• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 135
  • 135
  • 95
  • 73
  • 50
  • 47
  • 46
  • 45
  • 45
  • 45
  • 37
  • 35
  • 33
  • 32
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

RNA-Sensing Pattern Recognition Receptors and Their Effects on T-Cell Immune Responses: A Dissertation

Madera, Rachel F. 10 July 2012 (has links)
Virus infection is sensed by the innate immune system through germline encoded pattern recognition receptors (PRRs). Toll-like receptors (TLRs), retinoic acid-inducible gene-I-like receptors (RLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs) serve as PRRs that recognize different viral components. Microbial nucleic acids such as Ribonucleic acid (RNA) are important virus-derived pathogen-associated molecular patterns (PAMPs) to be recognized by PRRs. Virus recognition may occur at multiple stages of the viral life cycle. Replication intermediates such as single-stranded RNA (ssRNA) and double-stranded RNA (dsRNA) are detected by the RNA-sensing PRRs that initiate innate and adaptive immune responses. Triggering of the innate immune system is a critical event that can shape the adaptive immune response to virus infection. Better vaccination strategies that lead to improved T-cell and antibody responses are needed for protection against pathogens. We sought to delineate the RNA-sensing PRR pathways that are activated during infection with an RNA virus, the signaling mediators involved and the influence on subsequent virus-specific adaptive immune responses. To analyze the role of RNA-sensing PRRs in T-cell immune responses in vitro, we performed direct co-stimulation experiments on CD4+ T-cells of high purity. We utilized synthetic RNA-like immune response modifiers (IRMs) R-848 (MyD88-dependent) and poly I:C (MyD88-independent) as RNA PAMPs to determine the direct effects of RNA-sensing PRR activation on CD4+ T-cells. RNA PAMPs can act directly on CD4+ T-cells and modulate their function and phenotype. Maximal direct co-stimulatory effects were observed in CD4+ T-cells cultured with poly I:C compared to R-848. The cytoplasmic dsRNA-dependent protein kinase R (PKR) was also involved in poly I:C-mediated signaling in CD4+ T-cells. We found differences in the RNA-sensing PRRs activated by R-848 between mouse and human CD4+ T-cells. We observed minimal direct co-stimulatory effects by R-848 in mouse CD4+ T-cells. In contrast, augmentation of Th1 responses by R-848 was observed in human CD4+ T-cells. TLR8 activation in human CD4+ T-cells may explain the observed differences. We next explored the signaling pathways activated by RNA PAMPs in conventional dendritic cells (cDCs) and CD4+ T-cells that drive Th1 CD4 T-cell responses in isolated cDC/CD4 T-cell interactions. Allogeneic cDCs and CD4+ T-cells of high purity were cultured together with R-848 and poly I:C in MHC congenic mixed leukocyte reactions (MLRs). R-848 and poly I:C stimulation of type I IFN production and signaling was essential but not sufficient for driving CD4+ Th1 responses. The early production of IL-1α and IL-1β was equally critical. To analyze the role of RNA-sensing PRRs in T-cell immune responses in vivo, we utilized a mouse model of heterosubtypic influenza A virus (IAV) infections. Using MyD88-/-, TLR7-/- and IL-1-deficient mice, we explored the role of MyD88-signaling in the generation of heterosubtypic memory CD4+ T-cell, CD8+ T-cell and antibody responses. We found that MyD88 signaling played an important role in anti-IAV spleen and lung CD4+ T-cell, spleen CD8+ T-cell and Th1 antibody immune responses. Anti-IAV lung heterosubtypic CD8+ T-cell responses were not dependent on MyD88 signaling. Our in vitro and in vivo results show the pivotal role of RNA-sensing PRR pathway activation in T-cell immune responses. Understanding the complexity of the PRR pathways involved during viral infections and defining the subsequent immune response would have important implications for the generation of more effective vaccine strategies.
122

Intranasal Colonization by Streptococcus Pneumoniae Induces Immunological Protection from Pulmonary and Systemic Infection: A Dissertation

Maung, Nang H. 24 August 2011 (has links)
Given that Streptococcus pneumoniae can cause life-threatening pulmonary and systemic infection, an apparent paradox is that the bacterium resides, usually harmlessly, in the nasopharynx of many people. Humoral immunity is thought to be the primary defense against serious pneumococcal infection, and we hypothesized that nasopharyngeal colonization of mice results in the generation of an antibody response that provides long-term protection against lung infection. We found that survival of of C57L/6 mice after intranasal inoculation with wild-type serotype 4 strain TIGR4 pneumococci required B cells but not T cells, suggesting that nasopharyngeal colonization elicited a protective humoral immune response. In fact, intranasal inoculation resulted in detectable pneumococcal-specific antibody responses, and protected mice against a subsequent high-dose S. pneumoniae pulmonary challenge. B cells were required for this response, and transfer of immune sera from i.n. colonized mice, or monoclonal antibodies against phosphorylcholine, a common surface antigen of S. pneumoniae, was sufficient to confer protection. IgA, which is thought to participate in mucosal immunity, contributed to but was not absolutely required for protection from pulmonary challenge. Protection induced by i.n. colonization lasted at least ten weeks. Although it was partially dependent on T cells, depletion of CD4+ T cells at the time of challenge did not alter protection, suggesting that T cells did not provide essential help in activation of conventional memory cells. Peritoneal B1b cells and radiation-resistant, long-lived antibody secreting cells have previously been shown to secrete anti-pneumococcal antibodies and mediate protection against systemic infection following immunization with killed bacteria or capsular polysaccharide [1, 2]. We found that peritoneal cells were not sufficient for colonization-induced protection, but sub-lethally irradiated mice largely survived pulmonary challenge. Thus, our results are consistent with the hypothesis that nasopharyngeal colonization, a common occurrence in humans, is capable of eliciting extended protection against invasive pneumococcal disease by generating long-lived antibody-secreting cells.
123

The Subtype Specific and Cross-Reactive T Cell Responses to Influenza Viruses in Humans: A Dissertation

Babon, Jenny Aurielle B. 03 April 2012 (has links)
Human influenza is a contagious respiratory disease resulting in substantial morbidity and mortality worldwide. With the recent cases of avian influenza infections in humans and the heightened concern for an influenza pandemic arising from these infections, it is essential to understand host responses that would confer protective immunity to influenza. The cell-mediated immune responses to influenza virus play an important role during influenza infection. To analyze the specificity and diversity of memory T-cell responses, we performed a genome-wide screening of T cell epitopes to influenza A virus in healthy adult donors. We identified a total of 83 peptides, 54 of them novel, to which specific T cells were detectable in interferon-(IFN-γ) enzyme-linked immunosorbent spot assays (ELISPOT) using peripheral blood mononuclear cells (PBMCs) from four healthy adult donors. We found that among 11 influenza viral proteins, hemagglutinin (HA) and matrix protein 1 (M1) had more T-cell epitopes than other viral proteins. The donors were not previously exposed to H5N1 subtype, but we detected H5 HA T cell responses in two of the four donors. To confirm that HA is a major target of T cell responses we also analyzed H1 and H3 HA-specific T-cell responses using PBMC of additional 30 adult donors. Fifteen out of thirty donors gave a positive response to H3 HA peptides, whereas five of thirty donors gave a positive response to H1 HA peptides. Because we detected T cell responses to the H5 HA peptides in donors without prior exposure to H5N1 subtype, we asked if cross-reactive T cells to H5 HA peptides can be attributed to a prior exposure to H2N2 subtype, the closest HA to the H5 based on their phylogeny. We compared younger donors who have no prior exposure to H2N2 subtype and older donors who were likely to be exposed to H2N2 subtype, and both groups responded H2N2 peptides at similar level, suggesting that memory T cells cross-reactive to H5 HA peptides can be generated by prior exposure to the H1N1 and H3N2 subtypes, and the exposure to H2N2 subtype is not necessary. We subsequently identified a CD4+ T cell epitope that lies in the fusion peptide of the HA. This epitope is well conserved in all 16 subtypes of HA of influenza A and the HA of the influenza B virus. A CD4+ T cell line specific to this epitope recognizes target cells infected with various influenza A viruses including seasonal H1N1 and H3N2, a reassortant H2N1, the 2009 pandemic H1N1, H5N1 and influenza B virus in cytotoxicity assays and intracellular cytokine staining assays. Individuals who have the HLA-DRB1*09 allele have ex vivo IFN-γ responses to this epitope peptide in ELISPOT. Although natural infection or standard vaccination may not induce strong T and B cell responses to this very conserved epitope in the fusion peptide, it may be possible to develop a vaccination strategy to induce these CD4+ T cells which are cross-reactive to both influenza A and B viruses.
124

Serotype Cross-Reactive CD8+ T Cell Response to Heterologous Secondary Dengue Virus Infections in Humans: a Dissertation

Bashyam, Hema Sundara 18 October 2006 (has links)
The generation of memory T cells following primary exposure to a pathogen is a critical feature of the vertebrate immune system which has evolved as a protective mechanism in order to defend the host against repeated assaults by the patnogen. Memory T cells are long-lived, undergo rapid proliferation upon re-activation, mediate a robust secondary response and clear the pathogen much more efficiently. These aspects have made the generation of memory T cells an attractive goal for the production of both prophylactic and therapeutic vaccines. However, the degeneracy of the T cell receptor, whereby a given T cell recognizes more than one epitope, allows the T cell to be modulated by epitope variants which could be self-ligands, ligands related to the original epitope but altered in sequence, or completely unrelated epitopes. Experiments in both mice and humans show that such cross-reactive stimulation of memory T cells results in complete, partial, or no activation of T cells, and in some cases, even alters the functional identity of the T cell (for example, T helper 1 cells start secreting IL-4, IL-5 and become part of a T helper 2 response). In the context of secondary infection of immune organisms with pathogens containing mutated or related T cell epitopes, such alterations at the cellular level translate into drastic changes in the overall clinical outcome of the infection. Thus, the presence of cross-reactive T cells in the memory population implies that the protective or pathologic nature of the secondary immune response is a consequence of the host's infection history. Although several murine models of heterologous infection resulting in altered pathological outcome have been studied, the exact immune correlates of protection versus immunopathology are still unclear. This thesis addresses this issue in dengue virus infections in humans. Dengue fever (DF) and Dengue Hemorrhagic Fever (DHF) are two disease manifestations caused by infections of humans by the dengue viruses. These are a group of 4 serologically distinct flaviviruses (D1-4) which often co-circulate among endemic populations. While primary infection with any of the four serotypes can result in the more severe clinical disease characterized by DHF, epidemiological data from several outbreaks show that 80% - 90% of DHF cases occur among individuals with secondary infection. This implies that prior immunity to dengue is actually a risk factor for developing severe disease. In these DHF cases, there are increased numbers of CD69+ CD8+ T cells in circulation, with increases observed in the frequency of epitope-specific T cells, and the serum levels of several T cell produced cytokines, chemokines, and immune receptors are highly elevated. Since the four serotypes share 65% - 75% amino acid sequence homology, the possibility that unconserved T cell epitope sequences stimulated cross-reactive responses was borne out in in vitroexaminations. In these studies, peripheral blood mononuclear cells (PBMC) and cloned T cells from both vaccinated and infected donors contained large populations of memory T cells that were cross-reactive for heterologous viral serotypes in proliferation and CTL assays. These data suggest that the severity of disease seen in DHF patients can be attributed to an immunopathologic secondary response during heterologous infection, and highlight a role for serotype cross-reactive T cells in this process. This thesis addresses the hypothesis that the recognition of the natural variants of dengue virus T cell epitopes by serotype cross-reactive CD8+ T cells of a dengue-immune donor results in an altered secondary response profile, with the changes reflected in both the quantitative and qualitative nature of the response. In order to compare the functional profile of the secondary response of dengue-immune PBMC re-activated with heterologous serotypes, we focused on a panel of 4 donors who were vaccinated with live attenuated monovalent vaccines corresponding to D1, D2, or D4 serotypes. We screened a panel of peptides predicted to bind to HLA-A*0201 for cytokine responses and identified 4 novel epitopes that were highly immunogenic in all four donors. Direct ex vivo stimulation of donor PBMC with the heterologous sequences of these epitopes also showed sizeable serotype cross-reactive T cell populations. CFSE- and intracellular staining for cytokines and chemokines showed that these cross-reactive T cells not only expanded but also produced IFNγ, TNFα, and MIP-1β. Multi-parameter staining revealed functionally diverse populations comprised of single cytokine (IFNγ+, TNFα+, MIP-1β+, double cytokine (IFNγ+TNFα+, IFNγ+MIP-1β+, TNFα+MIP-1β+, and triple cytokine (IFNγ+TNFα+MIP-1β+ secreting sub-sets. Stimulation with the epitope variants altered the magnitude of the overall response as well as the relative sizes of these sub-sets. The patterns of responses revealed the effects of epitope immunogenicity, infection history and donor-specific variability. All 4 donors showed the highest cytokine response to a -single epitope (NS4b 2353). The same two peptide variants (D2 NS4a 2148 and D3 NS4b 2343) induced the highest response in all 4 donors regardless of the serotype of primary dengue infection. Interestingly, the epitope variants which showed the highest immunogenecity in our donors corresponded to the D2 and D3 serotypes which have been documented as being more virulent as well as a viral risk factor for DHF. In one donor, the response to all peptide variants was dominated by the same cytokine sub-sets. These data suggested that the dengue-immune memory T cell repertoire was functionally diverse and underwent alterations in size after secondary stimulation. Therefore, we also investigated the effect of epitope variants on dengue-specific CD8+T cell clones isolated from vaccinated and infected donors in order to determine if epitope variants induced altered functional outcomes at the clonal level. The epitope variants functioned either as strong agonists (particularly the D2 and D3 sequences), partial agonists, or null ligands. Some variants were able to induce cytolysis but not other effector functions at low concentrations. The variant ligands also influenced the hierarchy of cytokine responses within each clone. The third part of this thesis focused on the characterization of the frequency and phenotypic profile of epitope-specific CD8+ T cells in patients with DHF and DF at different times in the disease course in order to better understand the kinetics of the response and delineate any differences between the immune profile of severe vs. moderate disease. Tetramer staining for a previously identified HLA-B*07 restricted epitope was combined with staining for activation markers (CD69, CD38, HLA-DR), homing receptors (CCR7, CD62L), and programmed death receptor 1 (PD-1). The DHF subjects had early T cell activation with higher frequencies of tetramer+CD69+ cells as compared to DF subjects, in whom T cell frequencies peaked around the time of defervescence. While each subject had a unique phenotypic profile of tetramer+ cells, there was a difference between DF and DHF subjects in terms of CCR 7 expression; all subjects expressed low levels of CCR7 during acute illness but only the DHF subjects did not show upregulation of CCR7 on tetramer+ cells during convalescence. These data suggest that there is a sustained alteration in memory phenotype in those who recovered from severe dengue disease. A majority of the tetramer+cells also expressed PD-1 during acute illness but not during convalescence. Double-staining with variant tetramers allowed us to directly visualize serotype cross-reactivity of the epitope-specific population, and showed that secondary stimulation did induce the expansion of cells with low avidity for that secondary serotype and higher avidity to the variant. Furthermore, the ratios of these sub-sets changed during the course of the response. Taken together, these studies suggest that the immune response to heterologous secondary dengue infection is mediated by a heterogeneous population of serotype-cross reactive T cells that have different functional avidities to epitope variants and is influenced by the serotype of the secondary infection as well as the prior infection history of the individual. The preferential expansion of clones which secrete IFNγ but not inflammatory MIP-1β or TNFα or a repertoire characterized by a higher ratio of cytolytic to cytokine producing clones could limit immune mediated damage while efficiently clearing the virus. This information will be useful in the design of vaccine strategies aimed at inducing protective cross-reactive responses against all 4 dengue serotypes while preventing immunopathological outcomes following secondary infection.
125

Mutations in the <em>vpu</em> and <em>env</em> Genes of HIV-1 Can Adversely Impact Infectivity: A Dissertation

Richards, Kathryn H. 12 May 2008 (has links)
The Human Immunodeficiency Virus (HIV) is able to infect CD4+ T cells as well as macrophages. Macrophage-tropism has been linked to determinants in the envelope of HIV. These determinants allow envelopes to exploit low levels of CD4 for infection. Macrophages are an important reservoir of virus, especially during chronic infection, and are likely responsible for the bulk of virus produced after CD4+T cells have declined. Viral factors that may impact the ability to infect macrophages are worth studying because this cell type is so important in infection. It was previously reported that the macrophage-tropic primary isolate AD8 was vpu-independent. The molecular clone YU-2, derived from brain tissue without culture, was also reported to be macrophage-tropic despite having a mutation in the vpu start codon. It was therefore possible that vpu-independent envelopes could evolve in vivo. To examine this possibility, I constructed chimeras containing wild type or defective vpu start codons, and gp160 sequences from AD8, YU-2 or SF162 (a vpu-dependent control). I also used full length AD8 and YU-2 with wild type or defective vpu start codons. I infected macrophages with equal amounts of virus, and measured viral output over two weeks. Viruses with defective vpu start codons were released to lower levels compared to their wild type vpucounterparts. In contrast to previous reports, the AD8 envelope is not vpu-independent for replication in macrophages. The YU-2 envelope is also not vpu-independent. Macrophage-tropic envelopes from late stages of infection can be sensitive to antibodies that bind the CD4 binding site on gp120, implying that macrophage-tropic envelopes have more exposed CD4 binding sites. Neutralizing antibodies may act as modulators of macrophage-tropism over the course of infection. Using chimeras containing gp120 sequences derived from the PBMC of four HIV+patients, I examined the capacity for envelopes to infect macrophages. Three patients (MM1, 4, and 8) had macrophage-tropic envelopes before and after developing autologous neutralizing antibodies. Three patients (MM1, 4, and 23) developed heterologous antibodies against IIIB, an easily neutralized T-cell line adapted strain of HIV-1. This data indicates that macrophage-tropism in these patients is not modulated by the presence of neutralizing antibodies. The macrophage-tropism of envelopes tends to segregate depending on the tissue origin of the virus. Envelopes from two separate tissues from the same patient exhibit very different infectivity characteristics. The B33 envelope, from brain tissue, is very infectious and is macrophage-tropic, while the LN40 envelope, from lymph node tissue, is weakly infectious and is not macrophage-tropic. Replacing the entire gp41 of LN40 with that of B33 restores some infectivity to LN40. The cytoplasmic domain of gp41 contains many motifs important for assembly and infectivity. To examine which motifs are responsible for the weak infectivity of LN40, I made chimeras of gp41, as well as point mutations in gp41. The LN40 chimera containing the entire gp41 of B33 restored the most infectivity. Point mutations in the palmitoylation site, Pr55gagbinding region, and dileucine motif at the C-terminus also restored infectivity when combined. Determinants in the gp41 cytoplasmic domain are responsible for the weak infectivity of LN40; however, it is possible that there are contributing determinants in gp120, such as the ability to use low levels of CD4. Here, I examined how changes in the vpu and env genes of HIV-1 can impact infectivity, especially infectivity of macrophages. Changes that adversely impact the virus’ ability to infect macrophages may also impact the overall course of disease. However, the data here show that retaining the ability to infect, and replicate in, macrophages give HIV an advantage. I speculate that retaining the ability to infect macrophages gives the virus a reservoir for later in disease, when CD4+ T cells have been depleted, as well as way of avoiding neutralizing antibodies. This work further defines the importance of macrophages in HIV-1 infectivity and disease.
126

Role of Endoplasmic Reticulum Stress Response Signaling in T Cells: A Dissertation

Pino, Steven C. 08 July 2008 (has links)
T cells play a central role in cellular-mediated immunity and must become activated to participate as effector cells in the immune response. The activation process is highly intricate and involves stimulation of a number of downstream signaling pathways enabling T cells to proliferate and produce cytokines that are vital for proper effector function. This increase in protein production and protein folding activity adds to the normal physiological strain on cellular machinery. One cellular compartment that has generated a mechanism to mitigate the stress induced by increased protein production is the endoplasmic reticulum (ER). In general, an increase in cellular production of proteins that overwhelms a cell’s protein folding capability can alter ER homeostasis and lead to ER stress. To counteract this stress, an adaptive cellular mechanism known as the ER stress response (ERSR) is initiated. The ERSR allows a cell to cope with normal physiological stress within the ER caused by increased protein translation. In this dissertation, we show that in vitro and in vivoT cell activation involving T cell receptor (TCR) ligation in the presence of costimulation initiates the physiological ERSR. Interestingly, the ERSR was also activated in T cells exposed only to TCR ligation, a treatment known to induce the ‘non-responsive’ states of anergy and tolerance. We further identified a key component of the downstream TCR signaling pathway, protein kinase C (PKC), as an initiator of physiological ERSR signaling, thus revealing a previously unknown role for this serine/threonine protein kinase in T cells. Therefore, induction of the physiological ERSR through PKC signaling may be an important ‘preparatory’ mechanism initiated during the early activation phase of T cells. If ER stress is persistent and ER homeostasis is not reestablished, physiological ER stress becomes pathological and initiates cellular death pathways through ER stress-induced apoptotic signaling. We further present data demonstrating that absence of functional Gimap5, a putative GTPase implicated to play a role in TCR signaling and maintenance of overall T cell homeostasis, leads to pathological ER stress and apoptosis. Using the BioBreeding diabetes-prone (BBDP) rat, a model for type 1 diabetes (T1D), we link pathological ER stress and ER stress-induced apoptotic signaling to the observed T cell lymphopenic phenotype of the animal. By depleting the ER stress apoptotic factor CHOP with siRNA, we were able to protect Gimap5-/-BBDP rat T cells from ER stress-induced death. These findings indicate a direct relationship between Gimap5 and maintenance of ER homeostasis for T cell survival. Overall, our findings suggest that the ERSR is activated by physiological and pathological conditions that disrupt T cell homeostasis. TCR signaling that leads to PKC activation initiates a physiological ERSR, perhaps in preparation for a T cell response to antigen. In addition, we also describe an example of pathological ERSR induction in T cells. Namely, we report that the absence of functional Gimap5 protein in T cells causes CHOP-dependent ER stress-induced apoptosis, perhaps initiated by deregulation of TCR signaling. This indicates a dual role for TCR signaling and regulation in the initiation of both the physiological and pathological ERSR. Future research that provides insights into the molecular mechanisms that govern ERSR induction in TCR signaling and regulation may lead to development of therapeutic modalities for treatment of immune-mediated diseases such as T1D.
127

A View of the IMD Pathway from the RHIM

Aggarwal, Kamna 29 March 2010 (has links)
Innate immunity is the first line of defense against invading pathogens. It functions to eliminate pathogens and also to control infections. The innate immune response is also important for the development of pathogen-specific adaptive immune responses. As a result, the study of innate immune signaling pathways is crucial for understanding the interactions between host and pathogen. Unlike mammals, insects lack a classical adaptive immune response and rely mostly on innate immune responses. Innate immune mechanisms have been widely studied in the fruit fly, Drosophila melanogaster. The genetic and molecular tools available in the Drosophila system make it an excellent model system for studying immunity. Furthermore, the innate immune signaling pathways used by Drosophila show strong homology to those of vertebrates making them ideal for studying these pathways. Drosophila immunity relies on cellular and humoral innate immune responses to fight pathogens. The hallmark of the Drosophilahumoral immune response is the rapid induction of antimicrobial peptide genes in the fat body. The production of these antimicrobial peptides is regulated by two immune signaling pathways-Toll and Immune Deficency (IMD) pathways. The Toll pathway responds to many Gram-positive bacterial and fungal infections , while the IMD pathway is potently activated by DAP-type peptidoglycan (PGN) from Gram-negative bacteria and certain Gram-positive bacteria. Two receptors, PGRP-LC and PGRP-LE, are able to recognize DAP-type PGN at the cell surface or in the cytosol, respectively, and trigger the IMD pathway. Upon binding DAP-type PGN, both PGRP-LC and PGRP-LE dimerize/ multimerize and signal to the downstream components of IMD pathway. It is unclear how the receptor activates its downstream components. My work has focused on understanding the molecular events that take place at the receptors following there activation. In these studies I have identified a common motif in the N-terminal domains of both the receptors, known as the RHIM-like domain. The RHIM-like domain is critical for signaling by either receptor, but the mechanism(s) involved remain unclear. IMD, a downstream component of the pathway, associates with both PGRP-LC and -LE but the interaction of PGRP-LC with IMD is not mediated through its RHIM-like domain. Also, mutations affecting the PGRP-LC RHIM-like motif are defective in all known downstream signaling events. However, the RHIM-like mutant receptors are capable of serving as a platform for the assembly of all known components of a receptor proximal signaling complex. These results suggest that another, unidentified component of the IMD signaling pathway may function to mediate interaction with the RHIM-like motif. I performed a yeast two-hybrid screen to identify proteins that might interact with the receptor PGRP-LC through its RHIM- like domain. With this approach, two new components of the IMD pathway were identified. The first component I characterized is called Rudra and it is a critical feedback inhibitor of peptidoglycan receptor signaling. The other factor is known as RYBP, it includes a highly conserved ubiquitin binding motif (NZF), and RNAi studies suggest it is a critical component of the IMD pathway. The identification and characterization of these two new components of the IMD pathway has provided a new insight into the molecular events that take place proximal to the receptor.
128

HIV-1 R5 Tropism: Determinants, Macrophages, and Dendritic Cells: A Dissertation

Musich, Thomas A. 14 May 2012 (has links)
Around thirty years ago HIV-1 was identified, and from that point the known epidemic has grown to over 30 million infected individuals. Early on in the course of HIV-1 research, viruses were classified as either syncytia inducing, CXCR4-using, T-cell tropic or non-syncytia inducing, CCR5-using, macrophage tropic. Since that time, several groups have shown that this is an oversimplification. There is a great deal of diversity amongst CCR5-using HIV-1 variants. There remains a great deal to be discovered regarding HIV-1 CCR5-tropism and how this affects other aspects of HIV-1 infection. The CD4 binding site (CD4bs) on the HIV-1 envelope plays a major role in determining the capacity of R5 viruses to infect primary macrophages. Thus, envelope determinants within or proximal to the CD4bs have been shown to control the use of low CD4 levels on macrophages for infection. These residues affect the affinity for CD4 either directly or indirectly by altering the exposure of CD4 contact residues. In this thesis, a single amino acid determinant is described in the V1 loop that also modulates macrophage tropism. I identified an E153G substitution that conferred high levels of macrophage infectivity for several heterologous R5 envelopes, while the reciprocal G153E substitution abrogated infection. Shifts in macrophage tropism were associated with dramatic shifts in sensitivity to the V3 loop monoclonal antibody (MAb), 447-52D and soluble CD4, as well as more modest changes in sensitivity to the CD4bs MAb, b12. These observations are consistent with an altered conformation or exposure of the V3 loop that enables the envelope to use low CD4 levels for infection. The modest shifts in b12 sensitivity suggest that residue 153 impacts on the exposure of the CD4bs. However, the more intense shifts in sCD4 sensitivity suggest additional mechanisms that likely include an increased ability of the envelope to undergo conformational changes following binding to suboptimal levels of cell surface CD4. In summary, a conserved determinant in the V1 loop modulates the V3 loop to prime low CD4 use and macrophage infection. In addition to determinants, this thesis seeks to evaluate the roles of macrophage tropic and non-macrophage tropic envelopes during the course of infection. Non-macrophage tropic virus predominates in immune tissue throughout infection, even in individuals suffering from HIV-associated dementia (HAD) who are known to carry many macrophage tropic viruses. There must be some advantage for these non-macrophage tropic viruses allowing them to persist in immune tissue throughout the disease. This thesis demonstrates that there is no advantage for these viruses to directly infect CD4+ T-cells, nor is there an advantage for them to be preferentially transmitted by dendritic cells to CD4+ T-cells. Given that transmitted/founder (T/F) viruses may preferentially interact with α4β7, and T/F viruses are non-macrophage tropic, I tested whether non-mac viruses could utilize α4β7 to their advantage. These experiments show that macrophage tropism does not play a role in gp120 interactions with α4β7. I evaluated whether there was a distinct disadvantage to macrophage tropic Envs, given their ability to infect dendritic cells and possibly stimulate the innate immune response. Using infected monocyte-derived dendritic cells (MDDCs), it was shown that mac-tropic Envs do not generate a significant immune response. These experiments demonstrate that there does not appear to be any advantage to non-macrophage tropic Envs, and that macrophage tropic Envs are able to infect CD4+ T-cells more efficiently, as well as DCs.
129

Fetal Origin of Chronic Immune Disease: Role of Prenatal Stress Challenge

Jago, Caitlin A. January 2012 (has links)
<p>NB: I had another committee member, Dr. Mark Larché; and would like to have his name included in the document.</p> <p>Thank you.</p> / <p><strong>Introduction: </strong>Increasing incidence of chronic immune diseases are mirrored by changing disease risk factors, which include maternal stress during pregnancy. To date, no studies have investigated the impact of prenatal stress challenge (PNS) on the fetal immune system. Fetal liver and bone marrow represent major sources of hematopoietic stem cells (HSC) at mid gestation, which differentiate and mature in the thymus. Disturbance of immune development may cause immune impairment in later life. Further, progesterone is recognized as a critical part of feto-maternal interaction. This study aimed to determine if PNS interferes with normal fetal immune development in mice and the impact of progesterone supplementation on stress effects. <strong>Methods: </strong>DBA/2J-mated BALB/c dams were sorted into three groups: control, PNS (gestation days (GDs) 12.5 and 14.5) and PNS plus progesterone supplementation (DHD). Fetal tissue was collected on GDs 16.5 and 18.5. Flow cytometric analysis examined frequency and phenotype of fetal immune cell populations: HSC in fetal liver and bone marrow, and different stages of T cell maturation and regulatory T (Treg) cells in the thymus. Fetal tails were collected to determine fetal sex by PCR analysis. <strong>Results: </strong>PNS induced a decrease in organ size on GD16.5, which was not seen on GD18.5 and was reversed by DHD treatment. PNS altered the percentage and absolute number of HSC within the liver and bone marrow populations, on GD16.5 and 18.5. There was a significant lag in T cell maturation as demonstrated by the altered expression of CD3 and skewed CD3-:CD3+ ratio. There was a significant decrease in Treg cells within CD3+ thymic cells in response to PNS. PNS effects in the thymus were ameliorated by DHD treatment. There was no PNS-induced sex bias. <strong>Conclusions: </strong>These results indicate that PNS compromises the developing fetal immune system, which could account for impaired immune responses in adults with chronic immune disease, and provide evidence for a therapeutic role of progesterone supplementation.</p> / Master of Science (MSc)
130

Σχεδιασμός ανάπτυξη και εφαρμογή συστήματος υποστήριξης της διάγνωσης επιχρισμάτων θυρεοειδούς δεδομένων βιοψίας με λεπτή βελόνη FNA με χρήση εξελιγμένων μεθόδων εξόρυξης δεδομένων

Ζούλιας, Εμμανουήλ 17 September 2012 (has links)
Σκοπός της παρούσας διδακτορικής διατριβής είναι η ανάπτυξη ενός ολοκληρωμένου συστήματος υποστήριξης της διάγνωσης (Decision Support System - DSS) με χρήση μεθόδων εξόρυξης δεδομένων για την ταξινόμηση επιχρισμάτων βιοψίας με λεπτή βελόνα (Fine Needle Aspiration - FNA). Δύο κατηγορίες επιλέχθηκαν για τα δείγματα FNA: καλοήθεια και κακοήθεια. Το σύστημα αυτό αποτελείται από τις ακόλουθες βαθμίδες: 1) συλλογής δεδομένων, 2) επιλογής δεδομένων, 3) εύρεσης κατάλληλων χαρακτηριστικών, 4) εφαρμογής ταξινόμησης με χρήση μεθόδων εξόρυξης δεδομένων. Επίσης, βασικός στόχος της παρούσας διδακτορικής διατριβής ήταν η βελτίωση της ορθής ταξινόμησης των ύποπτων επιχρισμάτων (suspicious), για τα οποία είναι γνωστή η αδυναμία της μεθόδου FNA να τα ταξινομήσει. Το σύστημα εκπαιδεύτηκε και ελέγχθηκε σε σχέση με το δείγμα για το οποίο είχαμε ιστολογικές επιβεβαιώσεις (ground truth). Για περιπτώσεις οι οποίες χαρακτηρίστηκαν ως μη κακοήθεις από την FNA, και για τις οποίες δεν είχαμε ιστολογικές επιβεβαιώσεις, το δείγμα προέκυψε από την συνεκτίμηση και άλλων κλινικών, εργαστηριακών και απεικονιστικών εξετάσεων. Στα πλαίσια της παρούσας διδακτορικής διατριβής συλλέχθηκαν εξετάσεις FNA θυρεοειδούς από το Εργαστήριο Παθολογοανατομίας του Α’ Τμήματος Παθολογίας της Ιατρικής Σχολής του Πανεπιστημίου Αθηνών. Δεδομένου ότι το εν λόγω εργαστήριο λειτουργεί και σαν κέντρο αναφοράς, σημαντικός αριθμός των δειγμάτων εστάλησαν εκεί και από άλλα Εργαστήρια Παθολογοανατομίας για επανέλεγχο. Το αρχειακό υλικό ήταν πολύ καλά ταξινομημένο σε χρονολογική σειρά αλλά ήταν σε έντυπη μορφή. Αρχικά πραγματοποιήθηκε η ανάλυση απαιτήσεων για τη δομή και το σχεδιασμό της βάσης δεδομένων. Με βάση τα στοιχεία από την τεκμηριωμένη διάγνωση σχεδιάστηκε και αναπτύχθηκε προηγμένο σύστημα για την κωδικοποίηση και αρχικοποίηση των δεδομένων. Με τη βοήθεια του σχεδιασμού και ανάλυσης απαιτήσεων αναπτύχθηκε και υλοποιήθηκε η βάση δεδομένων στην οποία αποθηκεύτηκαν τα δεδομένα προς επεξεργασία. Παράλληλα, με το σχεδιασμό της βάσης έγινε και η προεργασία για το σχεδιασμό και την ανάλυση απαιτήσεων του γραφικού περιβάλλοντος εισαγωγής στοιχείων. Λαμβάνοντας υπόψη ότι το σύστημα θα μπορούσε να χρησιμοποιηθεί και πέρα από τα πλαίσια της παρούσας διδακτορικής διατριβής λήφθηκε μέριμνα ώστε να παρέχεται ένα φιλικό και ευέλικτο προς το χρήστη περιβάλλον. Σύμφωνα με τη μεθοδολογία προσέγγισης η οποία ακολουθήθηκε προηγήθηκε στατιστική ανάλυση των 9.102 συλλεχθέντων δειγμάτων FNA ως προς τα κυτταρολογικά χαρακτηριστικά τους και τις διαγνώσεις. Οι κυτταρολογικές διαγνώσεις των συγκεκριμένων δειγμάτων συσχετίστηκαν με τις ιστολογικές διαγνώσεις, στοχεύοντας στον υπολογισμό της πιθανής επίδρασης και συμβολής κάθε κυτταρολογικού χαρακτηριστικού σε μια ορθή ή ψευδή κυτταρολογική διάγνωση, έτσι ώστε να προσδιοριστούν οι πιθανές πηγές λανθασμένης διάγνωσης. Τα δείγματα τα οποία περιείχαν μόνο αίμα ή πολύ λίγα θυλακειώδη κύτταρα χωρίς κολλοειδές θεωρήθηκαν ανεπαρκή για τη διάγνωση. Οι βιοψίες εκτελέσθηκαν είτε στο Α’ τμήμα του Πανεπιστημίου Αθηνών (οι περισσότερες από τις περιπτώσεις με ψηλαφητούς όζους) είτε αλλού (κυρίως κάτω από την καθοδήγηση του κέντρου αναφοράς). Τα δείγματα επιστρωμένα σε πλακάκια, στάλθηκαν στο κέντρο αναφοράς από διάφορα νοσοκομεία, με διαφορετικά πρωτόκολλα σχετικά με τα κριτήρια εκτέλεσης βιοψίας FNA σε θυρεοειδή. Μετεγχειρητικές ιστολογικές επαληθεύσεις ήταν διαθέσιμες για 266 ασθενείς (κακοήθειες και μη). Το χαμηλό ποσοστό ιστολογικών επαληθεύσεων οφείλεται στην ετερογενή προέλευση των ασθενών και στην έλλειψη ολοκληρωμένης παρακολούθησης και επανελέγχου των ασθενών. Για την αξιολόγηση των δεδομένων χρησιμοποιήθηκαν περιγραφικά στατιστικά μεγέθη όπως, μέση τιμή, τυπική απόκλιση, ποσοστά, μέγιστο και ελάχιστο. Έγιναν επίσης και χ2 δοκιμές επιπέδου σημαντικότητας διαφόρων παραμέτρων για να ελεγχθεί η πιθανή συσχέτιση ή η ανεξαρτησία. Για τη συσχέτιση των κυτταρολογικών και των ιστολογικών διαγνώσεων και την αξιολόγηση των εργαστηριακών ευρημάτων, πέραν των περιγραφικών στατιστικών μεγεθών χρησιμοποιήθηκαν και υπολογισμοί της ευαισθησίας, της ειδικότητας, της συνολικής ακρίβειας, της αρνητικής και θετικής αξίας πρόβλεψης (negative and positive predictive value). Προκειμένου να καθοριστεί εάν μια κατηγορία ασθενειών συσχετίζεται ή όχι με συγκεκριμένες κυτταρολογικές παραμέτρους εφαρμόστηκε μέθοδος ελέγχου στατιστικής σημαντικότητας σε επίπεδο 5% (p < 0,05). Η διαδικασία ακολουθήθηκε για κάθε κατηγορία ασθενειών ή συνδυασμό τους και για κάθε παράμετρο των κυτταρολογικών και αρχιτεκτονικών στοιχείων της κυτταρολογικής διάγνωσης. Τα αποτελέσματα της στατιστικής ανάλυσης επέτρεψαν το διαχωρισμό των δεδομένων σε καλοήθη, κακοήθη, νεοπλασματικά, ύποπτα για κακοήθεια και οριακά με χαρακτηριστικά γνωρίσματα μεταξύ ενός καλοήθους και ενός νεοπλασματικού. Στην συνέχεια αναπτύχθηκε σύστημα υποστήριξης της διάγνωσης χρησιμοποιώντας εξειδικευμένες μεθόδους εξόρυξης δεδομένων. Το σύστημα αποτελείται από τέσσερις βαθμίδες. Η πρώτη βαθμίδα αυτού του συστήματος είναι το περιβάλλον Συλλογής Δεδομένων στην οποία τα δεδομένα αποθηκεύονται στη βάση δεδομένων. Η Δεύτερη Βαθμίδα αυτού του συστήματος αφορά στην Επιλογή Δεδομένων. Σύμφωνα με την καταγραφή των απαιτήσεων, την εισαγωγή και τη ψηφιοποίηση των στοιχείων, δημιουργήθηκαν 111 χαρακτηριστικά για κάθε ασθενή (record). Τα περισσότερα χαρακτηριστικά είχαν τιμές δυαδικού τύπου, αποτυπώνοντας την ύπαρξη ή μη του κάθε χαρακτηριστικού, ενώ κάποιες άλλες είχαν τιμές τύπων αριθμών ή αλφαριθμητικών χαρακτήρων. Από τα 111 χαρακτηριστικά επιλέχθηκαν 60 χαρακτηριστικά τα οποία περιγράφουν τη δομή των επιχρισμάτων ενώ δημιουργήθηκαν άλλα 7 χαρακτηριστικά τα οποία αφορούσαν στην ομαδοποίηση άλλων χαρακτηριστικών. Η Τρίτη Βαθμίδα του συστήματος αφορά στην εύρεση των Κατάλληλων Χαρακτηριστικών. Λόγω του αρχικά υψηλού αριθμού χαρακτηριστικών παραμέτρων (67 ανά περίπτωση), ήταν απαραίτητο να εξαλειφθούν οι χαρακτηριστικές παράμετροι που συσχετίζονταν γραμμικά ή δεν είχαν καμία διαγνωστική πληροφορία. H μέθοδος επιλογής χαρακτηριστικών εφαρμόστηκε πριν από την ταξινόμηση, με γνώμονα την ανεύρεση ενός υποσυνόλου των χαρακτηριστικών παραμέτρων που βελτιστοποιούν σε ακρίβεια τη διαδικασία ταξινόμησης. Εφαρμόστηκε η τεχνική επιπλέουσας πρόσθιας ακολουθιακά μεταβαλλόμενης επιλογής (SFFS). Ο αριθμός των δειγμάτων που χρησιμοποιήθηκαν είναι 2.036 (1.886 καλοήθειες και 150 κακοήθειες). Εξ αυτών, όλες οι κακοήθειες είναι ιστολογικά επιβεβαιωμένες. Επίσης, 140 καλοήθειες είναι ιστολογικά επιβεβαιωμένες με επάρκεια υλικού. Οι υπόλοιπες 1.726 καλοήθειες είναι επιβεβαιωμένες με συνεκτίμηση κλινικών, εργαστηριακών και απεικονιστικών ιατρικών εξετάσεων (υπέρηχοι κ.λπ.). Από τα 2.036 δείγματα, το 25% χρησιμοποιήθηκε για την επιλογή χαρακτηριστικών παραμέτρων, δηλαδή 37 περιπτώσεις κακοήθειας (Malignant) και 472 περιπτώσεις καλοήθειας (Non Malignant). Από την εφαρμογή της τεχνικής (SFFS) επιλέχθηκαν τελικά 12 χαρακτηριστικά ως βέλτιστα για την ταξινόμηση των δεδομένων FNA σε καλοήθη και κακοήθη. Η Τέταρτη βαθμίδα επεξεργασίας είναι η Εφαρμογής Ταξινόμησης με χρήση Μεθόδων Εξόρυξης Δεδομένων ή Ταξινομητής. Για το σκοπό αυτό, επιλέχθηκε να εφαρμοστεί μια πληθώρα αξιόπιστων, καλά επιβεβαιωμένων και σύγχρονων μεθόδων εξόρυξης δεδομένων. Το σύστημα εκπαιδεύτηκε και ελέγχθηκε σε σχέση με το δείγμα για το οποίο είχαμε ιστολογικές επιβεβαιώσεις (ground truth). Η ανεξάρτητη εφαρμογή τεσσάρων αξιόπιστων μεθόδων, Δέντρων Αποφάσεων (Decision Trees), Τεχνιτών Νευρωνικών Δικτύων (Artificial Neural Network), Μηχανών Στήριξης Διανυσμάτων (Support Vector Machine), και Κ - κοντινότερου γείτονα (k-NN), έδωσε αποτελέσματα συγκρίσιμα με αυτά της FNA μεθόδου. Περαιτέρω βελτίωση των αποτελεσμάτων επιτεύχθηκε με την εφαρμογή της μεθόδου πλειοψηφικού κανόνα (Majority Vote - CMV) συνδυάζοντας τα αποτελέσματα από την εφαρμογή των τριών καλύτερων αλγορίθμων, ήτοι των Νευρωνικών Δικτύων, Μηχανών Στήριξης Διανυσμάτων και Κ - κοντινότερου γείτονα. Η τροποποιημένη μέθοδος τεχνητών αυτοάνοσων συστημάτων (Artificial Immune Systems – AIS) χρησιμοποιήθηκε για πρώτη φορά στην ταξινόμηση και παρουσίασε ιδιαίτερα βελτιωμένα αποτελέσματα στην ταξινόμηση των επιχρισμάτων τα οποία χαρακτηρίζονται ύποπτα (suspicious) από τους ειδικούς και αποτελούν το αδύναμο σημείο της μεθόδου FNA. Αυτές οι περιπτώσεις υπόνοιας αποτελούν ένα πολύ δύσκολο κομμάτι για τη διάκριση μεταξύ των καλοηθειών και των κακοηθειών, ακόμα και για τους πλέον ειδικούς. Επειδή όλα τα περιστατικά που χαρακτηρίζονται από την βιοψία FNA ως υπόνοιες αντιμετωπίζονται κλινικά σαν κακοήθειες, η εφαρμογή των αλγοριθμικών μεθόδων βελτιώνει αισθητά τη διαχείριση αυτών των περιπτώσεων μειώνοντας τον αριθμό των άσκοπων χειρουργικών επεμβάσεων θυρεοειδεκτομών. / The Aim of present thesis is the development of an integrated system for supporting diagnosis (Decision Support System - DSS) using for categorizing FNA biopsy smears. Two categories were selected for the FNA smears: malignant and nonmalignant. The system is constituted by the following stages of 1) data collection, 2) data selection 3) choice of suitable clinical and cytological features, 4) application of data mining method for the categorization of FNA biopsy smears. Furthermore a fundamental objective of the doctoral thesis was the improvement of suspect smears (suspicious) categorization, for the latter FNA Biopsy has a known restriction. The system had been trained and checked in relation to the sample that histologic evaluation existed (ground truth). For smears that characterized as nonmalignant by FNA and histological data we’re not available, complementary clinical, laboratory and imaging evaluations took into account in order to create the sample. Τhe smears that were available in this thesis, were collected from FNA biopsies in Pathologoanatomy Laboratory, A’ Pathology Department, Medical School of Athens University. Given that the above referred laboratory is a reference center, an important number of FNA smears were sent to it from other laboratories for cross check. The examination files were sorted in chronological order, but there were in paper forms. The requirements for the formation and the design of database system were collected. Based on the material of the diagnosis an improved system was designed and developed for data initialization and coding. The database was developed based on the design and analysis of requirements; in this database data were stored for further investigation. Analysis of the graphical user interface design was performed in parallel to the database design. Taking into account that the system might be used after the completion of thesis, the graphical user interface was designed in order to be user friendly and flexible environment. According to the methodological approach that was followed, the various cytological characteristic of 9102 FNA smears aspired among 2000-2004 was analyzed statistically. The cytological reports cross correlated with histological diagnoses, aiming to calculate the effect or contribution of each cytological characteristic to a false or true cytological diagnosis and to find the possible sources of erroneous diagnosis. The smears that have blood or a few follicular cells without colloid were characterized as insufficient for further diagnosis. The aspiration was performed either in Α’ department of Athens University (most of the cases with palpable nodules) or elsewhere (mainly under guidance of the reference center). The acquired smears being send to the reference center from various hospitals with different protocols concerning criteria to perform a thyroid FNA. Histological reports were available for 266 patients. The small number of histological verifications was due to the heterogeneity and the lack of patients files. For evaluating of data, descriptive statistic values were used like mean, standard deviation, percentage, maximum and minimum. In addition to that χ2 tests of significance were performed in order to check possible correlation or independence. For correlating cytological and histological diagnosis and evaluating laboratory findings, apart from the descriptive statistic parameters also calculated sensitivity, specificity, total accuracy, negative predictive value and positive predictive value. Method of statistical significance in the level of 5% (p < 0,05) was applied in order to specify if a disease was correlated to a cytological parameter. Those checks were performed for each disease category in correlation to any cytological parameter. Statistical analysis divided the smears into nonmalignant, malignant, neoplasms, suspicious for malignancy and borderline. A diagnosis support system was implemented using data mining methods. The system is consisted of four stages. The First stage of the system is the Data Collection environment, which stores the data to the database. The Second stage of this system concerns the Selection of Data. User requirements concluded that 111 characteristics are needed to describe each patient (record). Most of them have binary values, presenting existence and not existence, other have alphanumeric and number values. Among them 60 were selected and 7 more are produced from grouping other characteristics. The final analysis reveals that 67 characteristics of the smears are capable for describing the structure of smears in general. The Third stage of system concerns the Selection of Best Characteristics. Due to the high number of attributes (67 per case), it was essential to eliminate the characteristics that are connected linearly or do not bring diagnostics information. The choice of characteristics applied before the classification, having the aim of discovering a subset of characteristics that optimizes the process of classification. The technique of Sequential Float Forward Search (SFFS) was applied. The number of patients that used was 2,036 (1886 non malignancies and 150 malignancies). Among them all malignancies were histologically confirmed. In addition to that 140 no malignancies were histologically confirmed in correlation to evaluation of clinics, laboratorial and medical image actions (ultrasounds etc.). Among 2.036 smears the 25% used for characteristics selection, 37 smears of Malignant and smears of Non Malignant. The Sequential Float Forward Search (SFFS) Technique, choose the best 12 elements that they reveal high performance to FNA data categorization. The Fourth stage is the Application of Classification using Data Mining Methods or in other words data mining method. For this aim a set of reliable, well confirmed but also modern methods applied. In addition to that the system was trained and was checked using the sample with histological verifications (ground truth). The independent application of four reliable methods, Decision Trees, Artificial Neural Network, Support Vector Machine, and k-NN, resulting to comparable outcomes concerning those of FNA. However, further improvement was achieved with the application of Majority (Majority Vote - CMV) using of previous results of three algorithms Artificial Neural Network, Support Vector Machine, and k-NN. The modified Artificial Immune System (AIS) was applied for first time. AIS presents particularly improved results for the categorization of smears, which are characterised “suspicious” by the experts and is a known weakness of FNA method. These cases constitute a very difficult part for the discrimination among non-malignant and malignant, even for a specialist. Since all these cases are faced clinically using FNA as malignancies, the application of an improved algorithmic method improves accordingly the management of these cases by decreasing the number of useless surgical thyroid operations.

Page generated in 0.0729 seconds