111 |
Einfluss einer 24-stündigen Behandlung von ventrikulären neonatalen Kardiomyozyten mit einem Adipozyten-konditionierten Medium auf Hypertrophie-assoziierte Signalwege und ZellproteineGerhardt, Florian 17 May 2017 (has links) (PDF)
Die weltweite Zunahme der Prävalenz von Übergewicht und Adipositas und den damit verbundenen medizinischen und sozioökonomischen Herausforderungen stellt eine der wesentlichen Herausforderungen der modernen medizinischen Versorgung dar. Im Mittelpunkt stehen dabei insbesondere die Auswirkungen von Übergewicht und Adipositas auf das kardiovaskuläre System und den damit verbundenen funktionellen und strukturellen Veränderungen der kardiovaskulären Funktion.
Als Mediatoren dieser funktionellen und strukturellen Veränderungen stehen dabei zunehmend Adipozytokine im Interesse wissenschaftlicher Arbeiten. Unter Adipozytokinen versteht man in diesem Zusammenhang einen Sammelbegriff für von Adipozyten und anderen Fettgewebszellen sezernierten autokrin-, endokrin- und parakrin wirkenden bioaktiven Molekülen. Insbesondere bei Übergewicht und Adipositas kommt es zu einer charakteristischen Veränderung im Sekretionsmuster dieser Adipozytokine. Die Wirkung einzelner Adipozytokine auf die kardiovaskuläre Funktion wurde in den letzten Jahren intensiv untersucht, über die Wirkung ganzer Adipozytokinprofile ist bisher jedoch nur wenig bekannt.
Ziel der vorliegenden Arbeit war es zu klären, welchen Einfluss eine 24-stündige Behandlung von neonatalen ventrikulären Kardiomyozyten mit einem physiologischen Adipozytokin-Profil auf Hypertrophie-assoziierte Signalwege und Zellproteine hat.
|
112 |
Implication du miR-24 et du miR-199a-5p dans le vieillissement prématuré du chondrocyte au cours de l'arthrose / Implication of miR-24 et du miR-199a-5p in cartilage premature aging during osteoarthritisPhilipot, Didier 07 December 2012 (has links)
L'arthrose tardive est la plus répandue des maladies ostéo-articulaires dont la prévalence augmente avec l'âge. Dans le cartilage arthrosique, des changements spécifiques des chondrocytes s'opèrent. Ils présentent une diminution de leur propriété de synthèse de la matrice extracellulaire, une diminution de leur réponse aux facteurs de croissance anabolisants et une augmentation de la sénescence cellulaire. Elle est caractérisée par un arrêt irréversible du cycle cellulaire, une érosion des télomères, une activation de la voie de dommages à l'ADN (ATM/p53/p21), une activation de la voie p16INK4a/pRb, l'établissement d'un sécrétome associé à un phénotype sénescent/hypertrophique appelé SAPS. Le sujet de ma thèse porte sur l'identification de microARNs impliqués dans le vieillissement prématuré du chondrocyte. Les microARNs (miRs) sont des petits ARNs non codant endogènes qui contrôlent un certain nombre de fonctions biologiques comme la prolifération, la différenciation ou la sénescence. Deux études ont montré le rôle préventif des miRs dans l'induction de la sénescence et dans l'hypertrophie. Au cours de ma thèse, nous avons utilisé un modèle de chondrocytes arthrosiques en 3D traités à l'IL-1β afin de récapituler le phénotype sénescent observé dans la pathologie. Cela nous a permit d'identifier deux miRs réprimés en réponse à cette cytokine : miR-24 et miR-199a-5p. Nous montrons que la répression de miR-24 conduit à une induction de p16INK4a et MMP1 associé à un phénotype hypertrophique. De plus, nos données préliminaires montrent que le miR-199a-5p est potentiellement un régulateur négatif de l'hormone anti-vieillissement Klotho qui est retrouvée dérégulée dans notre modèle cellulaire / Osteoarthritis (OA) is an age-related disease whose prevalence increases with late life. In osteoarthritic cartilage, chondrocytes presents age-specific changes such as a decrease in synthesis properties, a decrease in their response to growth and anabolic factors and an increase of cellular senescence. Senescent chondrocytes are characterized by an irreversible cell cycle arrest, DNA damage response activation (ATM/p53/p21), p16INK4a/pRb signaling pathway activation and the establishment of SAPS triggering to hypertrophy. The aim of my PhD project consisting to identify microRNAs involved in chondrocyte premature aging. microRNAs are small endogenous RNAs controlling several biological processes such as proliferation, differentiation and senescence. Two studies show that microRNAs have a preventive role in senescence and hypertrophy. During my PhD, we perform a cellular model based on OA chondrocytes placed in 3D and treated with IL-1β. We identified two miRs: miR-24 and miR-199a-5p. Repression of miR-24 leads to the induction of p16INK4a and MMP1, associated with chondrocyte hypertrophy. Moreover, preliminary datas suggests that miR-199a-5p is a potential regulator of anti-aging hormone Klotho which is deregulated in our model.
|
113 |
Role of cyclin-dependent Kinase 9 in the zebrafish embryonic heartMatrone, Gianfranco January 2013 (has links)
Cardiac hypertrophy leading to heart failure remains a leading cause of morbidity and mortality in the 21st century despite major therapeutic advances. Improved understanding of novel molecular and cellular processes contributing to cardiac hypertrophy therefore continues to be important. Cyclin-dependent Kinase 9 (CDK9), part of a family of proteins controlling cell cycle and growth, has emerged as one such potential candidate over the last 5 years. CDK9 is the catalytic subunit of the CDK9/CyclinT complex and acts by phosphorylating the carboxy-terminal domain of RNA polymerase II. Hypertrophic signals, such as Endothelin-1 (ET-1) and phenylephrine, have been shown to cause CDK9 activation leading to a hypertrophic response in cultured mouse cardiomyocytes associated with reactivation of the foetal gene program. CDK9 also forms a complex with GATA4 to play a role in differentiation of mouse ES cells into cardiomyocytes. These findings suggest a specific role for CDK9 in controlling growth and differentiation of cardiomyocytes and merits further study in models where cardiomyocyte differentiation and proliferation are key contributors. In contrast to mammals, zebrafish retain a high cardiomyocyte proliferative capacity throughout their life span and can readily repair following injury. I have examined the role of CDK9 on global and cardiac development in the zebrafish embryo. I have also assessed the impact of CDK9 manipulation on response to ventricle injury using a laser-induced injury model developed and validated as part of my thesis. My findings confirm that normal growth of the embryonic ventricle is associated with a rapid increase in cardiomyocyte number, that was of 50% in the period 96-120 hpf, accompanied by increasing chamber trabeculation. This is also characterized by an increase in the gene expression of most of cardiac development relevant transcription factors, i.e. GATA4, 5 and 6, and MEF2c. The significant reduced cardiovascular function (14% of Ejection Fraction compared to 20% in controls) at 2 h post laser injury in the zebrafish embryonic heart promptly recovers at 24 hour post-laser, accompanied by acceleration of cardiomyocyte proliferation, that increased of 49% in injured ventricles compared to 20% in controls in the period 2-24 h post-laser. Pharmacological and genetic inhibition of CDK9 activity also significantly reduced cardiac growth, cardiomyocyte number, ventricle function and impairs functional recovery following laser injury. Conversely, genetic inhibition of LARP7, a CDK9 repressor, resulted in increased cardiomyocyte number and was associated with full functional and cellular recovery following laser-injury. In conclusion, I have provided evidence, in the zebrafish embryonic heart, that CDK9 plays an important role in cardiac growth and development and impacts significantly on cardiomyocyte proliferation. I have also shown that CDK9 manipulation significantly affects cellular and functional recovery following laser-induced injury. Further studies are required to further define the role of CDK9 and LARP7 in the heart and develop therapeutic strategies using this pathway that could contribute to cellular repair mechanisms in the adult mammalian heart.
|
114 |
Improved Cardiac Glucose Uptake: A Potential Mechanism for Estrogens to Prevent the Development of Cardiac HypertrophyGovindaraj, Vijayakumar January 2009 (has links) (PDF)
The incidence of cardiovascular diseases including cardiac hypertrophy and failure in pre-menopausal women is lower compared to age-matched men but the risk of heart disease increases substantially after the onset of menopause. It has been postulated that female sex hormones play an important role in cardiovascular health in pre-menopausal women. In animal studies including spontaneously hypertensive (SHR) rats, the development of cardiac hypertrophy is attenuated by 17β-estradiol treatment. Cardiac energy metabolism is crucial for normal function of the heart. In cardiac hypertrophy and heart failure, the myocardium undergoes a metabolic shift from fatty acid as primary cardiac energy source to glucose, which re-introduces the fetal type of metabolism that representing the glucose as a major source of energy. Many studies have reported that the disruption of the balance between glucose and fatty acid metabolism plays an important role in cardiac pathologies including hypertrophy, heart failure, diabetes, dilative cardiomyopathy and myocardial infarction. Glucose enters cardiomyocytes via GLUT1 and GLUT4 glucose transporters and GLUT4 is the major glucose transporter which is insulin-dependent. Cardiac-selective GLUT4 deficiency leads to cardiac hypertrophy. This shows that the decrease in cardiac glucose uptake may play a direct role in the pathogenesis of cardiac hypertrophy. Estrogens modulate glucose homeostasis in the liver and the skeletal muscle. But it is not known whether estrogens affect also cardiac glucose uptake which could provide another mechanism to explain the prevention of cardiac hypertrophy by female sex hormones. In the present study, SHR Rats were ovariectomized (OVX), not ovariectomized (sham) or ovariectomized and treated with subcutaneous 17β-estradiol. After 6 weeks of treatment, body weight, the serum levels of estrogen, insulin, intra-peritoneal glucose tolerance test (IP-GTT), myocardial glucose uptake by FDG-PET (2-(18F)-fluoro-deoxyglucose (18FDG) and Positron Emission Tomography), cardiac glucose transporter expression and localization and cardiac hexokinase activity were analyzed. As results of this study, PET analysis of female SHR revealed decreased cardiac glucose uptake in OVX animals compared to intact that was normalized by estrogen supplementation. Interestingly, there was no change in global glucose tolerance among the treatment groups. Serum insulin levels and cardiac hexokinase activity were elevated by E2 substitution. The protein content of cardiac glucose transporters GLUT-4 and GLUT-1, and their translocation as determined by fractionation studies and immuno-staining did not show any significant change by ovariectomy and estrogen replacement. Also levels of insulin receptor substrate-1 (IRS-1) and its tyrosine phosphorylation, which is required for activation and translocation of GLUT4, was un-affected in all groups of SHR. Cardiac gene expression analysis in SHR heart showed that ei4Ebp1 and Frap1 genes which are involved in the mTOR signaling pathway, were differentially expressed upon estrogen treatment. These genes are known to be activated in presence of glucose in the heart. As a conclusion of this study, reduced myocardial FDG uptake in ovariectomized spontaneously hypertensive rat is normalized by 17β-estradiol treatment. Increased myocardial hexokinase appears as a potential mechanism to explain increased myocardial glucose uptake by 17β-estradiol. Increased cardiac glucose uptake in response to 17β-estradiol in ovariectomized SHR may provide a novel mechanism to explain the reduction of cardiac hypertrophy in E2 treated SHR. Therefore, 17β-estradiol improves cardiac glucose utilization in ovariectomized SHR which may give rise to possible mechanism for its protective effects against cardiac hypertrophy. / Erkrankungen des kardiovaskulären Systems, wie beispielsweise Herzhypertrophie oder Herzinsuffizienz treten bei Frauen vor der Menopause im Vergleich zu gleichaltrigen Männern seltener auf. Das Risiko für eine solche kardiovaskuläre Erkrankung steigt jedoch drastisch mit dem Beginn der Menopause an. Aus diesem Grund wird angenommen, dass weibliche Geschlechtshormone kardioprotektive Wirkungen besitzen. Tierstudien an spontan hypertensiven Ratten (SHR) haben belegt, dass eine Herzhypertrophie durch die Behandlung der Tiere mit 17β-Estradiol abgemildert werden kann. Entscheidend für die Funktion des Myokards ist sein Energiemetabolimus, der sich im Verlauf einer Hypertrophie oder Herzinsuffizienz vom primären Fettsäurestoffwechsel auf Glucosemetabolismus umschaltet. Diese Situation entspricht der des fetalen Herzens. Viele Studien haben belegt, dass eine Störung der Balance zwischen Glucose- und Fettsäurestoffwechsel oftmals ein erstes Anzeichen für einen pathologischen Zustand des Herzens, wie z.B. Hypertrophie, Herzinsuffizienz, Diabetes, dilative Kardiomyopathie und Myokardinfarkt ist. Im gesunden Herzen gelangt Glucose über die zwei Glucosetransporter GLUT1 und GLUT4 in die Zellen des Myokards, wobei der insulinabhängige Glut4-Transporter der Hauptglucosetransporter ist. Eine GLUT4-Defizienz führt daher ebenfalls zu einer Herzhypertrophie was wiederum zeigt, dass eine verminderte Glucoseaufnahme im direkten Zusammenhang mit pathologischen Zuständen des Herzens steht. Bisherige Studien haben gezeigt, dass Östrogen an der Glucosehomöostase in Leber und Skelettmuskeln beteiligt ist. Jedoch ist wenig darüber bekannt, ob Östrogen ebenfalls in die kardiale Glucosehomöostase eingreift und inwiefern die kardioprotektive Wirkung des Östrogens in diesem Zusammenhang steht.In der vorliegenden Arbeit wurden weibliche SH-Ratten ovariektomiert (OVX), nicht ovariektomiert (sham) oder ovariektomiert und zusätzlich subkutan mit 17β-Estradiol behandelt. Nach einer Behandlungszeit von 6 Wochen wurden dann das Körpergewicht, die Serumspiegel von Östrogen, Insulin und IPGTT bestimmt, und die Glucoseaufnahme des Myokards mittels FDG-PET analysiert. Zusätzlich wurden Expression und zelluläre Lokalisation der kardialen Glucosetransporter sowie die kardiale Hexokinaseaktivität untersucht. Es konnte gezeigt werden, dass sich eine verminderte Glucoseaufnahme des Herzens bei ovariektomierten Tieren durch Östrogen-Supplementation normalisieren lässt. Eine Abweichung bezüglich der Glucosetoleranz der einzelnen Gruppen konnte nicht beobachtet werden. Jedoch konnte ein erhöhter Insulinspiegel des Serums und eine erhöhte kardiale Aktivität des Enzyms Hexokinase durch die Behandlung mit Östrogen bei den ovariektomierten Tieren beschrieben werden. Durch Fraktionierungen und immunhistologische Untersuchungen konnte kein signifikanter Unterschied in Bezug auf die Menge sowie die Translokation der Glucosetransporter GLUT1 und GLUT4 im Myokard zwischen den einzelnen Behandlungen der Tiere beschrieben werden. Ferner konnte zwischen den einzelnen Tiergruppen auch kein Unterschied zwischen dem Insulin Rezeptor Substrat-1 (IRS-1) und seiner Tyrosin-phosphorylierten Form festgestellt werden, die für die Aktivierung und Translokation des GLUT4 benötigt werden. Analysen der Genexpression in den Herzen der SH-Ratten konnten allerdings zeigen, dass die Gene ei4Ebp1 und Frap1, die im mTOR Signalweg involviert sind, bei den Östrogen-supplementierten Tieren ein abweichendes Expressionsmuster aufweisen. Über diese Gene ist bekannt, dass sie in der Gegenwart von Glucose im Herzen aktiviert werden und bei der Entstehung einer Herzhypertrophie mitwirken. Basierend auf den PET-Analysen und der Hexokinaseaktivität lässt sich als Resultat dieser Arbeit aussagen, dass Östrogen die kardiale Glucoseaufnahme in SH-Ratten fördert. Diese Ergebnisse könnten einen Hinweis auf einen noch unbekannten Mechanismus geben, um die protektive Wirkung des Östrogens im Hinblick auf die Herzhypertrophie zu erklären. Hinsichtlich der Tatsache, dass keine Veränderungen in der Translokation der GLUT4-Transporter in der Plasmamembran bei den einzelnen Behandlungen der Tiere zu verzeichnen sind, jedoch Veränderungen der Glucoseaufnahme durch die PET-Analysen dargestellt werden konnten, besteht jedoch noch Erklärungsbedarf. Es liegen diverse Studien vor, die diesen Unterschied damit erklären könnten, dass der GLUT4-Transporter in einer inaktiven Form in der Plasmamembran vorliegt bis die Glucoseaufnahme durch den GLUT4-Transporter mittels der Insulin Signaltransduktionskaskade reguliert wird.
|
115 |
Fenofibrate prevents isoproterenol-induced left ventricular hypertrophy and pump dysfunction in ratsMaswanganyi, Tlangelani 31 January 2011 (has links)
MSc (Med), University of the Witwatersrand, Faculty of Health Sciences, School of Physiology / The role of metabolic remodelling in heart failure is not fully understood, significant evidence has accumulated to suggest that it may be central to the development of left ventricular (LV) remodelling and LV dysfunction. Heart failure is also characterized by sustained neurohumoral activation. We have previously demonstrated that chronic low dose administration of isoproterenol contributes to cardiac structural and functional changes, however, little is known about metabolic and mitochondrial changes that may accompany the development of isoproterenol-mediated heart failure. In the current study, we hypothesised that metabolic dysregulation and loss of mitochondrial integrity mediates left ventricular hypertrophy (LVH) and left ventricular (LV) systolic dysfunction in the isoproterenol model of heart failure. Furthermore, modulation of expression of key metabolic genes and mitochondrial transcription factors by fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARα) agonist, will preserve left ventricular function.
To achieve this, male Sprague-Dawley rats weighing between 250-300g were injected with low dose isoproterenol (0.04 mg.kg-1.day-1) and/or administered with fenofibrate (100 mg.kg-1.day-1) for five weeks. Thereafter, metabolic substrates such as glucose, FFAs and TG concentrations were obtained. Left ventricular hypertrophy (LVH) and cardiac function were assessed using echocardiography. Expressions of metabolic and mitochondrial genes such as PPARα, AMP-activated protein kinase alpha 2 (AMPKα2), PPARγ coactivator-1 (PGC-1α), mitochondrial transcription factor (TFAM) and nuclear respiratory factor-1 (NRF-1) were determined using real-time polymerase chain reaction. Mitochondrial integrity was assessed using transmission electron microscopy.
Administration of isoproterenol significantly increased left ventricular mass (LVM) and decreased endocardial fractional shortening (FSend); isoproterenol also induced myofibrillar
iv
derangement, mitochondrial derangement and cristae disruption. Fenofibrate prevented isoproterenol-induced increase in LVM and improved FSend. Fenofibrate co-administration prevented loss of mitochondrial integrity possibly via TFAM. Furthermore, fenofibrate may have induced metabolic remodelling via upregulation of AMPKα2 and downregulation of cardiac PPARα and PGC-1α.
Therefore our data suggests that fenofibrate-mediated cardioprotection against isoproterenol-induced LVH and LV systolic dysfunction was accompanied by metabolic switching and preservation of mitochondrial integrity. While isoproterenol did not induce any changes in metabolic genes, fenofibrate-mediated cardioprotection could have been through changes in metabolic genes.
|
116 |
Expressão de microRNAs no coração de ratos espontaneamente hipertensos (SHR) submetidos a treinamento físico aeróbio / Expression of microRNAs in the heart of spontaneously hypertensive rats (SHR) submitted to aerobic physical trainingAmadeu, Marco Aurélio 22 November 2011 (has links)
A hipertrofia cardíaca é um dos principais mecanismos de adaptação do coração frente a uma sobrecarga de trabalho e pode advir de estímulos patológicos como a hipertensão arterial levando a um prejuízo funcional ou por estímulos fisiológicos como o treinamento físico que por outro lado, promove adaptações benéficas no coração. Na última década uma nova classe de moléculas, os miRNAs, vem sendo estudada como reguladores da expressão gênica em diversos tipos celulares, inclusive os cardiomiócitos. Entretanto, estudos sobre a participação de miRNAs nas adaptações induzidas pelo treinamento físico ainda são escassos. O presente trabalho teve como principal objetivo avaliar o efeito do treinamento físico aeróbio no perfil de expressão de miRNAs no coração de ratos espontaneamente hipertensos (SHR) bem como selecionar miRNAs com padrão alterado no SHR e revertido pelo treinamento físico e analisar seu papel funcional através de aplicativos de bioinformática. Os animais foram divididos em três grupos: ratos espontaneamente hipertensos sedentários (SHR-S), SHR treinados (SHR-T) e um grupo normotenso sedentário (WKY-S). O grupo SHR-T desempenhou um protocolo de treinamento de natação de 60 minutos, 5 vezes por semana durante 10 semanas e com um sobrecarga de 5% do peso corporal na cauda. Foram feitas análises hemodinâmicas (pressão arterial, PA e freqüência cardíaca de repouso, FC), funcionais (capacidade física, consumo de oxigênio, ecocardiograma), bioquímicas a expressão de miRNAs (microarray, Real Time-PCR) e computacionais (predição de alvos e anotação de vias de sinalização). Os principais resultados foram: 1. A PA e FC reduziu no grupo SHR-T em relação aos animais sedentários; 2. A capacidade de tolerância ao esforço, VO2 pico aumentou no grupo SHR-T; 3. Análise ecocardiográfica mostrou que a onda E, Onda A e razão E/A melhoram no grupo SHR-T. 4. Análise de microarray encontrou 6 diferentes padrões no perfil de expressão de miRNAs na comparação dos grupos WKY-S, SHR-S e SHR-T; 5. 6 miRNAs alterados no SHR-S tiveram sua expressão revertida no SHR-T (miR-1, 22, 27a, 27b, 29c e 451); 7. Análise bioinformática mostrou que esse grupo de miRNAs tem como alvo predito diversas vias de sinalização relacionados com o remodelamento cardíaco como MAPK, TGF-beta e Wnt, além de vias relacionadas com estrutura do citoesqueleto e metabolismo energético. Em conclusão, nossos resultados sugerem que os miRNAs: 1, 22, 27a, 27b, 29c e 451 podem estar governando vias de sinalização celular envolvidas no processos de reversão do quadro patológico. Esse fato abre novas perspectivas a respeito da utilização dessas moléculas como forma de terapias / Cardiac hypertrophy is a major mechanism of adaptation of the heart by the increased workload and may result from pathological stimuli such as high blood pressure leading to functional impairment or by physiological stimuli such as physical training, that on other hand promotes beneficial adaptations on the heart. In the last decade a new class of molecules, miRNAs, has been studied as regulators of gene expression in different cell type, including cardiomyocytes. However, few studies have investigated the miRNAs involved in adaptations to physical training. This study aimed to evaluate the effect of aerobic exercise training on expression profiling of miRNAs in the heart of spontaneously hypertensive rats (SHR) as well as select miRNAs with altered pattern in SHR and reversed by physical training and analyze their functional role through bioinformatics applications. The animals were divided into 3 groups: sedentary hypertensive rats (SHR-S), trained SHR (SHR-T) and sedentary Wistar Kyoto rats (WKY-S). The SHR-T group performed a swimming training protocol of 60 minutes, 5 times a week for 10 weeks and with overload of 5% of body weight in the tail. We analyzed hemodynamic (blood pressure, BP and resting heart rate, HR), functional (physical capacity, oxygen consumption and echocardiogram), biochemical (microarray and Real Time-PCR to miRNAs) and computational (prediction of targets and annotation cell signaling pathways) parameters. The main findings were: 1. The BP and HR decreased in SHR-T group compared to the sedentary animals; 2. The exercise tolerance and peak VO2 increased in SHR-T group; 3.Echocardiographic analysis showed that the E wave, A wave and E/A ratio improved in SHR-T group; 4. Microarray analysis found six different miRNAs expression profile in the comparison groups WKY-S, SHR-S and SHR-T; 5. Six miRNAs were altered in SHR-S and were reversed in the SHR-T (miR-1,22, 27a, 27b, 29c and 451); 7. Bioinformatics analysis showed that this miRNA cluster has multiple predicted targets in signaling pathways related to cardiac remodeling as MAPK, Wnt and TGF-beta and others genes associate to cytoskeletal structure and energetic metabolism. In conclusion, our results suggest that miRNAs: 1, 22, 27a, 27b, 29c and 451 can be controlling cell signaling pathways involved in the process of reversing the disease. These results open new perspectives on the use of these molecules as a therapeutic treatment
|
117 |
Influência da modulação do dano muscular e da inflamação sobre o efeito da carga repetida e as vias de sinalização de hipertrofia do músculo esquelético / Influence of muscle damage and inflammation modulation on the repeated bout effect and skeletal muscle hypertrophy pathwaySilva, Renato Barroso da 30 April 2013 (has links)
O objetivo desse estudo foi verificar o efeito da modulação do dano muscular e da resposta inflamatória, com o uso de fototerapia, no efeito da carga repetida e na ativação da via PI3K/Akt/mTOR/p70S6K após a realização de cada uma das duas sessões de treinamento de força para membros inferiores. Vinte participantes foram divididos em dois grupos experimentais. Um dos grupos recebeu a fototerapia antes da realização da primeira sessão experimental e o outro grupo recebeu um tratamento placebo. A fototerapia consistiu na irradiação sobre o vasto lateral, o vasto medial e o reto femoral durante 90s, oferecendo uma dose de energia total de 180 J. As sessões de treinamento foram compostas de duas séries a 85% de 1-RM e duas séries a 120% de 1-RM com intervalo de dois minutos entre elas, nos exercícios leg-press e extensão de joelhos. Os marcadores indiretos de dano muscular (dor, amplitude de movimento, torque isométrico máximo, circunferência da coxa e creatina quinase) foram avaliados antes, 2h, 24h, 48h e 96h após o término de cada sessão de treinamento. Uma semana antes e duas horas após o término de cada sessão de treinamento, foram coletadas amostras de tecido muscular através da biópsia percutânea para análise da infiltração de células inflamatórias e das proteínas de interesse. Os resultados dessas variáveis demonstraram que a primeira sessão de treinamento induziu a ocorrência do dano muscular e da inflamação, mas a fototerapia não promoveu nenhum dos efeitos esperados sobre o dano e a inflamação. A expressão total das proteínas de interesse não foi afetada pela realização da sessão de treinamento e nem pela fototerapia. Antes do início da segunda sessão de treinamento, a quantidade de mTOR total estava mais elevada do que antes da primeira sessão. A repetição da sessão de treinamento resultou em alterações dos marcadores de dano muscular, mas a recuperação foi mais rápida do comparada com a primeira sessão, o que vai ao encontro do efeito da carga repetida (ECR). A inflamação foi semelhante entre as duas sessões. Da mesma forma que na primeira sessão, o treinamento não afetou a expressão total das proteínas de interesse. A maior quantidade de mTOR total pode significar uma adaptação protetora (ECR), aumentando a atividade mitocondrial e reduzindo o estresse oxidativo diminuindo assim a ocorrência do dano secundário / The aim of this study was to investigate the effect of muscle damage and inflammatory response modulation through phototherapy, on the repeated bout effect and PI3K/Akt/mTOR/p70S6K1 pathway activation after each of two lower-limbs resistance exercise bouts. Twenty participants were divided into two experimental groups. One of the groups was treated with phototherapy and the other one received a placebo. Phototherapy consisted of irradiating vastus lateralis, vastus medialis and the recto femoris muscles for 90s, applying a total energy dose of 180 J. Two sets at 85% of 1-RM and two sets at 120% of 1-RM were performed in the leg-press and leg extension exercises with a two-minute interval. Indirect markers of muscle damage (muscle soreness, range of motion, maximal isometric torque, thigh girth and creatine kinase, CK) were assessed before, 2h, 24h, 48, and 96h post exercise. One weekbefore and 2h after each exercise bout, percutaneous muscle biopsies were performed to obtain muscle samples to measure inflammatory cells infiltration and some proteins of interest. The results demonstrated that the first exercise bout induced muscle damage and inflammation, but phototherapy did not have any of the expected effects on muscle damage and inflammation responses. Total protein content was not affected by the resistance exercise bout neither by the phototherapy. Before the second bout, total mTOR was elevated compared to the first bout. Repeating a resistance exercise bout affected indirect markers of muscle damage,but recovery was faster compared to the first bout, which is in accordance to the repeated bout effect theory. Also, inflammation was similar after the two bouts. Similar to the first bout, the second exercise bout did not affect total protein content. The higher total mTOR content might represent a protective response which is part of the RBE, by increasing mitochondrial activity, reducing oxidative stress and consequently secondary damage
|
118 |
Treinamento de força com oclusão vascular: adaptações neuromusculares e moleculares / Strength training and vascular occlusion: neuromuscular and molecular adaptationsLaurentino, Gilberto Candido 23 April 2010 (has links)
Estudos têm mostrado que o treinamento de força de baixa intensidade com oclusão vascular (TFOV) tem apresentado resultados similares nos ganhos de força e hipertrofia comparado ao treinamento de força (TF) de alta intensidade. O objetivo deste estudo foi comparar os efeitos de três diferentes programas de TF nos ganhos de força e hipertrofia musculares e na expressão da miostatina (MSTN) e seus antagonistas. Para isso, vinte e nove jovens do sexo masculino, sem experiência em TF, foram recrutados e divididos randomicamente nos grupos: treinamento de força de baixa intensidade sem oclusão (BI), treinamento de força de baixa intensidade com oclusão (BIO) e treinamento de força de alta intensidade sem oclusão (AI). Os grupos BIO e BI treinaram com intensidade de 20% 1RM, enquanto o grupo AI treinou com intensidade de 80% 1RM. A ANOVA one way foi utilizada para testar as diferenças percentuais nos ganhos de força (1RM) e na área de secção transversa (AST) do músculo quadríceps femoral. O modelo misto para análise das medidas repetidas foi utilizado para testar as diferenças nas variáveis miostatina (MSTN), folistatina-3 (FLST-3), SMAD-7 e GASP-1 nos grupos BI, BIO e AI nas condições pré e pós-treinamento. Os resultados mostraram que os aumentos de força e hipertrofia musculares nos grupos BIO e AI foram similares, entretanto superiores ao grupo BI. Esses resultados podem ser atribuídos a maior diminuição na expressão da MSTN nos grupos BIO (45%) e AI (41%) comparados com o grupo BI (16%) e o aumento na expressão dos genes que antagonizam sua atividade (SMAD-7, FLST-3 e GASP-1). Podemos concluir que a inibição na atividade da MSTN dos grupos BIO e AI podem responder em parte a similaridade nos ganhos de força e hipertrofia entre os grupos e a diferença para o grupo BI / It has been demonstrated that low intensity training associated to vascular occlusion (LIO) promotes similar gains in strength and muscle mass when compared to high intensity strength training (HI). The aim of the present study was to evaluate the effect of three different training programs on skeletal muscle hypertrophy and atrophy related gene expression. Twenty nine young male, with no previous experience in strength training were randomly allocated in three groups: low intensity strength training (i.e. 20% - 1-RM) (LI); low intensity strength training associated to vascular occlusion (i.e. 20% - 1-RM) (LIO); high intensity strength training (HI) (i.e. 80% - 1-RM). One-way ANOVA was used to assess differences in % delta change values of 1-RM and cross sectional area (CSA) of the quadriceps femoris. Mixed model analysis was used to compare myostatin (MSTN), folistatyn-3 (FLST-3), SMAD-7 e GASP-1 changes between groups pre and post training. Results demonstrated similar increases in strength and muscle hypertrophy for LIO and HI groups. Moreover, such increases were significantly greater when compared to LI. These results may be, at least in part, explained by a significant decrease in MSTN mRNA expression in LIO (45%) and HI (41%) when compared to LI (16%); additionally, SMAD-7; FLST-3 and GASP-1 mRNA expression were significantly increased. In conclusion, LIO training promotes similar gains than HI training. The results may be explained by changes in MSTN and related genes mRNA expression
|
119 |
Identification of GATA4 Regulatory Mechanisms of Heart Development and DiseaseWhitcomb, Elizabeth Jamieson 20 February 2019 (has links)
The development and function of the heart is governed by a conserved set of transcription factors (TFs) that regulate gene expression in a cell-type, time point and stimulus driven manner. Of these core cardiac TFs, the most ubiquitously expressed is the zinc finger protein GATA4. In cardiomyocytes, GATA4 is central to proliferation, differentiation, hypertrophy and induction of pro-survival pathways. In cardiac endothelial cells, it is required for valve and septal development, although the exact mechanisms remain unclear. To regulate such a wide array of functions in a spatially and temporally controlled manner, GATA4 interacts with specific protein partners, the majority of whom have been identified in cardiomyocytes. However, a complete understanding of the protein interactome of GATA4, particularly in cardiac endothelial cells, has not yet been achieved. Using a mass spectrometry-based approach, we have identified a series of novel GATA4 interacting partners in cardiac endothelial cells. 3xFlag GATA4 was stably overexpressed via retroviral transduction in the TC13 cardiac endothelial precursor cell line, immunoprecipitated from nuclear protein extracts and sent for HPLC-ESI-MS/MS. Several novel GATA4 interacting partners were identified including the chaperone protein Heat Shock Protein 70 (HSP70), the inducible orphan nuclear receptor Nerve Growth Factor 1β (NGFIβ, NUR77) and the Drosophila-Binding/Human Splicing protein family members Non-POU Domain Containing Octamer Binding Protein (NONO) and Paraspeckle 1 (PSPC1). Chapter 1 discusses the interaction between GATA4 and HSP70 and its role in cardiomyocyte survival upon exposure to chemotherapeutic agent Doxorubicin (DOX). HSP70 binds directly to GATA4, preventing DOX-mediated cleavage and degradation by Caspase-1, cardiomyocyte cell death and heart failure. Chapter 2 focuses on the cooperative interaction between GATA4 and NUR77 in cardiac microvascular endothelial cells and its central role in myocardial angiogenesis in response to pressure overload. The GATA4-NUR77 complex transactivates the promoter of Angiopoietin-Like 7 (ANGPTL7), a secreted pro-angiogenic chemotactic factor, triggering endothelial cell proliferation and tube formation in cultured cardiac endothelial cells and increasing myocardial capillary density in vivo. Chapter 3 discusses the interaction between GATA4 and the DBHS proteins NONO and PSPC1 in the regulation of cardiac development. These proteins play opposing roles when bound to GATA4 as PSPC1 enhances GATA4 activation of critical cardiac promoter targets and NONO acts as a rheostat to repress GATA4 activity. In vivo, loss of NONO results in left ventricular non-compaction consistent with humans with loss-of-function mutations. However, simultaneous Gata4 haploinsufficiency partially rescues this phenotype. Together, this data identifies multiple novel cell type and time point specific GATA4 protein partners and sheds light on GATA4 regulatory mechanisms in cardiac development and disease.
|
120 |
Role of oxidative modifications of LKB1 in promoting myocardial hypertrophyCalamaras, Timothy Dean 22 January 2016 (has links)
The pathogenesis of heart failure (HF) involves compensatory left ventricular hypertrophy. Reactive oxygen species (ROS) are elevated in HF and mediate myocardial hypertrophy. ROS also mediate formation of lipid peroxidation byproducts, yet little is known about their role in promoting hypertrophy. One lipid peroxidation byproduct, 4-hydroxy-trans-2-nonenal (HNE) is a reactive aldehyde that forms covalent adducts on proteins. HNE levels are also elevated in HF and may mediate hypertrophy via HNE-adduct formation. LKB1 - a tumor suppressor protein - regulates cellular growth through activation of the downstream kinase AMPK. Activation of AMPK suppresses functions that consume ATP and simultaneously activates processes to generate energy. The LKB1 protein is inhibited by oxidants, but whether this results in myocardial hypertrophy is unclear. I hypothesized that HNE can directly promote cardiac hypertrophy via the modification of LKB1.
In HEK293T cells I observed that HNE adducts inhibit activity of LKB1 through direct oxidative modification. Mutation of LKB1 Lys-96 or Lys-97 resulted in less HNE-LKB1 adduct formation. Mutation of LKB1 Lys-97 prevented the inhibitory effect of HNE, suggesting that HNE-adduction at this residue is sufficient to inhibit LKB1. In cardiomyocytes HNE inhibited both LKB1 and AMPK, increased phosphorylation of mTOR, p70S6K, and S6K, and increased protein synthesis. HNE also activated Erk1/2, which contributed to S6K activation but was not required for cellular growth. Hypertrophic S6K activation was dependent on mTOR. Mice fed a high-fat high-sucrose (HFHS) diet have myocardial hypertrophy that can be prevented by antioxidants. Hearts of HFHS mice have HNE-LKB1 adducts, inhibited LKB1 activity, yet no change in AMPK activation. Mice lacking aldehyde dehydrogenase 2 (ALDH2), an enzyme involved in HNE detoxification, have increased myocardial hypertrophy when fed HFHS diet yet have increased LKB1 activity.
In summary HNE directly causes hypertrophy in cardiomyocytes. This occurs through inhibition of LKB1 and in part through Erk1/2 activation. In HFHS-fed mice HNE-LKB1 adduct formation is associated with decreased LKB1 activity. Impairing detoxification of reactive aldehydes in the ALDH2-KO mice is sufficient to increase myocardial hypertrophy, but this appears to be independent of LKB1. This study demonstrates a novel mechanism of cardiac hypertrophy caused by reactive aldehydes.
|
Page generated in 0.0541 seconds