the feature extraction ii) on the two-level evaluation and validation process to fuse the results, iii) on not requiring neither training samples nor the number of classes. This system is composed of four modules: The first module, classifies automatically the image pixels into textured and non-textured regions, and then different features of pixels are extracted according to the region types. Texture features are extracted for the pixels belonging to textured regions, and the local mean feature for pixels of non-textured regions. The second module consists of an unsupervised cooperative partitioning of each component, in which pixels of the different region types are classified in parallel via the features extracted previously using optimized versions of Fuzzy C-Means (FCM) and Adaptive Incremental Linde-Buzo-Gray algorithm (AILBG). For each algorithm the number of classes is estimated according to the weighted average dispersion of classes. The third module is the evaluation and conflict management of the intermediate classification results for the same component obtained by the two classifiers. To obtain a final reliable result, a two-level evaluation is used, the first one identifies the pixels classified into the same class by both classifiers and report them directly to the final classification result of one component. In the second level, a genetic algorithm (GA) is used to remove the conflicts between the invalidated remaining pixels. The fourth module is the evaluation and conflict management in the case of a multi-component image. The system handles all the components in parallel; where the above modules are applied on each component independently. The results of the different components are compared, and the adjacent components with highly similar results are grouped within a subset and fused using a GA also. To get the final partitioning result of the multi-component image, the intermediate results of the subsets are evaluated and fused by GA. The system is successfully tested on a large database of synthetic images (mono and multi-component) and also tested on two real applications: classification of invasive plants and pine trees detection.
|
92 |
Urban Detection From Hyperspectral Images Using Dimension-Reduction Model and Fusion of Multiple Segmentations Based on Stuctural and Textural FeaturesHe, Jin 09 1900 (has links)
Ce mémoire de maîtrise présente une nouvelle approche non supervisée pour détecter et segmenter les régions urbaines dans les images hyperspectrales. La méthode proposée n ́ecessite trois étapes. Tout d’abord, afin de réduire le coût calculatoire de notre algorithme, une image couleur du contenu spectral est estimée. A cette fin, une étape de réduction de dimensionalité non-linéaire, basée sur deux critères complémentaires mais contradictoires de bonne visualisation; à savoir la précision et le contraste, est réalisée pour l’affichage couleur de chaque image hyperspectrale. Ensuite, pour discriminer les régions urbaines des régions non urbaines, la seconde étape consiste à extraire quelques caractéristiques discriminantes (et complémentaires) sur cette image hyperspectrale couleur. A cette fin, nous avons extrait une série de paramètres discriminants pour décrire les caractéristiques d’une zone urbaine, principalement composée d’objets manufacturés de formes simples g ́eométriques et régulières. Nous avons utilisé des caractéristiques texturales basées sur les niveaux de gris, la magnitude du gradient ou des paramètres issus de la matrice de co-occurrence combinés avec des caractéristiques structurelles basées sur l’orientation locale du gradient de l’image et la détection locale de segments de droites. Afin de réduire encore la complexité de calcul de notre approche et éviter le problème de la ”malédiction de la dimensionnalité” quand on décide de regrouper des données de dimensions élevées, nous avons décidé de classifier individuellement, dans la dernière étape, chaque caractéristique texturale ou structurelle avec une simple procédure de K-moyennes et ensuite de combiner ces segmentations grossières, obtenues à faible coût, avec un modèle efficace de fusion de cartes de segmentations. Les expérimentations données dans ce rapport montrent que cette stratégie est efficace visuellement et se compare favorablement aux autres méthodes de détection et segmentation de zones urbaines à partir d’images hyperspectrales. / This master’s thesis presents a new approach to urban area detection and segmentation in hyperspectral images. The proposed method relies on a three-step procedure. First, in order to decrease the computational complexity, an informative three-colour composite image, minimizing as much as possible the loss of information of the spectral content, is computed. To this end, a non-linear dimensionality reduction step, based on two complementary but contradictory criteria of good visualization, namely accuracy and contrast, is achieved for the colour display of each hyperspectral image. In order to discriminate between urban and non-urban areas, the second step consists of extracting some complementary and discriminant features on the resulting (three-band) colour hyperspectral image. To attain this goal, we have extracted a set of features relevant to the description of different aspects of urban areas, which are mainly composed of man-made objects with regular or simple geometrical shapes. We have used simple textural features based on grey-levels, gradient magnitude or grey-level co-occurence matrix statistical parameters combined with structural features based on gradient orientation, and straight segment detection. In order to also reduce the computational complexity and to avoid the so-called “curse of dimensionality” when clustering high-dimensional data, we decided, in the final third step, to classify each individual feature (by a simple K-means clustering procedure) and to combine these multiple low-cost and rough image segmentation results with an efficient fusion model of segmentation maps. The experiments reported in this report demonstrate that the proposed segmentation method is efficient in terms of visual evaluation and performs well compared to existing and automatic detection and segmentation methods of urban areas from hyperspectral images.
|
93 |
Problèmes inverses en Haute Résolution AngulaireMugnier, Laurent 18 October 2011 (has links) (PDF)
Les travaux exposés portent sur les techniques d'imagerie optique à haute résolution et plus particulièrement sur les méthodes, dites d'inversion, de traitement des données associées à ces techniques. Ils se situent donc à la croisée des chemins entre l'imagerie optique et le traitement du signal et des images. Ces travaux sont appliqués à l'astronomie depuis le sol ou l'espace, l'observation de la Terre, et l'imagerie de la rétine. Une partie introductive est dédiée au rappel de caractéristiques importantes de l'inversion de données et d'éléments essentiels sur la formation d'image (diffraction, turbulence, techniques d'imagerie) et sur la mesure des aberrations (analyse de front d'onde). La première partie des travaux exposés porte sur l'étalonnage d'instrument, c'est-à-dire l'estimation d'aberrations instrumentales ou turbulentes. Ils concernent essentiellement la technique de diversité de phase : travaux méthodologiques, travaux algorithmiques, et extensions à l'imagerie à haute dynamique en vue de la détection et la caractérisation d'exoplanètes. Ces travaux comprennent également des développements qui n'utilisent qu'une seule image au voisinage du plan focal, dans des cas particuliers présentant un intérêt pratique avéré. La seconde partie des travaux porte sur le développement de méthodes de traitement (recalage, restauration et reconstruction, détection) pour l'imagerie à haute résolution. Ces développements ont été menés pour des modalités d'imagerie très diverses : imagerie corrigée ou non par optique adaptative (OA), mono-télescope ou interférométrique, pour l'observation de l'espace ; imagerie coronographique d'exoplanètes par OA depuis le sol ou par interférométrie depuis l'espace ; et imagerie 2D ou 3D de la rétine humaine. Enfin, une dernière partie présente des perspectives de recherches.
|
94 |
Urban Detection From Hyperspectral Images Using Dimension-Reduction Model and Fusion of Multiple Segmentations Based on Stuctural and Textural FeaturesHe, Jin 09 1900 (has links)
Ce mémoire de maîtrise présente une nouvelle approche non supervisée pour détecter et segmenter les régions urbaines dans les images hyperspectrales. La méthode proposée n ́ecessite trois étapes. Tout d’abord, afin de réduire le coût calculatoire de notre algorithme, une image couleur du contenu spectral est estimée. A cette fin, une étape de réduction de dimensionalité non-linéaire, basée sur deux critères complémentaires mais contradictoires de bonne visualisation; à savoir la précision et le contraste, est réalisée pour l’affichage couleur de chaque image hyperspectrale. Ensuite, pour discriminer les régions urbaines des régions non urbaines, la seconde étape consiste à extraire quelques caractéristiques discriminantes (et complémentaires) sur cette image hyperspectrale couleur. A cette fin, nous avons extrait une série de paramètres discriminants pour décrire les caractéristiques d’une zone urbaine, principalement composée d’objets manufacturés de formes simples g ́eométriques et régulières. Nous avons utilisé des caractéristiques texturales basées sur les niveaux de gris, la magnitude du gradient ou des paramètres issus de la matrice de co-occurrence combinés avec des caractéristiques structurelles basées sur l’orientation locale du gradient de l’image et la détection locale de segments de droites. Afin de réduire encore la complexité de calcul de notre approche et éviter le problème de la ”malédiction de la dimensionnalité” quand on décide de regrouper des données de dimensions élevées, nous avons décidé de classifier individuellement, dans la dernière étape, chaque caractéristique texturale ou structurelle avec une simple procédure de K-moyennes et ensuite de combiner ces segmentations grossières, obtenues à faible coût, avec un modèle efficace de fusion de cartes de segmentations. Les expérimentations données dans ce rapport montrent que cette stratégie est efficace visuellement et se compare favorablement aux autres méthodes de détection et segmentation de zones urbaines à partir d’images hyperspectrales. / This master’s thesis presents a new approach to urban area detection and segmentation in hyperspectral images. The proposed method relies on a three-step procedure. First, in order to decrease the computational complexity, an informative three-colour composite image, minimizing as much as possible the loss of information of the spectral content, is computed. To this end, a non-linear dimensionality reduction step, based on two complementary but contradictory criteria of good visualization, namely accuracy and contrast, is achieved for the colour display of each hyperspectral image. In order to discriminate between urban and non-urban areas, the second step consists of extracting some complementary and discriminant features on the resulting (three-band) colour hyperspectral image. To attain this goal, we have extracted a set of features relevant to the description of different aspects of urban areas, which are mainly composed of man-made objects with regular or simple geometrical shapes. We have used simple textural features based on grey-levels, gradient magnitude or grey-level co-occurence matrix statistical parameters combined with structural features based on gradient orientation, and straight segment detection. In order to also reduce the computational complexity and to avoid the so-called “curse of dimensionality” when clustering high-dimensional data, we decided, in the final third step, to classify each individual feature (by a simple K-means clustering procedure) and to combine these multiple low-cost and rough image segmentation results with an efficient fusion model of segmentation maps. The experiments reported in this report demonstrate that the proposed segmentation method is efficient in terms of visual evaluation and performs well compared to existing and automatic detection and segmentation methods of urban areas from hyperspectral images.
|
95 |
Nouvel Algorithme pour la Réduction de la Dimensionnalité en Imagerie HyperspectraleKhoder, Jihan 24 October 2013 (has links) (PDF)
En Imagerie hyperspectrale, les volumes de données acquises atteignent souvent le gigaoctet pour une seule et même scène observée. De ce fait, l'analyse de ces données au contenu physique complexe passe obligatoirement par une étape préliminaire de réduction de la dimensionnalité. Cette réduction a un double objectif, le premier consiste à réduire la redondance et le second permet de faciliter les traitements postérieurs (extraction, classification et reconnaissance de formes) et donc l'interprétation des données. La classification automatique est une étape importante du processus d'extraction de connaissances à partir des données. Elle vise à découvrir la structure intrinsèque d'un ensemble d'objets en formant des regroupements qui partagent des caractéristiques similaires. Dans cette thèse, nous nous intéressons à la réduction de dimension dans le cadre de la classification non supervisée des bandes spectrales. Différentes approches existent, comme celles basées sur la projection (linéaire ou non-linéaire) des données de grandes dimensions sur des sous-espaces de représentation bien choisis ou sur les techniques de sélection de bandes spectrales exploitant des critères de complémentarité-redondance d'information qui ne permettent pas de préserver toute la richesse de l'information apportée par ce type de données. 1 - Nous avons accompli une étude comparative, sur la stabilité et la similarité des algorithmes des méthodes non paramétriques et non supervisée de la projection et aussi de la sélection des bandes utilisées dans la réduction de la dimensionnalité à différents niveaux de bruit déterminés. Les tests sont effectués sur des images hyperspectrales, en classant ces derniers en trois catégories selon leur degré de performance de préserver la quantité d'informations. 2 - Nous avons introduit une nouvelle approche de critère basée sur la di-similarité des attributs spectraux et utilisée dans un espace local sur des matrices de données ; L'approche a servi pour définir un taux de préservation d'un évènement rare dans une transformation mathématique donnée. Cependant, nous avons limitée son application au contexte de la thèse liée à la réduction de la taille des données dans une image hyperspectrale. 3 - Les études comparatives ont permis une première proposition d'approche hybride pour la reduction de la taille d'une image hyperspectrale permettant une meilleure stabilité : BandClustering avec Multidimensional Scaling (MDS). Des exemples sont donnés pour démontrer l'originalité et la pertinence de l'hybridation (BandClust / MDS) de l'analyse effectuée. 4 - La tendance de l'hybridation a été généralisée par la suite en présentant un algorithme hybride adaptatif non supervisé basé sur la logique flou (Fuzzy C means), une méthode de projection comme l'analyse en composante principale (ACP) et un indice de validité d'une classification. Les classifications effectuées par Fuzzy C means permettent d'affecter chaque pixel d'une image hyperspectrale à toutes les classes avec des degrés d'appartenance variant entre 0 et 1. Cette propriété rend la méthode FCM intéressante pour la mise en évidence soit des transitions progressives entre les différentes bandes spectrales ou des hétérogénéités spectrales. Grâce à des méthodes conventionnelles appelées indices de validité de classes, nous avons déterminé le nombre optimal de classes de FCM ainsi que le paramètre de flou. Nous montrons que cette hybridation conduit à un taux de réduction pertinent dans l'imagerie hyperspectrale. Par conséquent, Cet algorithme appliqué à différents échantillons de données hyperspectrales, permet une imagerie spectrale beaucoup plus informative, notamment au niveau de l'hétérogénéité spectrale.
|
96 |
Bayesian fusion of multi-band images : A powerful tool for super-resolution / Fusion Bayésienne des multi-bandes Images : Un outil puissant pour la Super-résolutionWei, Qi 24 September 2015 (has links)
L’imagerie hyperspectrale (HS) consiste à acquérir une même scène dans plusieurs centaines de bandes spectrales contiguës (dimensions d'un cube de données), ce qui a conduit à trois types d'applications pertinentes, telles que la détection de cibles, la classification et le démélange spectral. Cependant, tandis que les capteurs hyperspectraux fournissent une information spectrale abondante, leur résolution spatiale est généralement plus limitée. Ainsi, la fusion d’une image HS avec d'autres images à haute résolution de la même scène, telles que les images multispectrales (MS) ou panchromatiques (PAN) est un problème intéressant. Le problème de fusionner une image HS de haute résolution spectrale mais de résolution spatiale limitée avec une image auxiliaire de haute résolution spatiale mais de résolution spectrale plus limitée (parfois qualifiée de fusion multi-résolution) a été exploré depuis de nombreuses années. D'un point de vue applicatif, ce problème est également important et est motivé par ceratins projets, comme par exemple le project Japonais HISIU, qui vise à fusionner des images MS et HS recalées acquises pour la même scène avec les mêmes conditions. Les techniques de fusion bayésienne permettent une interprétation intuitive du processus de fusion via la définition de la loi a posteriori de l’image à estimer (qui est de hautes résolutions spatiale et spectrale). Puisque le problème de fusion est généralement mal posé, l’inférence bayésienne offre un moyen pratique pour régulariser le problème en définissant une loi a priori adaptée à la scène d'intérêt. Les différents chapitres de cette thèse sont résumés ci-dessous. Le introduction présente le modèle général de fusion et les hypothèses statistiques utilisées pour les images multi-bandes observées, c’est-à-dire les images HS, MS ou PAN. Les images observées sont des versions dégradées de l'image de référence (à hautes résolutions spatiale et spectrale) qui résultent par exemple d’un flou spatial et spectral et/ou d’un sous-échantillonnage liés aux caractéristiques des capteurs. Les propriétés statistiques des mesures sont alors obtenues directement à partir d’un modèle linéaire traduisant ces dégradations et des propriétés statistiques du bruit. Le chapitre 1 s’intéresse à une technique de fusion bayésienne pour les images multi-bandes de télédétection, à savoir pour les images HS, MS et PAN. Tout d'abord, le problème de fusion est formulé dans un cadre d'estimation bayésienne. Une loi a priori Gaussienne exploitant la géométrie du problème est définie et un algorithme d’estimation Bayésienne permettant d’estimer l’image de référence est étudié. Pour obtenir des estimateurs Bayésiens liés à la distribution postérieure résultant, deux algorithmes basés sur échantillonnage de Monte Carlo et l'optimisation stratégie ont été développés. Le chapitre 2 propose une approche variationnelle pour la fusion d’images HS et MS. Le problème de fusion est formulé comme un problème inverse dont la solution est l'image d’intérêt qui est supposée vivre dans un espace de dimension résuite. Un terme de régularisation imposant des contraintes de parcimonie est défini avec soin. Ce terme traduit le fait que les patches de l'image cible sont bien représentés par une combinaison linéaire d’atomes appartenant à un dictionnaire approprié. Les atomes de ce dictionnaire et le support des coefficients des décompositions des patches sur ces atomes sont appris à l’aide de l’image de haute résolution spatiale. Puis, conditionnellement à ces dictionnaires et à ces supports, le problème de fusion est résolu à l’aide d’un algorithme d’optimisation alternée (utilisant l’algorithme ADMM) qui estime de manière itérative l’image d’intérêt et les coefficients de décomposition. / Hyperspectral (HS) imaging, which consists of acquiring a same scene in several hundreds of contiguous spectral bands (a three dimensional data cube), has opened a new range of relevant applications, such as target detection [MS02], classification [C.-03] and spectral unmixing [BDPD+12]. However, while HS sensors provide abundant spectral information, their spatial resolution is generally more limited. Thus, fusing the HS image with other highly resolved images of the same scene, such as multispectral (MS) or panchromatic (PAN) images is an interesting problem. The problem of fusing a high spectral and low spatial resolution image with an auxiliary image of higher spatial but lower spectral resolution, also known as multi-resolution image fusion, has been explored for many years [AMV+11]. From an application point of view, this problem is also important as motivated by recent national programs, e.g., the Japanese next-generation space-borne hyperspectral image suite (HISUI), which fuses co-registered MS and HS images acquired over the same scene under the same conditions [YI13]. Bayesian fusion allows for an intuitive interpretation of the fusion process via the posterior distribution. Since the fusion problem is usually ill-posed, the Bayesian methodology offers a convenient way to regularize the problem by defining appropriate prior distribution for the scene of interest. The aim of this thesis is to study new multi-band image fusion algorithms to enhance the resolution of hyperspectral image. In the first chapter, a hierarchical Bayesian framework is proposed for multi-band image fusion by incorporating forward model, statistical assumptions and Gaussian prior for the target image to be restored. To derive Bayesian estimators associated with the resulting posterior distribution, two algorithms based on Monte Carlo sampling and optimization strategy have been developed. In the second chapter, a sparse regularization using dictionaries learned from the observed images is introduced as an alternative of the naive Gaussian prior proposed in Chapter 1. instead of Gaussian prior is introduced to regularize the ill-posed problem. Identifying the supports jointly with the dictionaries circumvented the difficulty inherent to sparse coding. To minimize the target function, an alternate optimization algorithm has been designed, which accelerates the fusion process magnificently comparing with the simulation-based method. In the third chapter, by exploiting intrinsic properties of the blurring and downsampling matrices, a much more efficient fusion method is proposed thanks to a closed-form solution for the Sylvester matrix equation associated with maximizing the likelihood. The proposed solution can be embedded into an alternating direction method of multipliers or a block coordinate descent method to incorporate different priors or hyper-priors for the fusion problem, allowing for Bayesian estimators. In the last chapter, a joint multi-band image fusion and unmixing scheme is proposed by combining the well admitted linear spectral mixture model and the forward model. The joint fusion and unmixing problem is solved in an alternating optimization framework, mainly consisting of solving a Sylvester equation and projecting onto a simplex resulting from the non-negativity and sum-to-one constraints. The simulation results conducted on synthetic and semi-synthetic images illustrate the advantages of the developed Bayesian estimators, both qualitatively and quantitatively.
|
97 |
Classification des matériaux urbains en présence de végétation éparse par télédétection hyperspectrale à haute résolution spatiale / Classification of urban materials in presence of sparse vegetation with hyperspectral remote sensing imagery at high spatial resolutionAdeline, Karine 18 December 2014 (has links)
La disponibilité de nouveaux moyens d’acquisition en télédétection, satellitaire (PLEIADES, HYPXIM), aéroportée ou par drone (UAV) à très haute résolution spatiale ouvre la voie à leur utilisation pour l’étude de milieux complexes telles que les villes. En particulier, la connaissance de la ville pour l’étude des îlots de chaleur, la planification urbaine, l’estimation de la biodiversité de la végétation et son état de santé nécessite au préalable une étape de classification des matériaux qui repose sur l’utilisation de l’information spectrale accessible en télédétection hyperspectrale 0,4-2,5μm. Une des principales limitations des méthodes de classification réside dans le non traitement des zones à l’ombre. Des premiers travaux ont montré qu’il était possible d’exploiter l’information radiative dans les ombres des bâtiments. En revanche, les méthodes actuelles ne fonctionnent pas dans les ombres des arbres du fait de la porosité de leur couronne. L’objectif de cette thèse vise à caractériser les propriétés optiques de surface à l’ombre de la végétation arborée urbaine au moyen d’outils de transfert radiatif et de correction atmosphérique. L’originalité de ce travail est d’étudier la porosité d’un arbre via la grandeur de transmittance de la couronne. La problématique a donc été abordée en deux temps. Premièrement, la caractérisation de la transmittance d’un arbre isolé a été menée avec l’utilisation de l’outil DART à travers la mise en œuvre d’un plan d’expériences et d’études de sensibilité qui ont permis de la relier à des paramètres biophysiques et externes. Une campagne de mesures terrain a ensuite été réalisée afin d’évaluer son estimation à partir de différents niveaux de modélisation de l’arbre, dont un modèle réel acquis par mesures lidar terrestre. Deuxièmement, une nouvelle méthode de correction atmosphérique 3D adaptée à la végétation urbaine, ICARE-VEG, a été développée à partir des résultats précédents. Une campagne aéroportée et de mesures terrain UMBRA a été dédiée à sa validation. Ses performances comparées à d’autres outils existants ouvrent de larges perspectives pour l’interprétation globale d’une image par télédétection et pour souligner la complexité de modéliser des processus physiques naturels à une échelle spatiale très fine. / The new advances in remote sensing acquisitions at very high spatial resolution, either spaceborne (PLEIADES, HYPXIM), airborne or unmanned aerial vehicles borne, open the way for the study of complex environments such as urban areas. In particular, the better understanding of urban heat islands, urban planning, vegetation biodiversity, requires the knowledge of detailed material classification mapsbased on the use of spectral information brought by hyperspectral imagery 0.4-2.5μm. However, one of the main limitations of classification methods relies on the absence of shadow processing. Past studies have demonstrated that spectral information was possible to be extracted from shadows cast by buildings. But existing methods fail in shadows cast by trees because of their crown porosity. The objective of this thesis aims to characterize surface optical properties in urban tree shadows by means of radiative transfer and atmospheric correction tools. The originality of this work is to study the tree crown porosity through the analysis of the tree crown transmittance. Therefore, the issue has been divided into two parts. Firstly, an experimental design with the use of DART tool has been carried out in order to examine the relationships between the transmittance of an isolated tree and different biophysical and external variables. Then, the estimation of the tree crown transmittance has been assessed with several tree 3D modelling strategies derived from reference terrestrial lidar acquisitions. Secondly, a new atmospheric correction method appropriate to the processing of tree shadows, ICARE-VEG, was implemented fromthese previous results. An airborne and field campaign UMBRA was dedicated to its validation. Moreover, its performances was compared to other existing tools. Finally, the conclusions open large outlooks to the overall interpretation of remote sensing images and highlight the complexity to model physical natural processes with finer spatial resolutions.
|
98 |
Reconstructions de changements environnementaux dans les archives lacustres par imagerie hyperspectrale / Reconstitutions of environmental changes in lacustrine archives by hyperspectral imagingVan Exem, Antonin 11 July 2018 (has links)
Les lacs piègent des particules sédimentaires au fil du temps de manière à former des archives sédimentaires. Tracer l’origine des particules archivées avec une résolution stratigraphique particulièrement détaillée conduit à reconstituer une ou des informations paléoenvironnementales permettant d’identifier les changements environnementaux passés. Afin de décrypter ces informations, les techniques d’analyse des carottes sédimentaires nécessitent d’identifier des marqueurs de leur composition à haute résolution. L’imagerie l’hyperspectrale demeure une des rares techniques capables de représenter ces marqueurs en deux dimensions pour caractériser les variations de la composition du sédiment et les structures stratigraphiques les plus fines. Dans ce mémoire, le potentiel de l’imagerie est mis en valeur à travers l’étude de plusieurs cas. L’objectif est de reconstituer des changements environnementaux à partir de l’origine des matières organiques (MO) sédimentaires à hauterésolution rapidement et sans destruction des archives. Plusieurs marqueurs hyperspectraux permettant de comprendre l’origine des MO sont développés sur deux sites d’étude choisis pour leur potentielle signature organique sédimentaire. Dans un environnement méditerranéen, les apports en MO détritique dans les sédiments du lac Bresson tracent les épisodes d'incendie du couvert forestier alors que les variations de carbone organique total (COT) dans une série d’archives sédimentaires reconstruisent les fluctuations de l’érosion glaciaire dans un lac arctique. Dans ces deux cas, la MO d’origine détritique est tracée pour la première fois par une méthode non-destructive et le traçage de la MO issue de la productivitéprimaire aquatique (plus classique) est amélioré par un nouvel indice spectroscopique. Ces marqueurs sont validés par des méthodes utilisées en routine (HPLC, comptage des particules de charbon, pyrolyse Rock-Eval 6) puis calibrés par ces techniques pour reconstruire des concentrations en COT à haute résolution. L’imagerie hyperspectrale permet donc de tracer lacomposition sédimentaire, voire des variations géochimiques, pour quantifier l'origine des apports organiques. Ces résultats apparaissent comme prometteurs et fournissent les bases essentielles pour développer l'utilisation en routine de cette nouvelle technique afin de reconstituer finement les changements environnementaux passés. / Over time, lakes trap sedimentary particles that form sedimentary reserves. Tracing the origin of those particles with a precise stratigraphic resolution, involves reconstituting one or more paleo environmental information thus allowing the identification of past environmental changes. Decrypting that information requires a sedimentary carrot analysis technic to identify their high resolution composition indicators. Hyperspectral imagery remains one of the rare technics capable of showing those indicators in a two dimensional form so as to characterize the variations in the composition of the sediment as well as the finer stratigraphic structures. In comparison to the methods used routinely, hyperspectral imagery is a highresolution (nanometers resolution) technic that does not destroy the core of the sediment and is time efficient (1 hour per meter of sediment). In this thesis, the potential of the high resolution imagery is highlighted through the study of several case studies. The aim is to reconstitute environmental changes based on the origin of high resolution sedimentary organic matter (OM) quickly whilst preserving their history. Several hyperspectral indicators have been developed on two carefully chosen study sites to understand the origins of those OM. Those sites were chosen based on their potential sedimentary organic signature. In a Mediterranean environment, detrital OM inputs in the Bresson lake give a history of the various forest fires whereas the organic carbon variations in a series of reserve sediments, reconstruct the fluctuations of glacier erosion in an artic lake. In both cases, the OM of detrital origin is traced for the first time through a non-destructive method. Tracing OM issued from Primary aquatic production is improved with a new spectroscopic index. These indicators are validated by the methods routinely used (HPLC and RE6) then are calibrated by these technics in order to rebuilt high resolution COT concentrations. Hyperspectral imagery allows to trace the sedimentary composition and to see geo chemical variations in order to quantify the origin of organic inputs. Those results seem promising and bring essential foundations to develop the routine use of this new technic in order to reconstitute accurately past environmental changes.
|
Page generated in 0.0874 seconds