• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1598
  • 689
  • 348
  • 186
  • 180
  • 93
  • 71
  • 54
  • 46
  • 32
  • 19
  • 18
  • 11
  • 10
  • 7
  • Tagged with
  • 3972
  • 574
  • 489
  • 467
  • 464
  • 428
  • 404
  • 399
  • 370
  • 360
  • 330
  • 315
  • 311
  • 306
  • 306
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
711

Nonreciprocal and Non-Spreading Transmission of Acoustic Beams through Periodic Dissipative Structures

Zubov, Yurii 05 1900 (has links)
Propagation of a Gaussian beam in a layered periodic structure is studied analytically, numerically, and experimentally. It is demonstrated that for a special set of parameters the acoustic beam propagates without diffraction spreading. This propagation is also accompanied by negative refraction of the direction of phase velocity of the Bloch wave. In the study of two-dimensional viscous phononic crystals with asymmetrical solid inclusions, it was discovered that acoustic transmission is nonreciprocal. The effect of nonreciprocity in a static viscous environment is due to broken PT symmetry of the system as a whole. The difference in transmission is caused by the asymmetrical transmission and dissipation. The asymmetrical transmission is caused solely by broken mirror symmetry and could appear even in a lossless system. Asymmetrical dissipation of sound is a time-irreversible phenomenon that arises only if both energy dissipation and broken parity symmetry are present in the system. The numerical results for both types of phononic crystals were verified experimentally. Proposed devices could be exploited as collimation, rectification, and isolation acoustic devices.
712

Edge Beams : Evaluation of the Investment Cost for Its Application to Life-Cycle Cost Analysis

Kelindeman, Martti January 2014 (has links)
Edge beams in Sweden are subjected to harsh environmental conditions, such as de-icing salts and numerous freeze-thaw cycles, which result in large expenditures for the maintenance of these items. Driven by that fact, a project was initiated to investigate the life of edge beams in more detail.   The main objective of the work was to determine and provide reliable input for establishment of investment cost of edge beams. The data was later utilized in an application of life-cycle cost analysis - created by a Ph.D student. Case studies - ongoing bridge construction projects in Askersund, Rotebro and Kallhäll - gave the basis for the research. Site visits were performed and engineers were consulted for data collection.   As an outcome of the project, costs for the edge beams in the case studies were calculated and comparative charts were presented that reveal the magnitude of cost contributors to the bridge edge beam system.   The work illustrates that the construction of edge beams is a workforce demanding process. Hence it is suggested that, to find the most optimal edge beam solution in terms of investment cost and life-cycle considerations, various construction methods such as prefabrication of edge beams should be tested and analysed.
713

CE marking of a lifting beam

Huld, Peter Mattias Pawel January 2021 (has links)
Rotork is a company stationed in Falun municipality, Sweden and manufactures electric valve actuators. This thesis will investigate one of their lifting beams used in daily production. Although already being used for more than 10 years, it is still not yet CE market which is necessary for it to be used legally. The purpose of this thesis is to investigate how the lifting beam complies with the existing directives, laws, and standards and provide a basis for CE marking. A six-step method for CE marking was decided as useful to fulfil the aims of this thesis. This method includes everything from identifying applicable directives and standards, relevant tests, documentation and a procedure to CE mark the product.The results show that the lifting beam shall indeed be regarded as a machine by the definition provided in the Machine directive 2006/42/EG and should therefore follow its requirements as well as the Swedish version of the Machine directive, AFS 2008:3. To verify which paragraphs of AFS 2008:3 the lifting beam complies with, does not comply with or are not relevant a risk analysis was performed. In order to interpret the meaning of the paragraphs in AFS 2008:3 and its appliance, a relevant standard for lifting beam was chosen which in this case was SS-EN 13155+A2:2009. The results of the risk analysis show that the lifting beam lacks in two areas, the technical documentation which needs to be completed and further tests of the mechanical constriction are needed for the lifting beam to finally be CE marked.
714

On Inverse Problems for a Beam with Attachments

Mir Hosseini, Farhad January 2013 (has links)
The problem of determining the eigenvalues of a vibrational system having multiple lumped attachments has been investigated extensively. However, most of the research conducted in this field focuses on determining the natural frequencies of the combined system assuming that the characteristics of the combined vibrational system are known (forward problem). A problem of great interest from the point of view of engineering design is the ability to impose certain frequencies on the vibrational system or to avoid certain frequencies by modifying the characteristics of the vibrational system (inverse problem). In this thesis, the effects of adding lumped masses to an Euler-Bernoulli beam on its frequencies and their corresponding mode shapes are investigated for simply-supported as well as fixed-free boundary conditions. This investigation paves the way for proposing a method to impose two frequencies on a system consisting of a beam and a lumped mass by determining the magnitude of the mass as well as its position along the beam.
715

IMPURITY CONTROL AND ANALYSIS OF ULTRA-PURE GALLIUM FOR INCREASING MOBILITY IN GALLIUM ARSENIDE GROWN BY MOLECULAR BEAM EPITAXY

Kyungjean Min (6635897) 14 May 2019 (has links)
<p></p><p>High mobility 2DEG (two-dimensional electron gas) confined in GaAs is a good platform to understand correlated electron systems and a promising candidate for qubit devices. For example, the non-Abelian feature of Fractional Quantum Hall state enabling topological quantum computation is only found in GaAs with high mobility. Theoretical calculations have shown that the mobility is inversely proportional to impurities in GaAs/AlGaAs heterstructures grown by Molecular Beam Epitaxy (MBE). In recent MBE experiments, the source Ga was found to be more important in the limitation of mobility than Al and As. A high mobility of 35 million cm<sup>2</sup>/Vs was recently observed when an 8N Ga (total nominal impurity concentration of ~10 ppb) source was used compared to 25 million cm<sup>2</sup>/Vs for a 7N Ga source. In addition, significant mobility increase was observed after in-situ distillation of the source Ga before growth. In order to clarify the mechanism of how the distillation contributed to the Ga purification, thus resulting in the mobility increase, the MBE in-situ distillation was analyzed by molecular distillation theory. Evaporation behavior of solvent Ga was analyzed including effects of evaporation from a crucible with receding liquid depth. Then impurity removal through molecular distillation was analyzed with molecular evaporation kinetics. The remaining 7N and 8N Ga after in-situ MBE distillation and growth were elementally analyzed by ICP-MS (Inductively Coupled Plasma Mass Spectrometry) and compared with analyses of the starting 7N and 8N Ga from same lots. Due to the increased detection limit of ICP-MS in metal analysis, the concentrations of most impurity elements reached the detection limit of ~1-10 ppb. However, unusual high concentration of 690 ppb Ge was found in the 7N Ga, exceeding the nominal concentration of 7N (100 ppb). Significant decrease in Ge concentration was found in the comparison of initial ultra-pure Ga and remaining Ga for both grades of 7N and 8N. The significant Ge losses cannot be explained by atomic Ge evaporation due to the low vapor pressure of Ge. However, a hypothesis of Ge evaporation as GeO(g) by Ge active oxidation was proposed. In order to test the active oxidation of very dilute Ge in Ga in the MBE conditions with very low P(O<sub>2</sub>), the equilibrium P(GeO)-P(O<sub>2</sub>) vapor species diagram was calculated from thermodynamics. The analysis shows that even very dilute Ge in Ga of ~ 1 ppm concentration can be <a>actively oxidized in the extremely low P(O<sub>2</sub>) of MBE</a>. In order to prove active oxidation of Ge, molecular distillation of 7N Ga was performed in <a>a specially constructed high vacuum chamber. The 7N Ga with unusual high Ge concentration of 440 ppb (by GDMS analysis) was distilled for 16 h at 1360 K under the starting P(O<sub>2</sub>) of 3 x 10<sup>-6</sup> torr and the total pressure of 10<sup>-5</sup> torr. The chamber vacuum was monitored by Residual Gas Analyzer (RGA) and the residual Ga after 16 h distillation was analyzed by GDMS. In the GDMS analysis, significant Ge loss was found from 440 ppb to below the detection limit of 10 ppb, confirming Ge active oxidation hypothesis. The oxygen-assisted impurity removal in distillation also may be applicable to other impurities with high vapor pressure gaseous oxide, but low vapor pressure itself, such as Al, Si and Sn. </a></p><br><p></p>
716

III-nitrides, 2D transition metal dichalcogenides, and their heterojunctions

Mishra, Pawan 04 1900 (has links)
Group III-nitride materials have attracted great attention for applications in high efficiency electronic and optoelectronics devices such as high electron mobility transistors, light emitting diodes, and laser diodes. On the other hand, group VI transition metal dichalcogenides (TMDs) in the form of MX2 has recently emerged as a novel atomic layered material system with excellent thermoelectric, electronic and optoelectronic properties. Also, the recent investigations reveal that the dissimilar heterojunctions formed by TMDs and III-nitrides provide the route for novel devices in the area of optoelectronic, electronics, and water splitting applications. In addition, integration of III-nitrides and TMDs will enable high density integrated optoelectronic circuits and the development of hybrid integration technologies. In this work, we have demonstrated kinetically controlled growth processes in plasma assisted molecular beam epitaxy (PAMBE) for the III-nitrides and their engineered heterostructures. Techniques such as Ga irradiation and nitrogen plasma exposure has been utilized to implement bulk GaN, InGaN and their heterostructures in PAMBE. For the growth of III-nitride based heterostructures, the in-situ surface stoichiometry monitoring (i-SSM) technique was developed and used for implementing stepped and compositionally graded InGaN-based multiple quantum wells (MQWs). Their optical and microstrain analysis in conjunction with theoretical studies confirmed improvement in the radiative recombination rate of the graded-MQWs as compared to that of stepped-MQWs, owing to the reduced strain in graded-MQWs. Our achievement also includes the realization of the p-type MoS2 by engineering pristine MoS2 layers in PAMBE. Mainly, Ga and nitrogen plasma irradiation on the pristine MoS2 in PAMBE has resulted in the realization of the p-type MoS2. Also, GaN epitaxial thin layers were deposited on MoS2/c-sapphire, WSe2/c-sapphire substrates by PAMBE to study the band discontinuity at GaN/TMDs heterointerface. The determination of band offset parameters for both GaN/MoS2 and GaN/WSe2 heterostructures revealed realization of type-II band alignment. Also, heterojunctions such as AlGaN/MoS2 is implemented to achieve type-I heterojunction. This work may open up a new avenue towards photonic quantum devices based on the integration of III-nitrides with 2D TMDs.
717

Etudes d'outils de calcul de propagation radar en milieu complexe (milieu urbain, présence de multi-trajets) par des techniques de lancer de faisceaux Gaussiens / Computation tools for radar propagation in complex environments based on Gaussian beam shooting techniques

Ghannoum, Ihssan 22 September 2010 (has links)
L’objectif de ce travail de thèse est d’enrichir la formulation du Lancer de Faisceaux Gaussiens (LFG) et de tester sa capacité à répondre à certains des besoins actuels en calculs de propagation dans le domaine du Radar terrestre. Le LFG est envisagé comme une alternative possible aux méthodes classiques (Equation Parabolique, méthodes de rayons) en environnement complexe urbanisé, en particulier en présence d’obstacles latéraux, avec une cible située en non visibilité. La méthode de LFG "de base", qui utilise des expressions analytiques obtenues par approximation paraxiale, permet des calculs de propagation rapides en environnements complexes, sans problèmes de caustiques. Elle conduit à des résultats de précision satisfaisante dans le domaine millimétrique, par exemple pour des calculs de champs intra-bâtiments. Aux fréquences plus basses comme celles utilisées en Radar terrestre, elle est limitée par une prise en compte trop approximative des effets de diffraction et par l’élargissement spatial des faisceaux gaussiens au regard des dimensions des obstacles. La théorie des frames est utilisée dans cette thèse pour dépasser ces limites. La théorie des frames fournit un cadre rigoureux pour la décomposition initiale du champ rayonné en faisceaux gaussiens, et permet de calibrer le nombre et les directions des faisceaux à lancer. Dans ce travail de thèse, l’emploi de frames de fenêtres gaussiennes pour décomposer des distributions de champs ou de sources équivalentes est généralisé aux distributions de champs incidents sur des plans ou des portions de plans, choisis en fonction des obstacles rencontrés et des distances parcourues. Les champs rayonnés à partir de ces plans sont alors obtenus par sommation des faisceaux gaussiens lancés depuis ces frames dits de "re-décomposition". Les transformations de faisceaux gaussiens par des obstacles de taille limitée sont ainsi traitées par redécomposition : les faisceaux incidents partiellement interceptés par des surfaces limitées sont "re-décomposés" successivement sur deux frames de re-décomposition, à fenêtres "étroites" puis "larges", définis dans les plans de ces surfaces. Le frame à fenêtres "étroites" permet de traiter les discontinuités physiques, tandis que le frame à fenêtres "larges" permet de propager les champs transformés sous la forme de faisceaux "collimatés". Dans cette thèse, nous présentons une formulation de ces re-décompositions permettant une mise en œuvre numériquement efficace, grâce à des expressions analytiques approchées des coefficients de frame pour la première décomposition, et des éléments de la matrice de changement de frame pour la seconde. Cette formulation est mise en œuvre numériquement, et l’influence de différents paramètres sur la précision des re-décompositions est analysée. Finalement, l’algorithme de LFG enrichi de ces re-décompositions successives est utilisé dans un scénario simplifié proche de situations rencontrées en propagation Radar terrestre. / In this work the Gaussian Beam Shooting (GBS) algorithm is complemented with new original formulations, and the ability of this "augmented" GBS algorithm to address specific problems encountered in electromagnetic field computations for ground-based Radar applications is tested. GBS is considered as an alternative to methods (Parabolic Equation, ray based methods) currently used for such computations in complex urban environments, especially when lateral obstacles and Non-Line-Of-Sight (NLOS) targets are involved. The "basic" GBS algorithm makes use of analytical expressions obtained through paraxial approximations. It allows to perform fast computations in complex environments, without suffering from any caustics problems. Reasonably accurate results have been obtained with this method in the millimetric range, e.g. for indoor field calculations. At lower frequencies, such as used in ground Radar systems, "basic" GBS cannot model diffraction effects accurately enough, and Gaussian beam width with respect to obstacle dimensions becomes a problem after some propagation distance. Frame theory is used in this PhD to overcome these limitations. Frame theory provides a rigorous framework for the initial decomposition of radiated fields into a set of Gaussian beams, providing flexible rules to adjust the number and directions of the launched beams. In this thesis, frame theory is used to discretize not only the source field distribution but also incident field distributions over planes or parts of planes of interest, according to encountered obstacles and propagation distances. The radiated fields are then obtained by summation of Gaussian beams launched from these frames called "reexpansion frames". Gaussian beam transformations by finite sized obstacles are addressed by this re-expansion scheme : the incident beams partially impinging on limited areas are successively "re-expanded" on two re-expansion frames, the first one composed of "narrow" windows and the second one of "wide" windows, both defined in the plane containing the limited area. Spatially narrow window frames allow to take into account abrupt transitions in space, and spatially wide window frames radiate in the form of collimated Gaussian beams. The re-expansion formulation proposed in this work is designed for efficient numerical implementation. Approximate analytical expressions are established for expansion coefficients on narrow window frames, and for frame change matrix elements. This formulation has been implemented, and the influence of frame parameters on re-expansion accuracy is analyzed. Finally, the GBS algorithm augmented with successive re-expansions is used to compute fields in simplified scenarios similar to situations encountered in ground-based Radar propagation problems.
718

A Numerical Algorithm For Simulating Two Species Plasma

Datwyler, Richard F. 01 May 2013 (has links)
An algorithm for modeling two species plasmas, which evolves the number density, flow velocity, and temperature equations coupled to Maxwell's electric and magnetic field equations, is discussed. Charge separation effects and the displacement current are retained. Mathematical derivations of normal modes in cold and hot plasmas, as represented by dispersion relations resulting from a linear analysis of the two fluid equations, are presented. In addition, numerical theory in relation to the ideas of geometry, temporal and spatial discretization, linearization of the fluid equations, and an expansion using finite elements is given. Numerical results generated by this algorithm compare favorably to analytical results and other published work. Specifically, we present numerical results, which agree with electrostatics, plasma oscillations at zero pressure, finite temperature acoustic waves, electromagnetic waves, whistler waves, and magnetohydrodynamics (MHD) waves, as well as a Fourier analysis showing fidelity to multiple dispersion relations in a single simulation. Final consideration is given to two species plasma stability calculations with a focus on the force balance of the initial conditions for a resistive MHD tearing mode benchmark and a static minimum energy plasma state.
719

Investigation of Graphene Interconnections for Multifunctional Reconfigurable Antenna Beam Steering

Perkins, Joshua R. 01 August 2019 (has links)
In high frequency, high-performance wireless communications, direct line of sight antennas are common. The issue with the line of sight antennas is the need to redirect the physical antenna to achieve the best possible reception. Classical redirections are done by mechanical movements: hand tuning and motors. Our multi-functional re-configurable antenna (MRA) concept allows for electrical and non-mechanical antenna reorientation. This work investigates two important concepts in the development and enhancement of future MRA devices: special, non-interfering, control signal circuitry and nano-sized switching devices that are controlled by the special circuitry. The investigation was conducted with the use of commercially available antenna modeling software: ANSYS High Frequency System Solver.
720

Fabrication of Superconducting Tunnel Junction via Double Angle Evaporation

January 2019 (has links)
abstract: This thesis explores the possibility of fabricating superconducting tunnel junctions (STJ) using double angle evaporation using an E-beam system. The traditional method of making STJs use a shadow mask to deposit two films requires the breaking of the vacuum of the main chamber. This technique has given bad results and proven to be a tedious process. To improve on this technique, the E-beam system was modified by adding a load lock and transfer line to perform the multi-angle deposition and in situ oxidation in the load lock without breaking the vacuum of the main chamber. Bilayer photolithography process was used to prepare a pattern for double angle deposition for the STJ. The overlap length could be easily controlled by varying the deposition angles. The low-temperature resistivity measurement and scanning electron microscope (SEM) characterization showed that the deposited films were good. However, I-V measurement for tunnel junction did not give expected results for the quality of the fabricated STJs. The main objective of modifying the E-beam system for multiple angle deposition was achieved. It can be used for any application that requires angular deposition. The motivation for the project was to set up a system that can fabricate a device that can be used as a phonon spectrometer for phononic crystals. Future work will include improving the quality of the STJ and fabricating an STJs on both sides of a silicon substrate using a 4-angle deposition. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2019

Page generated in 0.0523 seconds