• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 322
  • 63
  • 54
  • 36
  • 26
  • 7
  • 6
  • 6
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 628
  • 182
  • 130
  • 116
  • 114
  • 102
  • 92
  • 91
  • 90
  • 90
  • 74
  • 68
  • 53
  • 53
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Size-Dependant Separation of Multiple Particles in Spiral Microchannels

Chatterjee, Arpita 04 August 2011 (has links)
No description available.
72

Novel Approaches to Cell Isolation in Simple Inertial Microfluidic Devices

Zhou, Jian 30 October 2012 (has links)
No description available.
73

Microluidic Sorting of Blood Cells by Negative Selection

Gao, Hua January 2016 (has links)
No description available.
74

An inertial measurement unit interface and processing system synchronized to global positioning system time

Kiran, Sai January 1998 (has links)
No description available.
75

Investigation into performance enhancement of integrated global positioning/inertial navigation systems by frequency domain implementation of inertial computational procedures

Soloviev, Andrey January 2002 (has links)
No description available.
76

Laser plasma interaction for application to fusion energy /

Evans, Peter John. January 2002 (has links)
Thesis (M.Sc. (Hons.)) -- University of Western Sydney, 2002. / "A thesis submitted as part of the requirements for the degree of Master of Science (Honours)" Bibliography : leaves 175-181.
77

Calibration and Evaluation of Inertial Navigation with Zero Velocity Update for Industrial Fastening Tools / Kalibrering och Evaluering av Tröghetsnavigering Användandes Zero Velocity Update för Industriverktyg

Rågmark, Johan January 2021 (has links)
Indoor Positional Navigation (IPN) systems can be used to track the position of tools in factories which is crucial for quality assurance in many manufacturing industries. Inertial navigation is rarely used on its own because of the noisy Inertial Measurement Unit (IMU) sensors which contribute to large drift. Current IPN systems usually involve the installation and calibration of cameras or antennas, so achieving sufficient accuracy with inertial navigation based IPN would be very desirable. This project aims to evaluate an inertial navigation algorithm, based on Zero Velocity Update (ZUPT), for bolt level positioning by repeatability tests using an industrial robot. The ZUPT algorithm, developed at Atlas Copco, manages to effectively reduce drift and achieve moderate accuracy in position for simpler movements. The gravity tracking Kalman filter dictates the systematic errors in position that grow large with increased degree and dimension of rotation. When keeping rotations within 45◦ for a linear movement the absolute error in position is under 10%. Frequent stops are important when moving in a more complex trajectory to be able to negate drift, consequently detecting the start and stop of motion is crucial. The results show that increased frequency will improve accuracy. It is shown that averaging IMU samples before calculations can increase both truthfulness and precision by 10−25%, if sampling the IMU faster than the calculations. The ZUPT approach of inertial navigation will never yield positional results in real time, and the evaluated algorithm only performs well within certain limitations, mainly frequent stops and simple movements. Despite these limitations there is potential in using the algorithm for quality assurance purposes in hand held industrial fasteners. / Kvalitetssäkring är en central fråga för många tillverkningsindustrier, så som flygplans- och bilindustrin, där det är avgörande att varje förband har dragits åt på rätt sätt för att garantera säkerheten i produkten. Moderna fabriker har centrala styrsystem som kommunicerar med maskiner och verktyg, och ifall något blir fel är det vanligt att fabrikslinan stannar vilket blir kostsamt. Inomhuspositionering (IPS) av hög noggrannhet kan spåra vilken åtdragning som blivit fel, vilket dokumenteras och åtgärdas om möjligt senare, utan att stanna fabrikslinan. Dagens noggranna IPS system för kvalitetssäkring kräver installation och kalibrering av kameror och/eller antenner. Tröghetsnavigering kräver i grunden bara billiga sensorer installerade på verktyget men metoden är mycket opålitlig på grund av sensorernas opålitlighet och brus. I detta projekt har en metod för tröghetsnavigering, användandes Zero Velocity Update (ZUPT), evaluerats för kvalitetssäkring av handhållna verktyg genom repetabilitetstester. Tröghetsnavigeringsalgoritmen som tidigare utvecklats på Atlas Copco lyckas på effektivt sätt reducera drift och uppnår rimlig noggranhet för enklare rörelser. För linjära rörelser med rotationer under 45◦ så erhålls ett absolut positionsfel inom 10%. För att fungera väl även för mer komplexa rörelser krävs frekventa stop, och noggrann rörelsedetektion är central. Denna ZUPT-metod kommer aldrig att kunna generera position i realtid och algoritmen presterar väl endast inom vissa begränsningar. Trots detta så finns god potential för metoden inom kvalitetssäkring för handhållna industriverktyg.
78

Design and Implementation of an Inertial Measurement Unit (IMU) for Small Diameter Ballistic Applications

Bukowski, Edward F., Brown, T. Gordon 10 1900 (has links)
ITC/USA 2009 Conference Proceedings / The Forty-Fifth Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2009 / Riviera Hotel & Convention Center, Las Vegas, Nevada / The US Army Research Laboratory currently uses a variety of ballistic diagnostic systems for gathering aerodynamic information pertaining to gun launched munitions. Sensors are a vital component of each of these diagnostic systems. Since multiple sensors are commonly used, they are often configured into a sensor suite or inertial measurement unit (IMU). In order to gather information on smaller diameter projectiles, a small diameter IMU was designed using commercial-off-the-shelf (COTS) sensors and components. This IMU was first designed with a 21.6mm diameter and then later reintegrated into a 17.5mm diameter unit. The IMU provides up to ten sensor data channels which can be used to make in-flight projectile motion measurements. These measurements are then used in the determination of the projectile's aerodynamics. It has been successfully flight tested on a variety of projectiles. It has been used in conjunction with an on-board recorder (OBR) to take measurements on 40mm and 25mm projectiles. It has also been used in a telemetry based system on-board a flare stabilized 25mm projectile. This paper covers the design of the IMU and gives examples of various sensor data.
79

Advanced interface systems for readout, control, and self-calibration of MEMS resonant gyroscopes

Norouz Pour Shirazi, Arashk 27 May 2016 (has links)
MEMS gyroscopes have become an essential component in consumer, industrial and automotive applications, owing to their small form factor and low production cost. However, their poor stability, also known as drift, has hindered their penetration into high-end tactical and navigation applications, where highly stable bias and scale factor are required over long period of time to avoid significant positioning error. Improving the long-term stability of MEMS gyroscopes has created new challenges in both the physical sensor design and fabrication, as well as the system architecture used for interfacing with the physical sensor. The objective of this research is to develop interface circuits and systems for in-situ control and self-calibration of MEMS resonators and resonant gyroscopes to enhance the stability of bias and scale factor without the need for any mechanical rotary stage, or expensive bulky lab characterization equipment. The self-calibration techniques developed in this work provide 1-2 orders of magnitude improvement in the drift of bias and scale factor of a resonant gyroscope over temperature and time.
80

A study of three fluid dynamical problems

Zhen, Cui January 2014 (has links)
In this thesis, three fluid dynamical problems are studied. First in chapter 2 we investigate, via both theoretical and experimental methods, the swimming motion of a magnetotactic bacterium having the shape of a prolate spheroid in a viscous liquid under the influence of an imposed magnetic field. The emphasis of the study is placed on how the shape of the non-spherical magnetotactic bacterium, marked by the size of its eccentricity, affects the pattern of its swimming motion. It is revealed that the pattern/speed of a swimming spheroidal magnetotactic bacterium is highly sensitive not only to the direction of its magnetic moment but also to its shape. Secondly, an important unanswered mathematical question in the theory of rotating fluids has been the completeness of the inviscid eigenfunctions which are usually referred to as inertial waves or inertial modes. In chapter 3 we provide for the first time a mathematical proof for the completeness of the inertial modes in a rotating annular channel by establishing the completeness relation, or Parseval’s equality, for any piecewise continuous, differentiable velocity of an incompressible fluid. Thirdly, in chapter 4 we investigate, through both asymptotic analysis and direct numerical simulation, precessionally driven flow of a homogeneous fluid confined in a fluid-filled circular cylinder that rotates rapidly about its symmetry axis and precesses about a different axis that is fixed in space. A particular emphasis is placed on the spherical-like cylinder whose diameter is nearly the same as its length. An asymptotic analytical solution in closed form is derived in the mantle frame of reference for describing weakly precessing flow in the spherical-like cylinder at asymptotically small Ekman numbers. We also construct a three-dimensional finite element model, which is checked against the asymptotic solution, in attempting to elucidate the structure of the nonlinear flow.

Page generated in 0.0527 seconds