111 |
AI-Based Intrusion Detection Systems to Secure Internet of Things (IoT)Otoum, Yazan 20 September 2022 (has links)
The Internet of Things (IoT) is comprised of numerous devices that are connected through wired or wireless networks, including sensors and actuators. The number of IoT applications has recently increased dramatically, including Smart Homes, Internet of Vehicles (IoV), Internet of Medical Things (IoMT), Smart Cities, and Wearables. IoT Analytics has reported that the number of connected devices is expected to grow 18% to 14.4 billion in 2022 and will be 27 billion by 2025. Security is a critical issue in today's IoT, due to the nature of the architecture, the types of devices, the different methods of communication (mainly wireless), and the volume of data being transmitted over the network. Furthermore, security will become even more important as the number of devices connected to the IoT increases. However, devices can protect themselves and detect threats with the Intrusion Detection System (IDS). IDS typically use one of two approaches: anomaly-based or signature-based. In this thesis, we define the problems and the particular requirements of securing the IoT environments, and we have proposed a Deep Learning (DL) anomaly-based model with optimal features selection to detect the different potential attacks in IoT environments. We then compare the performance results with other works that have been used for similar tasks. We also employ the idea of reinforcement learning to combine the two different IDS approaches (i.e., anomaly-based and signature-based) to enable the model to detect known and unknown IoT attacks and classify the recognized attacked into five classes: Denial of Service (DDoS), Probe, User-to-Root (U2R), Remote-to-Local (R2L), and Normal traffic. We have also shown the effectiveness of two trending machine-learning techniques, Federated and Transfer learning (FL/TL), over using the traditional centralized Machine and Deep Learning (ML/DL) algorithms. Our proposed models improve the model's performance, increase the learning speed, reduce the amount of data that needs to be trained, and reserve user data privacy when compared with the traditional learning approaches. The proposed models are implemented using the three benchmark datasets generated by the Canadian Institute for Cybersecurity (CIC), NSL-KDD, CICIDS2017, and the CSE-CIC-IDS2018. The performance results were evaluated in different metrics, including Accuracy, Detection Rate (DR), False Alarm Rate (FAR), Sensitivity, Specificity, F-measure, and training and fine-tuning times.
|
112 |
Performance Evaluation Study of Intrusion Detection Systems.Alhomoud, Adeeb M., Munir, Rashid, Pagna Disso, Jules F., Al-Dhelaan, A., Awan, Irfan U. 2011 August 1917 (has links)
With the thriving technology and the great increase in the usage of computer networks, the risk of having these network to be under attacks have been increased. Number of techniques have been created and designed to help in detecting and/or preventing such attacks. One common technique is the use of Network Intrusion Detection / Prevention Systems NIDS. Today, number of open sources and commercial Intrusion Detection Systems are available to match enterprises requirements but the performance of these Intrusion Detection Systems is still the main concern. In this paper, we have tested and analyzed the performance of the well know IDS system Snort and the new coming IDS system Suricata. Both Snort and Suricata were implemented on three different platforms (ESXi virtual server, Linux 2.6 and FreeBSD) to simulate a real environment. Finally, in our results and analysis a comparison of the performance of the two IDS systems is provided along with some recommendations as to what and when will be the ideal environment for Snort and Suricata.
|
113 |
IPsec Intrusion Detection Analysis : Using data from an Ericsson Ethernet Interface BoardAmso, Julian, Faienza, Achille January 2008 (has links)
IP security (IPsec) is commonly used for protection in Virtual Private Networks (VPN). It is also used for the protection of traffic between nodes in third generation (3G) mobile networks. The main duty of telecommunication operators is to assure the quality of service and availability of the network for their users. Therefore knowledge of threats that could affect these requirements is of relevance. Denial of Service (DoS) and other attacks could constitute serious threats in 3G networks and, if successful, they could lead to financial and reputation damage for the telecommunication operator. One of the goals of each telecommunications vendor is to produce equipment and software in such a way as to reduce the risk of successful attacks upon networks built using their equipment and software. This master’s thesis aims to identify the classes of attacks that could affect the regular operation of an IPsec-protected network. Therefore, the IPsec protocol and its possible weaknesses are explained. As practical demonstration of these ideas, an Intrusion Detection Analyzer prototype for an Ericsson Ethernet Interface board was developed to detect anomalous IPsec-protected traffic. / IP Security (IPsec) protokollet används bl.a. för att skydda Virtuellt Privat Nätverk (VPN). Protokollet används även för att skydda noderna i tredje generationens (3G) mobila nätverk. Telekomoperatöreranas uppgift går bl.a. ut på att se till att de mobila näten är tillgängliga för användarna samt garanterna en viss garanterad tjänstekvalitet. Därför är kunskapen om de olika hoten som påverkar dessa faktorer relevant. Överbelastningsattacker och andra attacker kan utgöra ett stort hot mot bl.a. 3G nät. Om dessa attacker lyckas kan de leda till finansiella skador och ett skadat anseende för telekomoperatörerna. Ett av målen för telekomtillverkarna är att tillverka produkter och program som kan minimera riskerna för en attack och skadorna som åstadkoms på ett nätverk uppbyggt med deras utrustning. Detta examensarbete har som mål att identifiera de olika typer av attacker som kan påverka driften av IPsec-skyddade nätverk. IPsecprotokollet och dess svagheter är förklarade. Svagheter och problem med vissa implementationer nämns också. I detta arbete ingår också att utveckla en Intrusion Detection Analyzer prototyp för ett Ericssons Ethernet Gränssnitt kort för att upptäcka avvikande IPsecskyddad trafik
|
114 |
Intrångsdetektering i processnätverk / Intrusion detection in process networksFahlström, Albin, Henriksson, Victor January 2018 (has links)
The threat against industrial networks have increased, which raises the demands on the industries cybersecurity. The industrial networks are not constructed with cybersecurity in mind, which makes these systems vulnerable to attacks. Even if the networks outer protection is deemed sufficient, the system may still be infected. This risk demands an intrusion detection system (IDS) that can identify infected components. An IDS scans all traffic of a point in the network and looks for traffic matching its detections parameters, if a match is made the IDS will send an alarm to the administrators. It can also analyze the network traffic using a behavior based method which means that the IDS will alert administrators if network activity deviates from the normal traffic flow. It is of vital essence that the IDS do not impair with the system, an outage of the industrial process can have a high cost for the industry. This report aims to put forward plans for the implementation of an IDS in one of Mälarenergi AB’s industrial networks, this will be made using the Bro and Snort intrusion detection systems. / Hoten mot industrinätverken har blivit större vilket har ställt högre krav på industriernas cybersäkerhet. Industrinätverk är ofta inte konstruerade med cybersäkerhet i åtanke, vilket har gjort dessa system sårbara mot attacker. Även om nätverkets yttre skydd anses gott går det inte att vara säker på att ett industrinätverk förblir osmittat. Detta ställer krav på någon form av intrångsdetekteringssystem (IDS) som kan upptäcka infekterad utrustning och suspekt datatrafik i nätverket. En IDS skannar alla paket vid en viss punkt i nätverket, om IDS:en upptäcker något paket som matchar med dess signatur kommer den att larma en administratör. IDS:en kan även använda beteendeanalys där den larmar om nätverksaktiviteten avviker från det normala. Det är mycket viktigt att en IDS inte orsakar avbrott i industriprocessen, om en process stannar kan det innebära stora kostnader för industrin. Denna rapport syftar till att lämna ett lösningsförslag på en IDS-implementation till ett av Mälarenergi AB: s processnätverk, lösningen konstruerades med hjälp av IDS:erna Bro och Snort. / <p>Vissa bilder i den elektroniska rapporten har tagits bort av upphovrättsliga skäl. Författarna har bedömt att rapporten är förståelig även utan dessa bilder. </p>
|
115 |
SISTEMA DE DETECÇÃO DE INTRUSOS EM ATAQUES ORIUNDOS DE BOTNETS UTILIZANDO MÉTODO DE DETECÇÃO HÍBRIDO / Intrusion Detection System in Attacks Coming from Botnets Using Method Hybrid DetectionCUNHA NETO, Raimundo Pereira da 28 July 2011 (has links)
Made available in DSpace on 2016-08-17T14:53:19Z (GMT). No. of bitstreams: 1
dissertacao Raimundo.pdf: 3146531 bytes, checksum: 40d7a999c6dda565c6701f7cc4a171aa (MD5)
Previous issue date: 2011-07-28 / The defense mechanisms expansion for cyber-attacks combat led to the malware evolution,
which have become more structured to break these new safety barriers. Among the numerous
malware, Botnet has become the biggest cyber threat due to its ability of controlling, the
potentiality of making distributed attacks and because of the existing structure of control. The
intrusion detection and prevention has had an increasingly important role in network
computer security. In an intrusion detection system, information about the current situation
and knowledge about the attacks contribute to the effectiveness of security process against
this new cyber threat. The proposed solution presents an Intrusion Detection System (IDS)
model which aims to expand Botnet detectors through active objects system by proposing a
technology with collect by sensors, preprocessing filter and detection based on signature and
anomaly, supported by the artificial intelligence method Particle Swarm Optimization (PSO)
and Artificial Neural Networks. / A ampliação dos mecanismos de defesas no uso do combate de ataques ocasionou a evolução
dos malwares, que se tornaram cada vez mais estruturados para o rompimento destas novas
barreiras de segurança. Dentre os inúmeros malwares, a Botnet tornou-se uma grande ameaça
cibernética, pela capacidade de controle e da potencialidade de ataques distribuídos e da
estrutura de controle existente. A detecção e a prevenção de intrusão desempenham um papel
cada vez mais importante na segurança de redes de computadores. Em um sistema de
detecção de intrusão, as informações sobre a situação atual e os conhecimentos sobre os
ataques tornam mais eficazes o processo de segurança diante desta nova ameaça
cibernética. A solução proposta apresenta um modelo de Sistema de Detecção de Intrusos
(IDS) que visa na ampliação de detectores de Botnet através da utilização de sistemas objetos
ativos, propondo uma tecnologia de coleta por sensores, filtro de pré-processamento e
detecção baseada em assinatura e anomalia, auxiliado pelo método de inteligência artificial
Otimização de Enxame da Partícula (PSO) e Redes Neurais Artificiais.
|
116 |
Towards privacy preserving cooperative cloud based intrusion detection systemsKothapalli, Anirudh Mitreya 08 1900 (has links)
Les systèmes infonuagiques deviennent de plus en plus complexes, dynamiques et vulnérables aux attaques. Par conséquent, il est de plus en plus difficile pour qu'un seul système de détection d'intrusion (IDS) basé sur le cloud puisse repérer toutes les menaces, en raison des lacunes de connaissances sur les attaques et leurs conséquences. Les études récentes dans le domaine de la cybersécurité ont démontré qu'une coopération entre les IDS d'un nuage pouvait apporter une plus grande efficacité de détection dans des systèmes informatiques aussi complexes. Grâce à cette coopération, les IDS d'un nuage peuvent se connecter et partager leurs connaissances afin d'améliorer l'exactitude de la détection et obtenir des bénéfices communs. L'anonymat des données échangées par les IDS constitue un élément crucial de l'IDS coopérative. Un IDS malveillant pourrait obtenir des informations confidentielles d'autres IDS en faisant des conclusions à partir des données observées. Pour résoudre ce problème, nous proposons un nouveau système de protection de la vie privée pour les IDS en nuage. Plus particulièrement, nous concevons un système uniforme qui intègre des techniques de protection de la vie privée dans des IDS basés sur l'apprentissage automatique pour obtenir des IDS qui respectent les informations personnelles. Ainsi, l'IDS permet de cacher des informations possédant des données confidentielles et sensibles dans les données partagées tout en améliorant ou en conservant la précision de la détection. Nous avons mis en œuvre un système basé sur plusieurs techniques d'apprentissage automatique et de protection de la vie privée. Les résultats indiquent que les IDS qui ont été étudiés peuvent détecter les intrusions sans utiliser nécessairement les données initiales. Les résultats (c'est-à-dire qu'aucune diminution significative de la précision n'a été enregistrée) peuvent être obtenus en se servant des nouvelles données générées, analogues aux données de départ sur le plan sémantique, mais pas sur le plan synthétique. / Cloud systems are becoming more sophisticated, dynamic, and vulnerable to attacks. Therefore, it's becoming increasingly difficult for a single cloud-based Intrusion Detection System (IDS) to detect all attacks, because of limited and incomplete knowledge about attacks and their implications. The recent works on cybersecurity have shown that a co-operation among cloud-based IDSs can bring higher detection accuracy in such complex computer systems. Through collaboration, cloud-based IDSs can consult and share knowledge with other IDSs to enhance detection accuracy and achieve mutual benefits. One fundamental barrier within cooperative IDS is the anonymity of the data the IDS exchanges. Malicious IDS can obtain sensitive information from other IDSs by inferring from the observed data. To address this problem, we propose a new framework for achieving a privacy-preserving cooperative cloud-based IDS. Specifically, we design a unified framework that integrates privacy-preserving techniques into machine learning-based IDSs to obtain privacy-aware cooperative IDS. Therefore, this allows IDS to hide private and sensitive information in the shared data while improving or maintaining detection accuracy. The proposed framework has been implemented by considering several machine learning and privacy-preserving techniques. The results suggest that the consulted IDSs can detect intrusions without the need to use the original data. The results (i.e., no records of significant degradation in accuracy) can be achieved using the newly generated data, similar to the original data semantically but not synthetically.
|
117 |
Bearbetningstid och CPU-användning i Snort IPS : En jämförelse mellan ARM Cortex-A53 och Cortex-A7 / Processing time and CPU usage in Snort IPS : A comparision between ARM Cortex-A53 and Cortex-A7Nadji, Al-Husein, Sarbast Hgi, Haval January 2020 (has links)
Syftet med denna studie är att undersöka hur bearbetningstiden hos Snort intrångsskyddssystem varierar mellan två olika processorer; ARM Cortex-A53 och Cortex-A7. CPU-användningen undersöktes även för att kontrollera om bearbetningstid är beroende av hur mycket CPU Snort använder. Denna studie ska ge kunskap om hur viktig en processor är för att Snort ska kunna prestera bra när det gäller bearbetningstid och CPU användning samt visa det uppenbara valet mellan Cortex-A53 och Cortex-A7 när man ska implementera Snort IPS. Med hjälp av litteratursökning konstruerades en experimentmiljö för att kunna ge svar på studiens frågeställningar. Snort kan klassificeras som CPU-bunden vilket innebär att systemet är beroende av en snabb processor. I detta sammanhang innebär en snabb processor gör att Snort hinner bearbeta den mängd nätverkstrafik den får, annars kan trafiken passera utan att den inspekteras vilket kan skada enheten som är skyddat av Snort. Studiens resultat visar att bearbetningstiden i Snort på Cortex-A53 och Cortex-A7 skiljer sig åt och en tydlig skillnad i CPU-användning mellan processorerna observerades. Studien visar även kopplingen mellan bearbetningstiden och CPUanvändning hos Snort. Studiens slutsats är att ARM Cortex-A53 har bättre prestanda vid användning av Snort IPS avseende bearbetningstid och CPU-användning, där Cortex-A53 har 10 sekunder kortare bearbetningstid och använder 2,87 gånger mindre CPU. / The purpose of this study is to examine how the processing time of the Snort intrusion prevention system varies on two different processors; ARM Cortex-A53 and CortexA7. CPU usage was also examined to check if processing time depends on how much CPU Snort uses. This study will provide knowledge about how important a processor is for Snort to be able to perform well in terms of processing time and CPU usage. This knowledge will help choosing between Cortex-A53 and Cortex-A7 when implementing Snort IPS. To achieve the purpose of the study a literature search has been done to design an experimental environment. Snort can be classified as CPU-bound, which means that the system is dependent on a fast processor. In this context, a fast processor means that Snort is given enough time to process the amount of traffic it receives, otherwise the traffic can pass through without it being inspected, which can be harmful to the device that is protected by Snort. The results of the study show that the processing time in Snort on Cortex-A53 and Cortex-A7 differs and an obvious difference in CPU usage between the processors is shown. The study also presents the connection between processing time and CPU usage for Snort. In conclusion, ARM Cortex-A53 has better performance when using Snort IPS in terms of processing time and CPU usage, Cortex-A53 has 10 seconds less processing time and uses 2,87 times less CPU.
|
118 |
A novel intrusion detection system (IDS) architecture : attack detection based on snort for multistage attack scenarios in a multi-cores environmentPagna Disso, Jules Ferdinand January 2010 (has links)
Recent research has indicated that although security systems are developing, illegal intrusion to computers is on the rise. The research conducted here illustrates that improving intrusion detection and prevention methods is fundamental for improving the overall security of systems. This research includes the design of a novel Intrusion Detection System (IDS) which identifies four levels of visibility of attacks. Two major areas of security concern were identified: speed and volume of attacks; and complexity of multistage attacks. Hence, the Multistage Intrusion Detection and Prevention System (MIDaPS) that is designed here is made of two fundamental elements: a multistage attack engine that heavily depends on attack trees and a Denial of Service Engine. MIDaPS were tested and found to improve current intrusion detection and processing performances. After an intensive literature review, over 25 GB of data was collected on honeynets. This was then used to analyse the complexity of attacks in a series of experiments. Statistical and analytic methods were used to design the novel MIDaPS. Key findings indicate that an attack needs to be protected at 4 different levels. Hence, MIDaPS is built with 4 levels of protection. As, recent attack vectors use legitimate actions, MIDaPS uses a novel approach of attack trees to trace the attacker's actions. MIDaPS was tested and results suggest an improvement to current system performance by 84% whilst detecting DDOS attacks within 10 minutes.
|
119 |
Evaluation of and Mitigation against Malicious Traffic in SIP-based VoIP Applications in a Broadband Internet EnvironmentWulff, Tobias January 2010 (has links)
Voice Over IP (VoIP) telephony is becoming widespread, and is often integrated into computer networks. Because of his, it is likely that malicious software will threaten VoIP systems the same way traditional computer systems have been attacked by viruses, worms, and other automated agents. While most users have become familiar with email spam and viruses in email attachments, spam and malicious traffic over telephony currently is a relatively unknown threat. VoIP networks are a challenge to secure against such malware as much of the network intelligence is focused on the edge devices and access environment.
A novel security architecture is being developed which improves the security of a large VoIP network with many inexperienced users, such as non-IT office workers or telecommunication service customers. The new architecture establishes interaction between the VoIP backend and the end users, thus providing information about ongoing and unknown attacks to all users. An evaluation of the effectiveness and performance of different implementations of this architecture is done using virtual machines and network simulation software to emulate vulnerable clients and servers through providing apparent attack vectors.
|
120 |
Sécurité des réseaux et infrastructures critiquesAbou El Kalam, Anas 03 December 2009 (has links) (PDF)
Les infrastructures et réseaux critiques commencent à s'ouvrir vers des architectures, protocoles et applications vulnérables. Ainsi, non seulement il est question de sécuriser ces applications (e.g., contre les attaques potentielles), mais il faut également justifier notre confiance dans les mécanismes de sécurité déployés. Pour cela, nous présentons PolyOrBAC, un cadriciel basé sur le modèle de contrôle d'accès OrBAC, les mécanismes de services Web ainsi que les contrats électroniques. Ensuite, nous préconisons l'utilisation de la Programmation Logique par Contraintes (PLC) pour détecter et résoudre les conflits éventuels dans la politique de sécurité. Au niveau de la mise en œuvre, nous proposons le protocole Q-ESP, notre amélioration d'IPSec qui assure à la fois des besoins de sécurité et de QoS. Enfin, nous présentons nos modèles et résultats de test et d'évaluation d'outils de sécurité notamment les Systèmes de Détection d'Intrusions (IDS).
|
Page generated in 0.0745 seconds