• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 86
  • 86
  • 53
  • 47
  • 43
  • 35
  • 28
  • 26
  • 20
  • 17
  • 15
  • 14
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Solving an inverse problem for an elliptic equation using a Fourier-sine series.

Linder, Olivia January 2019 (has links)
This work is about solving an inverse problem for an elliptic equation. An inverse problem is often ill-posed, which means that a small measurement error in data can yield a vigorously perturbed solution. Regularization is a way to make an ill-posed problem well-posed and thus solvable. Two important tools to determine if a problem is well-posed or not are norms and convergence. With help from these concepts, the error of the reg- ularized function can be calculated. The error between this function and the exact function is depending on two error terms. By solving the problem with an elliptic equation, a linear operator is eval- uated. This operator maps a given function to another function, which both can be found in the solution of the problem with an elliptic equation. This opera- tor can be seen as a mapping from the given function’s Fourier-sine coefficients onto the other function’s Fourier-sine coefficients, since these functions are com- pletely determined by their Fourier-sine series. The regularization method in this thesis, uses a chosen number of Fourier-sine coefficients of the function, and the rest are set to zero. This regularization method is first illustrated for a simpler problem with Laplace’s equation, which can be solved analytically and thereby an explicit parameter choice rule can be given. The goal with this work is to show that the considered method is a reg- ularization of a linear operator, that is evaluated when the problem with an elliptic equation is solved. In the tests in Chapter 3 and 4, the ill-posedness of the inverse problem is illustrated and that the method does behave like a regularization is shown. Also in the tests, it can be seen how many Fourier-sine coefficients that should be considered in the regularization in different cases, to make a good approximation. / Det här arbetet handlar om att lösa ett inverst problem för en elliptisk ekvation. Ett inverst problem är ofta illaställt, vilket betyder att ett litet mätfel i data kan ge en kraftigt förändrad lösning. Regularisering är ett tillvägagångssätt för att göra ett illaställt problem välställt och således lösbart. Två viktiga verktyg för att bestämma om ett problem är välställt eller inte är normer och konvergens. Med hjälp av dessa begrepp kan felet av den regulariserade lösningen beräknas. Felet mellan den lösningen och den exakta är beroende av två feltermer. Genom att lösa problemet med den elliptiska ekvationen, så är en linjär operator evaluerad. Denna operator avbildar en given funktion på en annan funktion, vilka båda kan hittas i lösningen till problemet med en elliptisk ekva- tion. Denna operator kan ses som en avbildning från den givna funktions Fouri- ersinuskoefficienter på den andra funktionens Fouriersinuskoefficienter, eftersom dessa funktioner är fullständigt bestämda av sina Fouriersinusserier. Regularise- ringsmetoden i denna rapport använder ett valt antal Fouriersinuskoefficienter av funktionen, och resten sätts till noll. Denna regulariseringsmetod illustreras först för ett enklare problem med Laplaces ekvation, som kan lösas analytiskt och därmed kan en explicit parametervalsregel anges. Målet med detta arbete är att visa att denna metod är en regularisering av den linjära operator som evalueras när problemet med en elliptisk ekvation löses. I testerna i kapitel 3 och 4, illustreras illaställdheten av det inversa problemet och det visas att metoden beter sig som en regularisering. I testerna kan det också ses hur många Fouriersinuskoefficienter som borde betraktas i regulariseringen i olika fall, för att göra en bra approximation.
32

Multiplication operators and its ill-posedness properties

G.Fleischer 30 October 1998 (has links)
This paper deals with the characterization of multiplication operators, especially with its behavior in the ill-posed case. We want to classify the different types and degrees of ill-posedness. We give some connections between this classification and regularization methods.
33

Regularizing An Ill-Posed Problem with Tikhonov’s Regularization

Singh, Herman January 2022 (has links)
This thesis presents how Tikhonov’s regularization can be used to solve an inverse problem of Helmholtz equation inside of a rectangle. The rectangle will be met with both Neumann and Dirichlet boundary conditions. A linear operator containing a Fourier series will be derived from the Helmholtz equation. Using this linear operator, an expression for the inverse operator can be formulated to solve the inverse problem. However, the inverse problem will be found to be ill-posed according to Hadamard’s definition. The regularization used to overcome this ill-posedness (in this thesis) is Tikhonov’s regularization. To compare the efficiency of this inverse operator with Tikhonov’s regularization, another inverse operator will be derived from Helmholtz equation in the partial frequency domain. The inverse operator from the frequency domain will also be regularized with Tikhonov’s regularization. Plots and error measurements will be given to understand how accurate the Tikhonov’s regularization is for both inverse operators. The main focus in this thesis is the inverse operator containing the Fourier series. A series of examples will also be given to strengthen the definitions, theorems and proofs that are made in this work.
34

Christoffel Function Asymptotics and Universality for Szegő Weights in the Complex Plane

Findley, Elliot M 31 March 2009 (has links)
In 1991, A. Máté precisely calculated the first-order asymptotic behavior of the sequence of Christoffel functions associated with Szego measures on the unit circle. Our principal goal is the abstraction of his result in two directions: We compute the translated asymptotics, limn λn(µ, x + a/n), and obtain, as a corollary, a universality limit for the fairly broad class of Szego weights. Finally, we prove Máté’s result for measures supported on smooth curves in the plane. Our proof of the latter derives, in part, from a precise estimate of certain weighted means of the Faber polynomials associated with the support of the measure. Finally, we investigate a variety of applications, including two novel applications to ill-posed problems in Hilbert space and the mean ergodic theorem.
35

Krylov subspace type methods for the computation of non-negative or sparse solutions of ill-posed problems

Pasha, Mirjeta 10 April 2020 (has links)
No description available.
36

Reconstruction of a stationary flow from boundary data

Johansson, Tomas January 2000 (has links)
We study a Cauchy problem arising in uid mechanics, involving the socalled stationary generalized Stokes system, where one should recover the ow from boundary measurements. The problem is ill-posed in the sense that the solution does not depend continuously on data. Two iterative procedures for solving this problem are proposed and investigated. These methods are regularizing and in each iteration one solves a series of well-posed problems obtained by changing the boundary conditions. The advantage with this approach, is that these methods place few restrictions on the domain and on the coefficients of the problem. Also the structure of the equation is preserved. Well-posedness of the problems used in these procedures is demonstrated, i.e., that the problems have a unique solution that depends continuously on data. Since we have numerical applications in mind, we demonstrate well-posedness for the case when boundary data is square integrable. We give convergence proofs for both of these methods.
37

Limited angle reconstruction for 2D CT based on machine learning

Oldgren, Eric, Salomonsson, Knut January 2023 (has links)
The aim of this report is to study how machine learning can be used to reconstruct 2 dimensional computed tomography images from limited angle data. This could be used in a variety of applications where either the space or timeavailable for the CT scan limits the acquired data.In this study, three different types of models are considered. The first model uses filtered back projection (FBP) with a single learned filter, while the second uses a combination of multiple FBP:s with learned filters. The last model instead uses an FNO (Fourieer Neural Operator) layer to both inpaint and filter the limited angle data followed by a backprojection layer. The quality of the reconstructions are assessed both visually and statistically, using PSNR and SSIM measures.The results of this study show that while an FBP-based model using one or more trainable filter(s) can achieve better reconstructions than ones using an analytical Ram-Lak filter, their reconstructions still fail for small angle spans. Better results in the limited angle case can be achieved using the FNO-basedmodel.
38

Lanczos and Golub-Kahan Reduction Methods Applied to Ill-Posed Problems

Onunwor, Enyinda Nyekachi 24 April 2018 (has links)
No description available.
39

Space-Frequency Regularization for Qualitative Inverse Scattering

Alqadah, Hatim F. January 2011 (has links)
No description available.
40

On the Use of Arnoldi and Golub-Kahan Bases to Solve Nonsymmetric Ill-Posed Inverse Problems

Brown, Matthew Allen 20 February 2015 (has links)
Iterative Krylov subspace methods have proven to be efficient tools for solving linear systems of equations. In the context of ill-posed inverse problems, they tend to exhibit semiconvergence behavior making it difficult detect ``inverted noise" and stop iterations before solutions become contaminated. Regularization methods such as spectral filtering methods use the singular value decomposition (SVD) and are effective at filtering inverted noise from solutions, but are computationally prohibitive on large problems. Hybrid methods apply regularization techniques to the smaller ``projected problem" that is inherent to iterative Krylov methods at each iteration, thereby overcoming the semiconvergence behavior. Commonly, the Golub-Kahan bidiagonalization is used to construct a set of orthonormal basis vectors that span the Krylov subspaces from which solutions will be chosen, but seeking a solution in the orthonormal basis generated by the Arnoldi process (which is fundamental to the popular iterative method GMRES) has been of renewed interest recently. We discuss some of the positive and negative aspects of each process and use example problems to examine some qualities of the bases they produce. Computing optimal solutions in a given basis gives some insight into the performance of the corresponding iterative methods and how hybrid methods can contribute. / Master of Science

Page generated in 0.039 seconds