1 |
Vegetation distribution predicting in Laonong River basin with Indicator KrigingLi, Yi-di 27 August 2007 (has links)
To overcome the limit of topography and manpower, vegetation prediction is an important method in vegetation mapping. There can be used in model prediction that concern about environment factor or in data interpolation that only consider about spatial distribution. In this research, indicator kriging was used to predict the spatial distribution of the vegetation of Laonong river basin. The distributions of associations were combined from the species in these associations which had been selected by Cluster analyst and TWINSPAN. Indicator kriging used presence/absence data to calculate the distribution pattern of these species, and the each species predicted raster had its own distinctly distribution. The distribution pattern of associations were related to species distribution directly. The stability of prediction pattern were evaluated by jackknife method. All standard errors of the prediction were under 0.01, with no significant difference in 4 different sampling measures.
|
2 |
Spatial prediction of soil properties: the Bayesian Maximum Entropy approach./ Prédiction spatiale de propriétés pédologiques : l'approche du Maximum d'Entropie Bayésien.D'Or, Dimitri 13 May 2003 (has links)
Soil properties play important roles in a lot of environmental issues like diffuse pollution, erosion hazards or precision agriculture. With the developments of soil process models and geographical information systems, the need for accurate knowledge about soil properties becomes more acute. However, while the sources of information become each year more numerous and diversified, they rarely provide us with data at the same time having the required level of spatial and attribute accuracy. An important challenge thus consists in combining those data sources at best so as to meet the high accuracy requirements.
The Bayesian Maximum Entropy (BME) approach appears as a potential candidate for achieving this task: it is especially designed for managing simultaneously data of various nature and quality ("hard" and "soft" data, continuous or categorical). It relies on a two-steps procedure involving an objective way for obtaining a prior distribution in accordance with the general knowledge at hand (the ME part), and a Bayesian conditionalization step for updating this prior probability distribution function (pdf) with respect to the specific data collected on the study site. At each prediction location, an entire pdf is obtained, allowing subsequently the easy computation of elaborate statistics chosen for their adequacy with the objectives of the study.
In this thesis, the theory of BME is explained in a simplified way using standard probabilistic notations. The recent developments towards categorical variables are incorporated and an attempt is made to formulate a unified framework for both categorical and continuous variables, thus emphasizing the generality and flexibility of the BME approach.
The potential of the method for predicting continuous variables is then illustrated by a series of studies dealing with the soil texture fractions (sand, silt and clay). For the categorical variables, a case study focusing on the prediction of the status of the water table is presented. The use of multiple and sometimes contradictory data sources is also analyzed.
Throughout the document, BME is compared to classic geostatistical techniques like simple, ordinary or indicator kriging. Thorough discussions point out the inconsistencies of those methods and explain how BME is solving the problems.
Rather than being but another geostatistical technique, BME has to be considered as a knowledge processing approach. With BME, practitioners will find a valuable tool for analyzing their spatio-temporal data sets and for providing the stake-holders with accurate information about the environmental issues to which they are confronted.
Read one of the articles extracted from Chapter V at :
D'Or D., Bogaert P. and Christakos, G. (2001). Application of the BME Approach to Soil Texture Mapping. Stochastic Environmental Research and Risk Assessment 15(1): 87-100 ©Springer-2001.
http://springerlink.metapress.com/app/home/contribution.asp?wasp=cbttlcpaeg1rqmdb4xv2&referrer=parent&backto=issue,6,6;journal,13,29;linkingpublicationresults,1,1
|
3 |
Estudos geoestatísticos aplicados à um depósito magmático de Ni-Cu / Geoestatiscal studies applied to a Ni-Cu magmatic depositSaulo Batista de Oliveira 06 March 2009 (has links)
O depósito estudado é composto por uma suíte de rochas máfico-ultramáficas com mineralizações sulfetadas cupro-niquelíferas associadas, apresentando um extenso banco de dados com informações tanto de análises químicas e de densidade, quanto de descrição litológica para as amostras de sondagem diamantada. Este trabalho apresenta a aplicação de diferentes técnicas geoestatísticas com dois própositos distintos. Primeiramente, o cálculo dos recursos minerais do depósito através de krigagem ordinária, e segundo a apresentação de um modelo geológico gerado a partir de estimativa de litologias através de krigagem indicadora. Para tanto foi realizado uma criteriosa validação da base de dados através da análise das estatísticas descritivas e análise por regressão mútipla das variáveis contínuas e análise de agrupamento para as variáveis categóricas. Seguiram-se então as etapas de modelagem tridimensional das três unidades geológicas e dos corpos de minério e, posteriormente, as estimativas de teores de níquel e cobre por krigagem ordinária e estimativa de litologias por krigagem indicadora. Assim foi possível, além de se gerar um modelo geológico probabilístico útil no entendimento das relações geométricas e estratigráficas dos corpos rochosos, comparar as interpretações geológicas e os teores químicos com os dados categóricos estimados, apresentando a krigagem de indicadores como uma interessante alternativa em estudos de avaliação de depósitos. / The studied deposit is composed of a mafic-ultramafic suite with cupro-nickeliferous sulphide mineralization associates and has an extensive data base with information such as chemical analyses and density, and such as lithologic description on the borehole samples. This work presents the application of different geostatistics techniques with two distinct aims. First, the calculation of the mineral resources of the deposit through ordinary kriging, and second the generation of a geological model from estimated of lithologies through indicator kriging. In order to reach this aim, validation of the database through the analysis of the descriptive statisticians and analysis of multiple regression was done for the continuous variable, and cluster analysis for the categorical variable. The procedure for threedimensional modeling was carried out for the three geologic units and the ore bodies, just then the estimates of nickel and copper grades were calculated through ordinary kriging and lithologies through indicator kriging. In this way it was possible to generate probabilistic geological model useful to understanding rock body geometry and stratigraphy and to compare geological classic interpretation and chemical grades with categorical estimates, which leads to conclude the use of indicator kriging as an insteristing alternative to mineral deposits evaluation.
|
4 |
Estudos geoestatísticos aplicados à um depósito magmático de Ni-Cu / Geoestatiscal studies applied to a Ni-Cu magmatic depositOliveira, Saulo Batista de 06 March 2009 (has links)
O depósito estudado é composto por uma suíte de rochas máfico-ultramáficas com mineralizações sulfetadas cupro-niquelíferas associadas, apresentando um extenso banco de dados com informações tanto de análises químicas e de densidade, quanto de descrição litológica para as amostras de sondagem diamantada. Este trabalho apresenta a aplicação de diferentes técnicas geoestatísticas com dois própositos distintos. Primeiramente, o cálculo dos recursos minerais do depósito através de krigagem ordinária, e segundo a apresentação de um modelo geológico gerado a partir de estimativa de litologias através de krigagem indicadora. Para tanto foi realizado uma criteriosa validação da base de dados através da análise das estatísticas descritivas e análise por regressão mútipla das variáveis contínuas e análise de agrupamento para as variáveis categóricas. Seguiram-se então as etapas de modelagem tridimensional das três unidades geológicas e dos corpos de minério e, posteriormente, as estimativas de teores de níquel e cobre por krigagem ordinária e estimativa de litologias por krigagem indicadora. Assim foi possível, além de se gerar um modelo geológico probabilístico útil no entendimento das relações geométricas e estratigráficas dos corpos rochosos, comparar as interpretações geológicas e os teores químicos com os dados categóricos estimados, apresentando a krigagem de indicadores como uma interessante alternativa em estudos de avaliação de depósitos. / The studied deposit is composed of a mafic-ultramafic suite with cupro-nickeliferous sulphide mineralization associates and has an extensive data base with information such as chemical analyses and density, and such as lithologic description on the borehole samples. This work presents the application of different geostatistics techniques with two distinct aims. First, the calculation of the mineral resources of the deposit through ordinary kriging, and second the generation of a geological model from estimated of lithologies through indicator kriging. In order to reach this aim, validation of the database through the analysis of the descriptive statisticians and analysis of multiple regression was done for the continuous variable, and cluster analysis for the categorical variable. The procedure for threedimensional modeling was carried out for the three geologic units and the ore bodies, just then the estimates of nickel and copper grades were calculated through ordinary kriging and lithologies through indicator kriging. In this way it was possible to generate probabilistic geological model useful to understanding rock body geometry and stratigraphy and to compare geological classic interpretation and chemical grades with categorical estimates, which leads to conclude the use of indicator kriging as an insteristing alternative to mineral deposits evaluation.
|
5 |
Aplicação de variáveis indicadoras na avaliação da incerteza volumétrica em um depósito de Zn-Pb / Application of indicator variables for evaluating the volumetric uncertainty of a Zn-Pb modelLeonel, Letícia Gameiro 22 October 2015 (has links)
Santa Maria é um projeto de exploração mineral conduzido pela empresa Votorantim Metais Ltda, com foco nas comodities zinco e chumbo. Localizado no estado do Rio Grande do Sul, próximo das antigas minas de Camaquã e Uruguay, o projeto se encontra em uma região geologicamente fértil para exploração mineral. O depósito de Santa Maria possui informações suficientes para permitir a avaliação dos recursos minerais e também estudos de viabilidade econômica de projeto, entretanto, sua mineralização ocorre de forma heterogênea e condicionada a feições geológicas estruturais complexas, inserindo dúvidas à respeito da forma e volume dos corpos mineralizados. O objetivo desta pesquisa é a avaliação da incerteza associada à modelagem dos corpos mineralizados. Essa avaliação foi realizada através da comparação entre o modelo tridimensional confeccionado por interpretação de seções e outros dois modelos probabilísticos: um gerado por krigagem de indicadoras e outro gerado por simulação sequencial de indicadoras, que permitiu a interpretação da incerteza associada. Com os resultados obtidos foi possível quantificar os valores de volume máximo, mínimo e médio esperado no depósito, além de avaliar regiões de maior e menor confiança. A utilização conjunta dos métodos de krigagem de indicadoras e simulação sequencial de indicadoras se mostrou uma excelente opção para avaliação do modelo interpretado. Através do tratamento dos resultados foi possível obter informações à respeito da variabilidade local e global do depósito e sobre o comportamento espacial da mineralização. Os resultados e interpretações obtidos podem ser aplicados em trabalhos futuros no depósito, como na classificação do recurso mineral, no refinamento do modelo geológico e no planejamento de futuras malhas de sondagem infill. / Santa Maria is a mineral exploration project conducted by Votorantim Metais Ltda, with focus on zinc and lead extraction. The project is located in the state of Rio Grande do Sul, in the vicinities of the old mines of Camaquã and Uruguay, a favorable area for mineral exploration. There is enough information about Santa Maria\'s deposit to allow the estimation of mineral resources and the project\'s economical viability study, however, its mineralization occurs in heterogeneous ways and is conditioned to complex geological structural features, casting doubts about the shape and volume of the ore bodies. The main goal of this research is evaluating the uncertainty associated with the modeling of the orebodies. This evaluation was performed by comparing a three-dimensional model created by section interpretation and other two probabilistic models: one generated by indicator kriging, and the other generated by sequential indicator simulation, which allowed the interpretation of the associated uncertainty. Based on the obtained results, it was possible to quantify the maximum, minimum and average expected volume of the deposit, and also to evaluate the regions of most and least reliability. The joint use of indicator kriging and sequential indicator simulation methods proved to be an excelent tool for evaluating the interpreted model. By processing the results it was possible to obtain information about deposit\'s local and global variability and spatial behavior of mineralization. The obtained results and interpretations can be applied in deposit\'s further sutdies, for instance, to classify the mineral resource, to refine the geological model or to plan future infill drilholes.
|
6 |
Aplicação de variáveis indicadoras na avaliação da incerteza volumétrica em um depósito de Zn-Pb / Application of indicator variables for evaluating the volumetric uncertainty of a Zn-Pb modelLetícia Gameiro Leonel 22 October 2015 (has links)
Santa Maria é um projeto de exploração mineral conduzido pela empresa Votorantim Metais Ltda, com foco nas comodities zinco e chumbo. Localizado no estado do Rio Grande do Sul, próximo das antigas minas de Camaquã e Uruguay, o projeto se encontra em uma região geologicamente fértil para exploração mineral. O depósito de Santa Maria possui informações suficientes para permitir a avaliação dos recursos minerais e também estudos de viabilidade econômica de projeto, entretanto, sua mineralização ocorre de forma heterogênea e condicionada a feições geológicas estruturais complexas, inserindo dúvidas à respeito da forma e volume dos corpos mineralizados. O objetivo desta pesquisa é a avaliação da incerteza associada à modelagem dos corpos mineralizados. Essa avaliação foi realizada através da comparação entre o modelo tridimensional confeccionado por interpretação de seções e outros dois modelos probabilísticos: um gerado por krigagem de indicadoras e outro gerado por simulação sequencial de indicadoras, que permitiu a interpretação da incerteza associada. Com os resultados obtidos foi possível quantificar os valores de volume máximo, mínimo e médio esperado no depósito, além de avaliar regiões de maior e menor confiança. A utilização conjunta dos métodos de krigagem de indicadoras e simulação sequencial de indicadoras se mostrou uma excelente opção para avaliação do modelo interpretado. Através do tratamento dos resultados foi possível obter informações à respeito da variabilidade local e global do depósito e sobre o comportamento espacial da mineralização. Os resultados e interpretações obtidos podem ser aplicados em trabalhos futuros no depósito, como na classificação do recurso mineral, no refinamento do modelo geológico e no planejamento de futuras malhas de sondagem infill. / Santa Maria is a mineral exploration project conducted by Votorantim Metais Ltda, with focus on zinc and lead extraction. The project is located in the state of Rio Grande do Sul, in the vicinities of the old mines of Camaquã and Uruguay, a favorable area for mineral exploration. There is enough information about Santa Maria\'s deposit to allow the estimation of mineral resources and the project\'s economical viability study, however, its mineralization occurs in heterogeneous ways and is conditioned to complex geological structural features, casting doubts about the shape and volume of the ore bodies. The main goal of this research is evaluating the uncertainty associated with the modeling of the orebodies. This evaluation was performed by comparing a three-dimensional model created by section interpretation and other two probabilistic models: one generated by indicator kriging, and the other generated by sequential indicator simulation, which allowed the interpretation of the associated uncertainty. Based on the obtained results, it was possible to quantify the maximum, minimum and average expected volume of the deposit, and also to evaluate the regions of most and least reliability. The joint use of indicator kriging and sequential indicator simulation methods proved to be an excelent tool for evaluating the interpreted model. By processing the results it was possible to obtain information about deposit\'s local and global variability and spatial behavior of mineralization. The obtained results and interpretations can be applied in deposit\'s further sutdies, for instance, to classify the mineral resource, to refine the geological model or to plan future infill drilholes.
|
7 |
Geostatistics for constrained variables: positive data, compositions and probabilities. Applications to environmental hazard monitoringTolosana Delgado, Raimon 19 December 2005 (has links)
Aquesta tesi estudia com estimar la distribució de les variables regionalitzades l'espai mostral i l'escala de les quals admeten una estructura d'espai Euclidià. Apliquem el principi del treball en coordenades: triem una base ortonormal, fem estadística sobre les coordenades de les dades, i apliquem els output a la base per tal de recuperar un resultat en el mateix espai original. Aplicant-ho a les variables regionalitzades, obtenim una aproximació única consistent, que generalitza les conegudes propietats de les tècniques de kriging a diversos espais mostrals: dades reals, positives o composicionals (vectors de components positives amb suma constant) són tractades com casos particulars. D'aquesta manera, es generalitza la geostadística lineal, i s'ofereix solucions a coneguts problemes de la no-lineal, tot adaptant la mesura i els criteris de representativitat (i.e., mitjanes) a les dades tractades. L'estimador per a dades positives coincideix amb una mitjana geomètrica ponderada, equivalent a l'estimació de la mediana, sense cap dels problemes del clàssic kriging lognormal. El cas composicional ofereix solucions equivalents, però a més permet estimar vectors de probabilitat multinomial. Amb una aproximació bayesiana preliminar, el kriging de composicions esdevé també una alternativa consistent al kriging indicador. Aquesta tècnica s'empra per estimar funcions de probabilitat de variables qualsevol, malgrat que sovint ofereix estimacions negatives, cosa que s'evita amb l'alternativa proposada. La utilitat d'aquest conjunt de tècniques es comprova estudiant la contaminació per amoníac a una estació de control automàtic de la qualitat de l'aigua de la conca de la Tordera, i es conclou que només fent servir les tècniques proposades hom pot detectar en quins instants l'amoni es transforma en amoníac en una concentració superior a la legalment permesa. / This Thesis presents an estimation procedure for the distribution of regionalized variables with sample space and scale admitting an Euclidean structure. We apply the principle of working on coordinates: choose an orthonormal basis; do statistics on the coordinates of your observations on that basis; and, by applying the output to the basis, you will recover a result within the original space. Applying this procedure to regionalized variables, we obtain a unified, consistent method, with the same properties of classical linear kriging techniques, but valid for several sample spaces: real data, positive data and compositions (vectors of positive components summing up to a constant) are regarded as particular cases. In this way we generalize the linear kriging techniques, and offer a solution to several well-known problems of the non-linear ones, by adapting the measure of the space and the averaging criterion (the way means are computed) to the data. The obtained estimator for positive variables is a weighted geometric mean, equivalent to estimate the median, which has none of the drawback of classical lognormal kriging. For compositional data, equivalent results are obtained, but which also serve to treat multinomial probability vectors. By combining this with a preliminary Bayesian estimation, our kriging for compositions become also a valid alternative to indicator kriging, without its order-relation problems (i.e. the rather-usual negative estimates of some probabilities). These techniques are validated by studying the ammonia pollution hazard in an automatic water quality control station placed in a small Mediterranean river. Only the proposed techniques allow us to assess when the secondary pollution by ammonia exceeds the existing legal threshold.
|
8 |
Proposta metodológica para identificar fatores contribuintes de acidentes viários por meio de geotecnologias / Methodological proposal to identify contributing factors of road accidents through geotechnologiesBatistão, Mariana Dias Chaves [UNESP] 02 February 2018 (has links)
Submitted by Mariana Dias Chaves null (mariana.unesp@hotmail.com) on 2018-02-16T19:43:53Z
No. of bitstreams: 1
Batistao, MDC-TeseDr.pdf: 6348711 bytes, checksum: 0f1b9c7f3392530f6d2f279ee0b58768 (MD5) / Approved for entry into archive by Claudia Adriana Spindola null (claudia@fct.unesp.br) on 2018-02-19T11:31:34Z (GMT) No. of bitstreams: 1
batistao_mdc_dr_prud.pdf: 6348711 bytes, checksum: 0f1b9c7f3392530f6d2f279ee0b58768 (MD5) / Made available in DSpace on 2018-02-19T11:31:34Z (GMT). No. of bitstreams: 1
batistao_mdc_dr_prud.pdf: 6348711 bytes, checksum: 0f1b9c7f3392530f6d2f279ee0b58768 (MD5)
Previous issue date: 2018-02-02 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Essa pesquisa apresenta um estudo acerca dos fatores contribuintes de acidentes rodoviários com o objetivo de fornecer evidências para analisar o comportamento dos fatores contribuintes envolvidos nesses acidentes, mais especificamente nos trechos críticos. Desejase identificar a relação dos fatores com o grau de severidade de um acidente (danos materiais, sem vítimas fatais e com vítimas fatais) e o impacto de cada classe de fator na ocorrência de um acidente. A intensão é embasar uma análise geoespacial levando em consideração técnicas estatísticas e cartográficas e contribuir para melhorar a qualidade das informações sobre segurança viária no país e seu atual cenário crítico. A estrutura metodológica da pesquisa consiste em três etapas principais: (I) Identificação e determinação de segmentos de trechos críticos, (II) Mapeamento dos fatores contribuintes “via” para o acidente e (III) Investigação e estudo dos fatores contribuintes. Quatro trechos de rodovias do oeste do estado de São Paulo foram escolhidos como área de estudo. Na etapa I propôs-se um método de interpolação espacial de escolha de segmentos de trechos críticos levando a premissa existência da dependência geográfica dos acidentes em consideração. No total, foram identificados oito segmentos de trechos críticos na área de estudo. A etapa II concentrou-se no mapeamento dos fatores contribuintes desses segmentos de trechos críticos. Essa etapa trouxe o caráter tecnológico à pesquisa por fazer uso da integração de geotecnologias e a contribuição das Ciências Cartográficas para os estudos de segurança viária, por gerar informação a partir do mapeamento da localização dos fatores contribuintes. Das quatro classes de fatores (humano, ambiente, veículo e via) as características da via foram escolhidas para serem mapeadas, tendo-se deparado com a ausência de qualquer dado dessa classe de fatores tanto no banco de dados dos acidentes como no boletim de ocorrências. A relação com as outras três classes de fatores foi tratada na etapa III da pesquisa, cujos resultados proporcionaram montar o ranking dos seis fatores contribuintes da via mais frequentes nos segmentos de trechos críticos. Adicionalmente, foram construídos três modelos de regressão logística ordinal para investigar o impacto de cada uma das quatro classes de fatores no grau de severidade do acidente (três graus de severidade). Para isso, o grau foi tratado como variável dependente dos modelos. Quatro variáveis independentes (fatores contribuintes) foram consideradas significativas e escolhidas para compor os modelos: consumo de drogas (da classe de fator contribuinte humano), estado dos pneus (da classe de fator veículo), vegetação (da classe de fator via) e sinalização (da classe de fator via). Por fim, os modelos puderam ser analisados a partir da razão de chances (odds ratio) para complementar as informações e sintetizar os resultados como contribuições da pesquisa. / This research presents a study about the contributing factors of road accidents in order to provide evidences to analyse the behaviour of contributing factors involved in these accidents more specifically in critical sections. The intention is to identify the relationship between those factors and the severity degree of an accident (material damage, no fatalities and fatalities) and the impact of each factor class on an accident occurrence. The aim is to base on geospatial analysis taking into account statistical and cartographic techniques and contribute to improve the quality of the road safety information in the country which has a current critical scene. The methodological structure of this thesis consists of following three main steps: (I) Identification and determination of critical sections segments, (II) mapping “road” contributing factors for each accident and (III) Investigation and study of the contributing factors. Four sections of highways in the west of São Paulo state were chosen as the study area. In Step I, proposed a spatial interpolation method to choose critical sections segments premising the existence of geographical dependence of the considered accidents. In entire, eight critical sections segments were identified in the study area. Step II focused on mapping the contributing factors of these segments. This step brought the technological character to this research by making use of geotechnologies integration and the contribution of Cartographic Sciences to road safety by generating information of the contributing factors location from mapping. Of the four factors classes (human, environment, vehicle and road), the road characteristics were chosen to be mapped, since no data from this factor class was found in both the accident database and the occurrence report. The relation with the other three factors classes was the subject of step III, which results provided a ranking of the six most frequent contributing factors in critical sections segments. In addition, three ordinal logistic regression models were constructed to investigate the impact of each of the four factors classes on the accident severity degree (three severity degrees). For this, the severity degree was considered as the models dependent variable. Four significant independent variables (contributing factors) were chosen to compose the following models: drug consumption (from the human contributing factor class), tire condition (vehicle factor class), vegetation (road factor class) and signaling (road factor class). Lastly, the models could be analysed by the odds ratio method to complement the information and synthesize the results as research contributions.
|
Page generated in 0.0818 seconds