• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1119
  • 250
  • 155
  • 136
  • 118
  • 48
  • 19
  • 17
  • 15
  • 11
  • 10
  • 7
  • 6
  • 6
  • 4
  • Tagged with
  • 2310
  • 404
  • 299
  • 292
  • 230
  • 218
  • 207
  • 203
  • 180
  • 178
  • 166
  • 159
  • 137
  • 136
  • 122
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

Denitrification in sediments of headwater streams in the southern Appalachian Mountains, USA

Martin, Lara A. 19 May 2000 (has links)
We investigated variations in resource availability (nitrate and labile organic carbon, LOC) as determinants of denitrification in sediments of streams in the southern Appalachian Mountains, USA. Stream water and sediments were sampled seasonally in two streams of contrasting nitrate availability, Noland Creek (high NO₃-N) and Walker Branch (low NO3-N). Eight additional streams with varying nitrate levels were sampled once during summer. Stream sediments were incubated at ambient stream temperatures, and nitrous oxide accumulation was quantified following acetylene inhibition of nitrous oxide reduction. Denitrification potential was greater in Noland Creek than Walker Branch and was generally greater in sediments from the higher-nitrate streams. In autumn and spring, nitrate and LOC amendments indicated that denitrification potential in Walker Branch sediments was nitrate limited, with temperature having no effect on rates. Denitrification potential in Noland Creek sediments was not limited by nitrate, but temperature had a significant effect. When Noland Creek seasonal data were corrected to a common temperature, no seasonal differences in denitrification potential were detected. Nitrate-N in the 10 surveyed streams ranged from 10 to 549 mg/L, with the highest NO₃-N levels and denitrification rates generally occurring in the higher elevation streams in the GSMNP. We found that nitrate availability, more than LOC availability, controls potential denitrification in these streams. / Master of Science
392

The Development of a Stream Restoration Decision Support Tool for the County of Henrico Stream Assessment and Watershed Management Program

Sweet, Dan I. 18 November 2003 (has links)
Several Municipalities in Virginia are currently developing and implementing watershed programs. While programmatic goals and objectives vary, all seek to incorporate stream restoration project work. Decision support tools exist for many aspects of watershed and water resources management, however, there are currently no such tools to aid municipalities in their stream restoration efforts. This study details the development of such a decision support tool for the Henrico County Stream Assessment/Watershed Management Program based on the assessment of stream restoration opportunities and feasibility constraints. A framework for the development of future municipal watershed programs is presented and related issues are discussed. / Master of Landscape Architecture
393

Differential stability of spawning microhabitats of warmwater stream fishes

Smith, Ryan Kennerly 05 June 1999 (has links)
I investigated streambed stability in spawning microhabitats of warmwater fishes in the upper Roanoke River, Virginia. Spawning microhabitats used by four reproductive guilds (egg-clusterers, mound-builders, egg-buriers, and pit-builders) were identified and ranges of 15 microhabitat variables used by each guild were compared to available microhabitat conditions to investigate habitat selection. Habitat usage by egg-clusterers was most characterized by selection for spawning rocks in the cobble size range, substrate roughness elements in the cobble to boulder size range, high roughness Reynolds number and moderate water column velocity. The mound-building bluehead chub (Nocomis leptocephalus) was distinct in its selection of substrate in the small gravel range, low water velocity and non-turbulent flow. Egg-buriers were the least distinct of the four guilds, exhibiting much variation in habitat use among the component species. However, all species used areas with small substrate (sand to gravel range), high velocity, and high turbulence. The pit-building central stoneroller (Campostoma anomalum) was distinct in its usage of areas with high velocity and turbulence, gravel sized substrate, and low embeddedness. Stability of each guild's spawning microhabitats was empirically evaluated through analysis of tracer particle movement and repeated surveying of bed elevation along stream transects. Logistic regression equations developed from tracer particle data predicted that microhabitats selected by egg-clusterers are among the most stable of all available habitats during high flows. Microhabitats utilized by mound-builders, egg-buriers, and pit-builders are predicted to be less stable. Repeat transect surveying corroborates model predictions in that egg-burier habitats experienced changes in bed elevation in high flows, while egg-clusterer habitats did not. / Master of Science
394

Particle Size Distribution Analysis of a Mining-Impacted Gravel-Bed Stream in Ohio Using a Hybrid Sediment Sampling Technique

Dalecky, Amanda Lee 26 November 2001 (has links)
As part of a risk assessment study of the Leading Creek Watershed in Ohio, a prior Virginia Tech researcher collected pavement and subpavement sediment samples at 17 sites using the hybrid areal sampling technique with a clay adhesive. The watershed, which is heavily impacted by mining and agricultural activities, suffers from low pH, high concentrations of metals and sediment in the water column, and excessively silted streambeds. The current work presents the results of the particle size analyses performed on the hybrid samples in the context of evaluating the effectiveness of the technique itself and as a tool in future watershed/ecological studies, as well as examining possible relationships between siltation and indicators of ecological health in Leading Creek. By combining clay grid and adhesive sampling methods, the hybrid technique consistently achieved an effective particle size sampling range of 0.05 mm (1.97 x 10-3 in) to over 300 mm (11.8 in), thereby reducing the common problem of trunction. However, the overlap of the clay adhesive and natural sediment distributions and atypical sediment loading from surrounding abandoned and reclaimed mine lands obscured expected trends such as downstream fining and hindered the analysis of materials finer than 0.125 mm (4.93 x 10-3 in). Volumetric conversion of areal samples using the Modified Cube Model with a traditional exponent of -1 for clay was complicated by the large amount of fines in the Leading Creek samples. Further investigation into a more appropriate conversion technique for the evaluation of fine sediment samples is warranted. / Master of Science
395

The Form and Function of Headwater Streams Based on Field and Modeling Investigations in the southern Appalachian Mountains

Adams, Rebecca Hope Kavage 30 December 2002 (has links)
Headwater streams drain the majority of the landscape, yet little is known about their form and function in comparison to lowland rivers. Better understanding of their morphology and sediment transport processes will improve understanding of landscape evolution and promote a more complete view of fluvial systems. Therefore, the goal of my project was to determine controls on headwater channel form and function in the humid, moderate-relief drainage basins of the Valley and Ridge and Blue Ridge provinces in the southern Appalachian Mountains. I surveyed nine headwater (0.33 - 2 km2 drainage area) streams in a variety of bedrock, climate, base level, and land use conditions and produced a high-resolution dataset on their longitudinal and cross sectional form. This data was analyzed empirically to determine controls on channel form, and used in hydrologic modeling to determine the ability of the channels to erode their beds during regularly recurring flows as well as the recurrence interval of bankfull flows. Field survey results demonstrate that the channels are dominantly alluvial and vary greatly between and within channels in their overall longitudinal form, channel slope values, and grain size. These variations are due to differences in bedrock resistance at the formation level as well as at short wavelengths. Bedrock also controls channel form through its influence on local and regional base level, channel initiation processes, and log jam abundance. Hydraulic geometry, steam competence and bankfull flow recurrence also vary greatly between and within channels. This variation is due to the high sensitivity of the streams to hillslope influences such as bedrock resistance, boulder influx, and soil profile development. Increases in bedrock resistance within a channel create knickpoints that lower stream competence and slow hilllslope erosion. Stream competence is generally higher in channels with erodable bedrock and lower in channels with resistant bedrock, but most channels could entrain the majority of the grains on their bed at 2-year stormflows. Bankfull is a larger, less frequent flow than the 2-year storm at very small drainage areas (<0.4 km2), but is approximately a 2-year recurrence flow at larger drainage areas. Bankfull occurs less frequently in North Carolina Blue Ridge streams, due to deep soils that form on metamorphic bedrock under an more intense precipitation regime and have high rainfall storage capacity. Results indicate that variability is a fundamental feature of headwater streams and that they do not follow channel slope, hydraulic geometry, and bankfull relations developed in lowland river systems. / Master of Science
396

Netwerkbeplanning van die riviervloeimeetstasienetwerk in die Oos-Transvaal

Meijer, Engelbert Johan 02 1900 (has links)
Text in Afrikaans / Water is in 'n relatief droe land soos Suid-Afrika van uiterste belang. Daar is 'n groot behoefte aan inligting oor die potensieel verbruikbare waterbronne. Hierin word voorsien deur 'n netwerk van riviervloeimeetstasies. Met veranderende ekonomiese toestande word die effektiwiteit van die netwerk van al hoe groter belang. Dit is hier waar netwerkbeplanning 'n aktiewe rol begin speel. As gevolg van die groot variasie in die aard van die opvanggebiede in Suid-Afrika, en die feit dat daar 'n bestaande netwerk is, is dit nodig dat netwerkbeplanning stapsgewys benader word. Die Eerste Fase is 'n leerproses. Die verskillende opvanggebiede in die land kan gegroepeer word en die meetstasies kan geklassifiseer word. 'n Netwerkbeplanningsmetode, "Die ideale netwerk", is ontwikkel en word op drie opvanggebiede toegepas. Die belangrikste resultaat is die klassifikasie van al die meetstasies in die drie opvanggebiede. / In a relative dry country like South Africa water is of critical importance. Information on the potential usable water resources is very valuable. This information is supplied by a network of river flow gauging stations. In changing economic times the effectiveness of this network is of increasing importance. Network design plays a major role in insuring this. Network design has to be approached in phases because of the variety in catchment characteristics in South Africa, and the fact that there is an existing network. The First Phase can be regarded as a learning phase, in which all the catchments in the country can be grouped and the stations can be classified. A network design method, · "The ideal network", was developed, and is applied in three catchments. The most important result is the classification of all the existing stations in the three catchments. / Geography / M. Sc. (Geografie)
397

The Relationship of Stream Flow to Precipitation on the Salt River Watershed Above Roosevelt Dam

Cooperrider, Charles K., Sykes, Glenton G. 07 1900 (has links)
No description available.
398

Daylighting Pogues Run : an urban stream solution

Rippey, Heather A. January 2003 (has links)
This creative project has culminated in a design solution to a water quality problem in the City of Indianapolis, Indiana. Pogues Run is a stream that has been buried in an underground culvert for almost a century. It has a long history of water quality problems including high bacteria levels and nonpoint source pollution. In addition, it has long been a flood threat to neighboring communities.To address the issue, a master plan was created for the last 1400' of Pogues Run before it emptied into the White River. The stream was removed from the culvert, brought back up to grade, a series of wetlands were developed to slow and filter stream flow, and an urban revitalization project was developed centering on the stream. The design solution provided flood control, stormwater storage and treatment, mixed-use redevelopment of historical buildings, a recreational area, and a high-density residential community. / Department of Landscape Architecture
399

Dynamics of Stream Fish Metacommunities in Response to Drought and Re-connectivity

Driver, Lucas J. 08 1900 (has links)
This dissertation investigates the spatio-temporal dynamics of intermittent stream fish metacommunities in response drought-induced fragmentation and re-connectivity using both field and experimental approaches. A detailed field study was conducted in two streams and included pre-drought, drought, and post-drought hydrological periods. Fish assemblages and metacommunity structure responded strongly to changes in hydrological conditions with dramatic declines in species richness and abundance during prolonged drought. Return of stream flows resulted in a trend toward recovery but ultimately assemblages failed to fully recover. Differential mortality, dispersal, recruitment among species indicates species specific responses to hydrologic fragmentation, connectivity, and habitat refugia. Two manipulative experiments tested the effects of drought conditions on realistic fish assemblages. Fishes responded strongly to drought conditions in which deeper pools acted as refugia, harboring greater numbers of fish. Variability in assemblage structure and movement patterns among stream pools indicated species specific habitat preferences in response predation, resource competition, and desiccation. Connecting stream flows mediated the impacts of drought conditions and metacommunity dynamics in both experiments. Results from field and experimental studies indicate that stream fish metacommunities are influenced by changes in hydrological conditions and that the timing, duration, and magnitude of drought-induced fragmentation and reconnecting stream flows have important consequences metacommunity dynamics.
400

Integrating Visual Data Flow Programming with Data Stream Management

Melander, Lars January 2016 (has links)
Data stream management and data flow programming have many things in common. In both cases one wants to transfer possibly infinite sequences of data items from one place to another, while performing transformations to the data. This Thesis focuses on the integration of a visual programming language with a data stream management system (DSMS) to support the construction, configuration, and visualization of data stream applications. In the approach, analyses of data streams are expressed as continuous queries (CQs) that emit data in real-time. The LabVIEW visual programming platform has been adapted to support easy specification of continuous visualization of CQ results. LabVIEW has been integrated with the DSMS SVALI through a stream-oriented client-server API. Query programming is declarative, and it is desirable to make the stream visualization declarative as well, in order to raise the abstraction level and make programming more intuitive. This has been achieved by adding a set of visual data flow components (VDFCs) to LabVIEW, based on the LabVIEW actor framework. With actor-based data flows, visualization of data stream output becomes more manageable, avoiding the procedural control structures used in conventional LabVIEW programming while still utilizing the comprehensive, built-in LabVIEW visualization tools. The VDFCs are part of the Visual Data stream Monitor (VisDM), which is a client-server based platform for handling real-time data stream applications and visualizing stream output. VDFCs are based on a data flow framework that is constructed from the actor framework, and are divided into producers, operators, consumers, and controls. They allow a user to set up the interface environment, customize the visualization, and convert the streaming data to a format suitable for visualization. Furthermore, it is shown how LabVIEW can be used to graphically define interfaces to data streams and dynamically load them in SVALI through a general wrapper handler. As an illustration, an interface has been defined in LabVIEW for accessing data streams from a digital 3D antenna. VisDM has successfully been tested in two real-world applications, one at Sandvik Coromant and one at the Ångström Laboratory, Uppsala University. For the first case, VisDM was deployed as a portable system to provide direct visualization of machining data streams. The data streams can differ in many ways as do the various visualization tasks. For the second case, data streams are homogenous, high-rate, and query operations are much more computation-demanding. For both applications, data is visualized in real-time, and VisDM is capable of sufficiently high update frequencies for processing and visualizing the streaming data without obstructions. The uniqueness of VisDM is the combination of a powerful and versatile DSMS with visually programmed and completely customizable visualization, while maintaining the complete extensibility of both.

Page generated in 0.083 seconds