• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 745
  • 168
  • Tagged with
  • 908
  • 908
  • 908
  • 908
  • 908
  • 123
  • 110
  • 103
  • 97
  • 97
  • 88
  • 83
  • 64
  • 59
  • 53
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Die mathematische Logik: Ein kollektiver Denkfehler?

Castell-Castell, Nikolaus 29 September 2016 (has links)
1) Dass die „mathematische Logik“ keine mathematische Logik ist, duerfte auch anderen Kritikern aufgefallen sein, dass sich aber ihre (angebliche) Logik nur ausschliesslich mit sich selbst beschaeftigt und darin ihren Selbstzweck findet, wurde in der Literatur noch nirgends herausgearbeitet und ist Hauptgegenstand dieses Aufsatzes. 2) Auch eine deutliche Kritik des semantischen und (trotz gegenteiliger Behauptung) auch syntaktischen Niveaus von Aussagen- und Praedikatenlogik mit ihren undifferenzierten und auf Buchstaben (Symbole) reduzierten „Aussagen“ (die hier vollkommen unpassend sind, da mathematische Logik mit der Arithmetik nichts gemein hat) war ueberfaellig und wird in diesem Aufsatz belegt. 3) In der Logik der Realitaet haben alle von vornherein willkuerlich als falsch erklaerte Praemissen nichts zu suchen. Warum sie bei den einzelnen Operatoren jeweils in drei von vier theoretischen Kombinationen absichtlich eingebaut werden, entbehrt jeden praktischen, aber auch theoretischen, Sinns. 4) Die hier vorzutragenden Argumente fuer eine unbegrenzt mehrwertige Logik und das bisherige bewusste Missinterpretieren der sog. Fuzzy-Logik stellen ebenfalls eine eigene und offensichtlich neue Idee dar. 5) Ausserdem werden in diesem Aufsatz die Bezeichnungen Null (0) und (vor allem) Eins (1) hinterfragt, und es wird der naheliegende Vorschlag gemacht, die Benennungen Null (0) und Eins (1) von den benebelnden, das Weiterdenken blockierenden und trotz Boole auch falschen, Begriffen „wahr“ und „falsch“ zu trennen. 6) Das Zusammensetzen von (nur zwei) Aussagen, die a) fuer die Logik keineswegs verbunden werden muessten und b) deren zwangslaeufiges Zusammengehoeren sowohl in der Praxis, als auch in der Theorie, (mit Ausnahme von dem „wenn-dann“-Operator) bei allen Operatoren stets unpassend ist, wird ebenfalls in diesem Aufsatz dargelegt. 7) Die Unsinigkeit fuer jegliche Logik, a) einige Operatoren durch leichte Variationen zu ergaenzen (z.B. V und XOR) und b) fuer diese dann teilweise abweichende Wahrheitswerte zu behaupten, wird kritisch vermerkt (und offensichtlich erstmalig bemerkt). 8) Das starre und sowohl praktisch als auch theoretisch aussagelose System in den Wahrheitstabellen usw. wird ebenfalls konstatiert. Die Tatsache, dass es sich hier lediglich um eine im Voraus festgelegte und keineswegs durchgaengig logische Skala handelt, die die Informatiker seit Shannon freundlicherweise fuer ihre „Namensgebungen“ (mit jeweils ein paar definierten Eigenschaften) nutzen (aber nicht nutzen muessten), wird kritisch dargestellt. 9) Das in diesem Aufsatz kurz angerissene Thema zum Zaehlen von Zahlen ist simpel, aber selbst entwickelt und neu. Diese Festlegung, dass sich die Elemente einer Menge den in ihrer Reihenfolge und in ihrem Abstand zueinander im Voraus festgelegten Zahlen anpassen muessen und nicht umgekehrt, macht den Blick frei fuer den u.g. Punkt 10) dieses Resuemees. 10) Durch den vorgenannten Punkt 9) werden die umfassenden Unterschiede zwischen der Mathematik und der mathematischen Logik offensichtlich, die klar belegen, dass die mathematische Logik nichts mit Mathematik zu tun hat und dass darum der Anspruch der mathematischen Logik, ein „Sonderrecht“ darauf zu haben, auf Semantik keinen Wert legen zu muessen und selbst entscheiden zu koennen, was „wahr“ und was „falsch“ ist, nach logischen Gesichtspunkten unhaltbar ist.
82

Pseudo-Boolean Constraint Encodings for Conjunctive Normal Form and their Applications

Steinke, Peter 20 February 2020 (has links)
In contrast to a single clause a pseudo-Boolean (PB) constraint is much more expressive and hence it is easier to define problems with the help of PB constraints. But while PB constraints provide us with a high-level problem description, it has been shown that solving PB constraints can be done faster with the help of a SAT solver. To apply such a solver to a PB constraint we have to encode it with clauses into conjunctive normal form (CNF). While we can find a basic encoding into CNF which is equivalent to a given PB constraint, the solving time of a SAT solver significantly depends on different properties of an encoding, e.g. the number of clauses or if generalized arc consistency (GAC) is maintained during the search for a solution. There are various PB encodings that try to optimize or balance these properties. This thesis is about such encodings. For a better understanding of the research field an overview about the state-of-the art encodings is given. The focus of the overview is a simple but complete description of each encoding, such that any reader could use, implement and extent them in his own work. In addition two novel encodings are presented: The Sequential Weight Counter (SWC) encoding and the Binary Merger Encoding. While the SWC encoding provides a very simple structure – it is listed in four lines – empirical evaluation showed its practical usefulness in various applications. The Binary Merger encoding reduces the number of clauses a PB encoding needs while having the important GAC property. To the best of our knowledge currently no other encoding has a lower upper bound for the number of clauses produced by a PB encoding with this property. This is an important improvement of the state-of-the art, since both GAC and a low number of clauses are vital for an improved solving time of the SAT solver. The thesis also contributes to the development of new applications for PB constraint encodings. The programming library PBLib provides researchers with an open source implementation of almost all PB encodings – including the encodings for the special cases at-most-one and cardinality constraints. The PBLib is also the foundation of the presented weighted MaxSAT solver optimax, the PBO solver pbsolver and the WBO, PBO and weighted MaxSAT solver npSolver.
83

Multirate methods for hyperbolic systems: Numerical approximation of fast waves in weather forecast models

Naumann, Andreas 22 April 2020 (has links)
Die zu erwartenden Temperaturen und Regenmengen der folgenden Tage bis Stunden sind heutzutage eine der wichtigsten Informationen. Diese Kenntnis ist nicht nur von allgemeinem Interesse. Insbesondere Bereiche wie die Landwirtschaft und Forstwirtschaft sind die zu erwartenden Regenmengen selbst über einen langen Zeitraum von Wochen von besonderen Interesse um zum Beispiel die Ernte oder den Schutz von Pflanzen zu planen. Daher ist die Fähigkeit, das Wetter zuverlässig und schnell für ausreichend lange Zeiträume vorher zu sagen, wesentlich. Die Zuverlässigkeit der Wettervorhersage, oder genau genommen der numerischen Wettervorhersage, hängt von mehreren Faktoren ab. Einer dieser Faktoren ist die Detailliertheit der Atmosphärenmodelle. Während die ersten numerischen Experimente die Atmosphäre als eine Schicht trockenen idealen Gases betrachteten, beinhalten aktuelle Modelle die Feuchte, Wolken, Niederschlag und Strahlung. Mit jedem zusätzlichen Detail steigt natürlich der Simulationsaufwand. Daher müssen parallel zur verbesserten Modellierung auch die numerischen Verfahren erweitert werden. Im allgemeinen sind die Atmosphärenmodelle Systeme nichtlinearer hyperbolischer Differentialgleichungen (PDEs). Insbesondere beinhalten die Modelle Wellen unterschiedlicher Ausbreitungsgeschwindigkeit, welche nahezu nicht gedämpft werden. Diese unterschiedlichen Geschwindigkeiten sind die Grundlage für den Mehrskalencharakter der Atmosphärenmodelle. Eine effektive numerische Methode muss daher die unterschiedlichen Skalen adäquat behandeln. Die Entwicklung und Analyse numerischer Mehrskalenverfahren zur Lösung von Systemen hyperbolischer Differentialgleichungen ist herausfordernd. Beispiele für hyperbolische Systeme beginnen bei der einfachen skalaren linearen Advektionsgleichung, der Wellengleichung und enden bei nichtlinearen Systemen wie den Flachwassergleichungen oder den (reibungsfreien) Eulergleichungen. Letztere sind die Grundlage für alle Atmosphärenmodelle. Viele hyperbolische PDEs besitzen eine additive Struktur, wobei die Aufteilung gerade den Zeitskalen entsprechen. Wir gehen von einer angepassten Diskretisierung im Raum, in der Regel eine Finite-Volumen Diskretisierung, aus. Diese Diskretisierung erhält die additive Struktur des kontinuierlichen Problems in der (ortsdiskretisierten) gewöhnlichen Differentialgleichung (ODE). Daher entwickeln wir eine neue numerische Methode zur Lösung gewöhnlicher Differentialgleichungen, welche die additive Struktur und gleichzeitig die zugehörigen Zeitskalen ausnutzt. Die Analyse von Splittingverfahren ist herausfordernd sowohl in der Entwicklung der Ordnungsbedingungen als auch der Stabilitätskriterien. Jeder Mehrskalenansatz kombiniert die unterschiedlichen Zeitskalen auf unterschiedliche Art und Weise. Daher gibt es keine einheitliche Ordnungs- und Stabilitätstheorie. Wir entwickeln die Ordnungsbedingungen auf klassischem Wege, durch Differentiation der numerischen Lösung. Die Aufteilung der rechten Seite in schnelle und langsame Terme führt auf zusätzliche Koeffizienten und Kombinationen der elementaren Differentiale. Im Vergleich zu klassischen Verfahren hat jedes elementare Differential unterschiedliche nicht-klassische Koeffizienten, ohne erkennbare Struktur. Dieser Strukturverlust erschwert die numerische Lösung zusätzlich. Analytische Lösungen gibt es nur in Sonderfällen. Wir entwickeln und analysieren eine neue Klasse von Mehrskalen methoden, welche mit den Integrator der schnellen Skale parametriert ist. Dieser neue Ansatz erlaubt die Verallgemeinerung der Ausgangsmethode und vereinfacht etliche Schritte in der Herleitung der Ordnungsbedinungen. Zusätzlich hat die Verallgemeinerung auch den Vorteil, die Ordnungsbedingungen des Gesamtverfahrens und die Struktur des darunter liegenden Lösers der schnellen Zeitskale zu assoziieren. Wir untersuchen ebenfalls die lineare Stabilität der neuen Methoden. Aufgrund der Aufteilung in langsame und schnelle Terme gibt es viele verschiedene Modellprobleme. Wir leiten ein Modellproblem auf Basis eines vereinfachten hyperbolischer PDEs her. Auf Basis dieses Stabilitsproblems konstruieren wir die neuen Methoden und untersuchen ihre Effizienz anhand zweier nichtlineare Benchmarkprobleme. Analog zur Herleitung der Ordnungsbedingungen vereinheitlichen wir die Konstruktion der Stabilitätsfunktionen und heben im nachhinein die Unterschiede aufgrund des fast-scale integrators hervor. Gute numerische Methoden führen nicht nur zu einem kleinen Fehler, sondern haben auch ein großes Stabilitätsgebiet. Daher optimizieren wir die Methodenparameter im Hinblick auf die Größe des Stabilitätsgebiets. Unsere neuen Methoden besitzen sowohl reelle, als auch rationale Parameter. Die Lösung des gemischten ganzzahligen-reellen Optimierungsproblem vereinfachen wir durch die Auswahl einzelner rationaler Parameter. Dadurch erhalten wir allerdings einige tausend unabhängige Teilprobleme. Zum Abschluss analysieren wir die Effizienz der neuen Methoden anhand zweier nichtlinearer Benchmarkprobleme und vergleichen die Genauigkeit und Stabilität mit Referenzverfahren. / The expected temperatures and rainfall in the next days to hours is one of the most important information nowadays. This knowledge is not only of general interest. Disciplines like agriculture and forestry the knowledge of the rain is even more important for a time span of weeks to plan the harvest or protect the plants. Therefore, the possibility to forecast the weather reliably and fast is very important nowadays. The reliability of weather forecast, or more accurate the numerical weather forecast, depends on several factors. One factor is the complexity of atmosphere models. Whereas the first numerical experiments treat the atmosphere as dry ideal gas with one layer, recent models incorporate the humidity, clouds, precipitation and radiation. But every higher detail in the model come at higher costs for simulation. Hence the development of finer grained models also require more advanced numerical methods to solve them. The atmosphere models are in general a nonlinear hyperbolic set of partial differential equations (PDEs). In particular the models consist of several waves, traveling with different speeds with nearly no damping. Roughly speaking these varying velocities lead to the multiscale nature of the atmosphere models and a suitable numerical method should respect the different time scales. The development and analysis of multirate methods for hyperbolic systems remains a challenging problem. Examples for class of hyperbolic systems of PDEs range from the scalar and linear advection equation, the wave equation to nonlinear systems like the shallow water equations or the (inviscid) Euler equations, which are the basis for the atmosphere models. The hyperbolic PDEs often have an additive split structure, which in turn account for the different time scales. We assume a suitable, often finite volume, discretization in space. Hence we retain the additive splitting from the continuous problem in the semi-discretized ordinary differential equation (ODE). Hence we develop a new numerical method which accounts for the additive split structure and the multiscale nature. The development of splitting methods is challenging in the analysis of the order conditions and the stability criteria. In particular the interaction between the fast and slow scales render the order conditions often complicated and unstructured. Furthermore every multiscale approach combines the scales in a different way, which is why there is no unified order condition theory. With these challenges in mind we derive the order conditions in a classical way by differentiation of the numerical method. The splitting in a fast and a slow right hand side leads to several combinations of elementary differentials. And every differential has different non-standard coefficients, without any structure between these combinations. This loss in structure renders the numerical solutions of the order conditions quite complicated, and the analytical solutions are only possible in rare cases. We develop a new class of multirate methods, which is parameterized by the fast scale solver. That new approach allows for a better generalization and simplifies several steps by unification. Nevertheless this new type of generalization has the advantage to associate the order conditions of the complete (macro scale) method with the structure of the underlying (micro scale) integrator. The second challenge is the analysis of the (linear) stability of multirate methods. We also analyze the (linear) stability of the newly developed methods. Due to the splitting structure there are many different model problems possible. We deduce a model problem from a simplified system of hyperbolic PDEs. On top of these stability model problems we will construct the new methodss. In analogy to the analysis of the order conditions, we unify the construction of the stability functions and highlight the differences due to the different fast scale integrators afterwards. A good method does not only lead to low errors, but also has a large stability area. Hence we optimize the method parameters with respect to the stability area. In our case, the parameter set contains rational and real parameters. We circumvent the solution of a mixed-integer optimization problem by considering only some rational parameters and optimize for them independently. Nevertheless, we obtain several thousand sub problems. Finally we consider two nonlinear benchmark problems. With these problems we analyze the accuracy and stability again and compare the efficiency with two reference multiscale methods.
84

Transformations of Copulas and Measures of Concordance

Fuchs, Sebastian 27 November 2015 (has links)
Copulas are real functions representing the dependence structure of the distribution of a random vector, and measures of concordance associate with every copula a numerical value in order to allow for the comparison of different degrees of dependence. We first introduce and study a group of transformations mapping the collection of all copulas of fixed but arbitrary dimension into itself. These transformations may be used to construct new copulas from a given one or to prove that certain real functions on the unit cube are indeed copulas. It turns out that certain transformations of a symmetric copula may be asymmetric, and vice versa. Applying this group, we then propose a concise definition of a measure of concordance for copulas. This definition, in which the properties of a measure of concordance are defined in terms of two particular subgroups of the group, provides an easy access to the investigation of invariance properties of a measure of concordance. In particular, it turns out that for copulas which are invariant under a certain subgroup the value of every measure of concordance is equal to zero. We also show that the collections of all transformations which preserve symmetry or the concordance order or the value of every measure of concordance each form a subgroup and that these three subgroups are identical. Finally, we discuss a class of measures of concordance in which every element is defined as the expectation with respect to the probability measure induced by a fixed copula having an invariance property with respect to two subgroups of the group. This class is rich and includes the well-known examples Spearman's rho and Gini's gamma.
85

Evaluation verschiedener Imputationsverfahren zur Aufbereitung großer Datenbestände am Beispiel der SrV-Studie von 2013

Meister, Romy 09 March 2016 (has links)
Missing values are a serious problem in surveys. The literature suggests to replace these with realistic values using imputation methods. This master thesis examines four different imputation techniques concerning their ability for handling missing data. Therefore, mean imputation, conditional mean imputation, Expectation-Maximization algorithm and Markov-Chain-Monte-Carlo method are presented. In addition, the three first mentioned methods were simulated by using a large real data set. To analyse the quality of these techniques a metric variable of the original data set was chosen to generate some missing values considering different percentages of missingness and common missing data mechanism. After the replacement of the simulated missing values, several statistical parameters, like quantiles, arithmetic mean and variance of all completed data sets were calculated in order to compare them with the parameters from the original data set. The results, that have been established by empiric data analysis, show that the Expectation-Maximization algorithm estimates all considered statistical parameters of the complete data set far better than the other analysed imputation methods, although the assumption of a multivariate normal distribution could not be achieved. It is found, that the mean as well as the conditional mean imputation produce statistically significant estimator for the arithmetic mean under the supposition of missing completely at random, whereas other parameters as the variance do not show the estimated effects. Generally, the accuracy of all estimators from the three imputation methods decreases with increasing percentage of missingness. The results lead to the conclusion that the Expectation-Maximization algorithm should be preferred over the mean and the conditional mean imputation.
86

Solving multi-physics problems using adaptive finite elements with independently refined meshes

Ling, Siqi 16 December 2016 (has links)
In this thesis, we study a numerical tool named multi-mesh method within the framework of the adaptive finite element method. The aim of this method is to minimize the size of the linear system to get the optimal performance of simulations. Multi-mesh methods are typically used in multi-physics problems, where more than one component is involved in the system. During the discretization of the weak formulation of partial differential equations, a finite-dimensional space associated with an independently refined mesh is assigned to each component respectively. The usage of independently refined meshes leads less degrees of freedom from a global point of view. To our best knowledge, the first multi-mesh method was presented at the beginning of the 21st Century. Similar techniques were announced by different mathematics researchers afterwards. But, due to some common restrictions, this method is not widely used in the field of numerical simulations. On one hand, only the case of two-mesh is taken into scientists\' consideration. But more than two components are common in multi-physics problems. Each is, in principle, allowed to be defined on an independent mesh. Besides that, the multi-mesh methods presented so far omit the possibility that coefficient function spaces live on the different meshes from the trial and test function spaces. As a ubiquitous numerical tool, the multi-mesh method should comprise the above circumstances. On the other hand, users are accustomed to improving the performance by taking the advantage of parallel resources rather than running simulations with the multi-mesh approach on one single processor, so it would be a pity if such an efficient method was only available in sequential. The multi-mesh method is actually used within local assembling process, which should not be conflict with parallelization. In this thesis, we present a general multi-mesh method without the limitation of the number of meshes used in the system, and it can be applied to parallel environments as well. Chapter 1 introduces the background knowledge of the adaptive finite element method and the pioneering work, on which this thesis is based. Then, the main idea of the multi-mesh method is formally derived and the detailed implementation is discussed in Chapter 2 and 3. In Chapter 4, applications, e.g. the multi-phase flow problem and the dendritic growth, are shown to prove that our method is superior in contrast to the standard single-mesh finite element method in terms of performance, while accuracy is not reduced.
87

Minimal and orthogonal residual methods and their generalizations for solving linear operator equations

Ernst, Oliver G. 09 October 2000 (has links)
This thesis is concerned with the solution of linear operator equations by projection methods known as minimal residual (MR) and orthogonal residual (OR) methods. We begin with a rather abstract framework of approximation by orthogonal and oblique projection in Hilbert space. When these approximation schemes are applied to sequences of nested spaces, with a simple requirement relating trial and test spaces in case of the OR method, one can derive at this rather general level the basic relations which have been proved for many specific Krylov subspace methods for solving linear systems of equations in the literature. The crucial quantities with which we describe the behavior of these methods are angles between subspaces. By replacing the given inner product with one that is basis-dependent, one can also incorporate methods based on non-orthogonal bases such as those based on the non-Hermitian Lanczos process for solving linear systems. In fact, one can show that any reasonable approximation method based on a nested sequence of approximation spaces can be interpreted as an MR or OR method in this way. When these abstract approximation techniques are applied to the solution of linear operator equations, there are three generic algorithmic formulations, which we identify with some algorithms in the literature. Specializing further to Krylov trial and test spaces, we recover the well known Krylov subspace methods. Moreover, we show that our general framework also covers in a natural way many recent generalizations of Krylov subspace methods, which employ techniques such as augmentation, deflation, restarts and truncation. We conclude with a chapter on error and residual bounds, deriving some old and new results based on the angles framework. This work provides a natural and consistent framework for the sometimes confusing plethora of methods of Krylov subspace type introduced in the last 50 years.
88

On Experimental Designs for Derivative Random Fields

Simak, Jaroslav 04 July 2002 (has links)
Es werden differenzierbare zufällige Felder zweiter Ordnung untersucht und Vorschläge zur Versuchsplanung von Beobachtungen der abgeleiteten Felder unterbreitet. Von einem gewissen Standpunkt aus werden die folgenden Fragen beantwortet: Wie viele Informationen liefern Beobachtungen von Ableitungen für die Vorhersage des zugrunde liegenden Stochastischen Feldes? Wie beeinflusst eine a priori Wahl der Kovarianzfunktion das Informationsverhältnis zwischen verschiedenen abgeleiteten Feldern im Hinblick auf die Vorhersage? Als Zielfunktion wird das so genannte "imse-update" für den besten linearen Prädiktor betrachtet. Den zentralen Teil stellt die Untersuchung von Versuchsplänen mit (asymptotisch) verschwindenden Korrelationen dar. Hier wird insbesondere der Einfluss der Maternschen Klasse und J-Besselschen Klassen von Kovarianzfuntionen untersucht. Ferner wird der Einfluss gleichzeitiger Beobachtung von verschiedenen Ableitungen untersucht. Schließlich werden einige empirische Studien durchgeführt, aus denen einige praktische Ratschläge abgeleitet werden.
89

Untersuchungen zu MIRUP für Vektorpackprobleme

Rietz, Jürgen 18 December 2003 (has links)
Das d-dimensionale Vektorpackproblem (d-VPP), welches aus Planungsaufgaben resultieren kann, ist eine Verallgemeinerung des eindimensionalen Zuschnittproblems (1CSP) und deshalb NP-schwer. Die stetige Relaxation, die mittels Spaltengenerierung gelöst werden kann, ergebe den optimalen Zielfunktionswert zC, während der optimale Zielfunktionswert der ganzzahligen Aufgabe zD ist. In der Dissertation werden obere Schranken für das Gap Δ = zD-zC hergeleitet und systematisch Instanzen des 1CSPs mit großem Δ (bis zu 6/5) konstruiert. Die im Teilbarkeitsfall des 1CSPs bekannte Abschätzung Δ < 2 wird zu Δ < 7/5 verschärft. Im d-VPP mit d > 1 gilt die MIRUP-Hypothese Δ < 2 nicht. Dies und die Unbeschränktheit des Wertes einer Variante bei d gegen unendlich werden an speziellen Beispielen gezeigt. Außerdem wird eine Heuristik vorgeschlagen und erprobt.
90

Räumliche Statistik zur Charakterisierung gefüllter Elastomere

Tscheschel, André 18 February 2005 (has links)
Im Mittelpunkt der Dissertation stehen räumlich-statistische Verfahren zur Charakterisierung der Verteilung von Füllstoffen (Ruß oder Silica) innerhalb der Polymermatrix von gefüllten Elastomeren. Das Variogramm und andere Zufallsfeldcharakteristiken werden dazu benutzt, um die in TEM-Aufnahmen von Dünnschnitten gefüllter Elastomere sichtbar werdende Füllstoffverteilung statistisch zu beschreiben. Mit Hilfe von Shot-Noise-Prozessen wird eine Verbindung zwischen der räumlichen Verteilung der kugelförmigen Füllstoffprimärpartikel und den TEM-Aufnahmen hergestellt. Mit einer stochastischen Optimierungsmethode kann das System der auf die Bildebene projizierten Primärpartikel auch aus TEM-Aufnahmen rekonstruiert werden, was zu einer robusten Charakterisierung der Füllstoffdispersion führt. Weitere wichtige Punkte der Arbeit stellen die statistische Charakterisierung einzelner Füllstoff-Aggregate sowie die Untersuchung der spezifischen Euler-Zahl des polymeren Netzwerkes dar.

Page generated in 0.1541 seconds