151 |
MCP-1 Induces Rapid Formation of Tethered VLA-4 Bonds with Increased Resistance to Applied Forcein THP-1 CellsChu, Calvin 07 April 2011 (has links)
The chemokine, Monocyte Chemoattractant Protein (MCP-1), enhances integrin mediated monocyte adhesion to the vascular endothelium during inflammation. In this study, we demonstrate that MCP-1 promotes rapid sub-second adhesion of THP-1 cells to Vascular Cell Adhesion Molecule-1 (VCAM-1), but not to Intercellular Cell Adhesion Molecule-1 (ICAM-1). MCP-1 activates membrane tethered Very Late Antigen 4 (VLA-4, α4β1), but not necessarily cytoskeleton anchored VLA-4. Activated tethered VLA-4 bonds tremendously increased the period of time monocytes remain bound from hundreds of milliseconds to several seconds and also increased the distance over which immunologic surveillance occurs from several microns up to 20 microns along the endothelium. Lastly at the single molecule level, MCP-1 stimulated tethered VLA-4 bonds exhibit increased resistance to pulling force. In conclusion MCP-1 increased tethered VLA-4 bond resistance to force providing a mechanism for monocyte recruitment to the endothelium.
|
152 |
Studies on the transmembrane signaling of β1 integrinsArmulik, Annika January 2000 (has links)
Integrins are heterodimeric cell surface receptors, composed of an α and a β subunit, mainly binding for extracellular matrix proteins. lntegrin subunit β1 can combine with at least 12 a subunits and thus form the biggest subfamily within the integrin family. In this thesis, functional properties of the splice variant β1Β, and the effects of several mutations in the cytoplasmic tail of integrin subunit β1Α were studied. In addition, the border between the transmembrane and cytoplasmic domains of several integrin subunits was determined. The β1Β splice variant has been reported to have a dominant negative effect on functions of β1Α integrins. In this study, it was studied if the expression of β1Β had similar negative effects on the αvβ3 integrin functions since the β3 subunit is structurally similar to β1Α. The β1Β subunit was expressed in an integrin β1-deficient cell line and it was found that the presence of β1Β does not interfere with adhesion or signaling of endogenous αvβ3 The border between the cytoplasmic domain and the C-terminal end of the transmembrane domain of integrin α and β subunits has been unclear. This question was experimentally addressed for integrin subunits β1, β2, α2 and α5. It was found that integrin subunits contain a positively charged lysine, which is embedded in the membrane in the absence of interacting proteins. The functional importance of the lysine in integrin transmembrane domains was investigated by mutating this amino acid to leucine in β1Α. The mutation affected cell spreading and tyrosine phosphorylation of the adapter protein CAS. The activation of focal adhesion kinase and tyrosine phosphorylation of paxillin was not affected. Furthermore, the mutation of two tyrosines to phenylalanines in the β1Α cytoplasmic tail was found to reduce the capability of β1Α integrins to mediate cell spreading and migration. Activation of focal adhesion kinase in response to the later β1Α mutant was shown to be impaired as well as tyrosine phosphorylation of adapter proteins paxillin and tensin whereas overall tyrosine phosphorylation of CAS was unaffected. These data suggests the presence of focal adhesion kinase-dependent and -independent pathways for tyrosine phosphorylation of CAS after integrin β1Α-mediated adhesion.
|
153 |
Integrin αVβ3-Directed Contraction by Connective Tissue Cells : Role in Control of Interstitial Fluid Pressure and Modulation by Bacterial ProteinsLidén, Åsa January 2006 (has links)
This thesis aimed at studying mechanisms involved in control of tissue fluid homeostasis during inflammation. The interstitial fluid pressure (PIF) is of importance for control of tissue fluid balance. A lowering of PIF in vivo will result in a transport of fluid from the circulation into the tissue, leading to edema. Loose connective tissues that surround blood vessels have an intrinsic ability to take up fluid and swell. The connective tissue cells exert a tension on the fibrous network of the tissues, thereby preventing the tissues from swelling. Under normal homeostasis, the interactions between the cells and the fibrous network are mediated by β1 integrins. Connective tissue cells are in this way actively controlling PIF. Here we show a previously unrecognized function for the integrin αVβ3, namely in the control of PIF. During inflammation the β1 integrin function is disturbed and the connective tissue cells release their tension on the fibrous network resulting in a lowering of PIF. Such a lowering can be restored by platelet-derived growth factor (PDGF) -BB. We demonstrated that PDGF-BB restored PIF through a mechanism that was dependent on integrin αVβ3. This was shown by the inability of PDGF-BB to restore a lowered PIF in the presence of anti-integrin β3 IgG or a peptide inhibitor of integrin αVβ3. PDGF-BB was in addition unable to normalize a lowered PIF in β3 null mice. Furthermore, we demonstrated that extracellular proteins from Streptococcus equi modulated αVβ3-mediated collagen gel contraction. Because of the established concordance between collagen gel contraction in vitro and control of PIF in vivo, a potential role for these proteins in control of tissue fluid homeostasis during inflammation could be assumed. Sepsis and septic shock are severe, and sometimes lethal, conditions. Knowledge of how bacterial components influence PIF and the mechanisms for tissue fluid control during inflammatory reactions is likely to be of clinical importance in treating sepsis and septic shock.
|
154 |
Intra- and Extracellular Modulation of Integrin-directed Connective Tissue Cell Contractionvan Wieringen, Tijs January 2009 (has links)
All blood vessels in the microvasculature are embedded in loose connective tissue, which regulates the transport of fluid to and from tissues. The intersti-tial fluid pressure (IFP) is one of the forces that control this transport. A lowering of IFP in vivo results in an increased transport of fluid from the circulation into the underhydrated connective tissues, resulting in edema formation. During homeostasis, contractile connective tissue cells exert a tension on the connective tissue fibrous network by binding with β1 in-tegrins, thereby actively controlling IFP. During inflammation, the IFP is lowered but platelet-derived growth factor (PDGF)-BB induces an IFP nor-malization dependent on integrin αVβ3. We demonstrate that extracellular proteins from Streptococcus equi subspecies equi modulated cell-mediated and integrin αVβ3-directed collagen gel contraction in vitro. One of these proteins, the collagen- and fibronectin binding FNE, stimulated contraction by a process dependent on fibronectin synthesis. This study identified a pos-sible novel virulence mechanism for bacteria based on the ability of bacteria to modulate the edema response. Another protein, the collagen-binding pro-tein CNE, inhibited contraction and this led to the identification of sites in collagen monomers that potentially are involved in connecting αVβ3 to the collagen network. PDGF-BB and prostaglandin E1 (PGE1) stimulate and inhibit collagen gel contraction in vitro and normalize and lower IFP, respec-tively. We showed that these agents affected both similar and different sets of actin-binding proteins. PDGF-BB stimulated actin cytoskeleton dynamics whereas PGE1 inhibited processes dependent on cytoskeletal motor and adhesive functions, suggesting that these different activities may partly ex-plain the contrasting effects of PGE1 and PDGF-BB on contraction and IFP. Mutation of the phosphatidylinositol 3’-kinase (PI3K), but not phospholipase C (PLC)γ activation site, rendered cells unable to respond to PDGF-BB in contraction and in activation of the actin binding and severing protein cofilin. Ability to activate cofilin after PDGF-BB stimulation correlated with ability to respond to PDGF-BB in contraction, suggesting a role for cofilin in this process downstream of PDGF receptor-activated PI3K. Many proteins can modulate contraction either by affecting the extracellular matrix and cell adhesions or by altering cytoskeletal dynamics. Knowledge on how these proteins might influence IFP is likely to be of clinical importance for treat-ment of inflammatory conditions including anaphylaxis, septic shock and also carcinoma growth.
|
155 |
Dynamics of leukocyte receptors after severe burns: An exploratory studyJohansson, Joakim, Sjögren, Florence, Bodelsson, Mikael, Sjöberg, Folke January 2011 (has links)
Background: Patients with burns are susceptible to organ failure, and there is indirect evidence that leukocytes may contribute to this process. They may change the expression of cell-surface receptors after certain stimuli, for example, the burn. We therefore aimed to assess the changes induced by the burn in the expression of leukocyte cell-surface receptors CD11b, CD14, CD16, and CD62L on the surface of PMNs and monocytes. We also wanted to examine the dynamics of this activation during the first week after the burn, and to relate it to the size of the injury. Methods: Ten patients with burns of andgt;15% (TBSA) were included in the study. Blood samples were collected on arrival and every consecutive morning during the first week. Healthy volunteers acted as controls. Results: PMN CD11b expression was increased. The extent of PMN CD11b expression correlated negatively to the size of the full thickness burn. Monocyte CD14 expression increased initially but there was no relation to the size of the burn. PMN CD16 expression decreased initially during the first days and the decrease was related to burn size. CD62L did not vary depending on the burn in either PMN or monocytes during the first week after the burn. Conclusion: This study showed that specific receptors on the surface of leukocytes (PMN CD11b, monocyte CD14 and PMN CD16) are affected by the burn. Expression of PMN CD11b and CD16 are related to burn size. Burn-induced effects on the expression of PMN receptors, such as PMN CD11b and CD16, may contribute to burn-induced infection susceptibility. / Original Publication: Joakim Johansson, Florence Sjögren, Mikael Bodelsson and Folke Sjöberg, Dynamics of leukocyte receptors after severe burns: An exploratory study, 2011, BURNS, (37), 2, 227-233. http://dx.doi.org/10.1016/j.burns.2010.08.015 Copyright: Elsevier Science B.V., Amsterdam. http://www.elsevier.com/
|
156 |
Signal-dependent Translation of the Platelet Transcriptome: The Roles of αIIbβ3 Integrin, Fibrinogen and Fibronectin in Platelet de novo Protein SynthesisAndrews, Marc 21 March 2012 (has links)
Although platelets are anucleate, they do inherit 1500-3000 mRNA transcripts from their megakaryocyte progenitors, in addition to all the machinery essential for protein synthesis; however, there is little understanding why platelets initiate de novo synthesis of these transcripts. Our group demonstrated that fibrinogen (Fg), a ligand of platelet Glycoprotein (GP)IIb-IIIa (αIIbβ3 integrin), is required for platelet P-selectin expression and that engagement of Fg with GPIIb-IIIa is essential for this process. The present study shows that murine platelets incubated with Fg synthesize P-selectin de novo, and this synthesis is blocked by puromycin. A similar effect is also observed when platelets are incubated with fibronectin, another ligand of GPIIb-IIIa. Furthermore, platelets from both ligand- (Fg−/−, von Willebrand factor−/−, apolipoprotein A-IV−/−) and GPIIb-IIIa-deficient mice have altered proteomes. These data suggest an intricate mechanism by which engagement of platelets with their environment triggers signal-dependent translation of the platelet transcriptome, consequently altering the platelet proteome.
|
157 |
Signal-dependent Translation of the Platelet Transcriptome: The Roles of αIIbβ3 Integrin, Fibrinogen and Fibronectin in Platelet de novo Protein SynthesisAndrews, Marc 21 March 2012 (has links)
Although platelets are anucleate, they do inherit 1500-3000 mRNA transcripts from their megakaryocyte progenitors, in addition to all the machinery essential for protein synthesis; however, there is little understanding why platelets initiate de novo synthesis of these transcripts. Our group demonstrated that fibrinogen (Fg), a ligand of platelet Glycoprotein (GP)IIb-IIIa (αIIbβ3 integrin), is required for platelet P-selectin expression and that engagement of Fg with GPIIb-IIIa is essential for this process. The present study shows that murine platelets incubated with Fg synthesize P-selectin de novo, and this synthesis is blocked by puromycin. A similar effect is also observed when platelets are incubated with fibronectin, another ligand of GPIIb-IIIa. Furthermore, platelets from both ligand- (Fg−/−, von Willebrand factor−/−, apolipoprotein A-IV−/−) and GPIIb-IIIa-deficient mice have altered proteomes. These data suggest an intricate mechanism by which engagement of platelets with their environment triggers signal-dependent translation of the platelet transcriptome, consequently altering the platelet proteome.
|
158 |
Syndecan - Regulation and Function of its Glycosaminoglycan ChainsEriksson, Anna S. January 2013 (has links)
The cell surface is an active area where extracellular molecules meet their receptors and affect the cellular fate by inducing for example cell proliferation and adhesion. Syndecans and integrins are two transmembrane molecules that have been suggested to fine-tune these activities, possibly in cooperation. Syndecans are proteoglycans, i.e. proteins with specific types of carbohydrate chains attached. These chains are glycosaminoglycans and either heparan sulfate (HS) or chondroitin sulfate (CS). Syndecans are known to influence cell adhesion and signaling. Integrins in turn, are important adhesion molecules that connect the extracellular matrix with the cytoskeleton, and hence can regulate cell motility. In an attempt to study how the two types of glycosaminoglycans attached to syndecan-1 can interact with integrins, a cell based model system was used and functional motility assays were performed. The results showed that HS, but not CS, on the cell surface was capable of regulating integrin-mediated cell motility. Regulation of intracellular signaling is crucial to prevent abnormal cellular behavior. In the second part of this thesis, the aim was to see how the presentation of glycosaminoglycan chains to the FGF signaling complex could affect the cellular response. When attached to the plasma membrane via syndecan-1, CS chains could support the intracellular signaling, although not promoting as strong signals as HS. When glycosaminoglycans were attached to free ectodomains of syndecan-1, both types of chains sequestered FGF2 from the receptors to the same extent, pointing towards functional overlap between CS and HS. To further study the interplay between HS and CS, their roles in the formation of pharyngeal cartilage in zebrafish were established. HS was important during chondrocyte intercalation and CS in the formation of the surrounding extracellular matrix. Further, the balance between the biosynthetic enzymes determined the ratio of HS and CS, and HS biosynthesis was prioritized over CS biosynthesis. The results presented in this thesis provide further insight into the regulation of HS biosynthesis, as well as the roles of both HS and CS on the cell surface. It is evident, that in certain situations there is a strict requirement for a certain HS structure, albeit in other situations there is a functional overlap between HS and CS.
|
159 |
The Effects of Extracellular Matrix Mechanics and Composition on the Behaviors of Nucleus Pulposus Cells from the Intervertebral DiscGilchrist, Christopher Lee January 2009 (has links)
<p>Intervertebral disc (IVD) disorders are a major contributor to disability and health costs. Disc disorders and resulting pain may be preceded by changes which first occur in the nucleus pulposus (NP) region of the IVD, where significant alterations in tissue cellularity, composition, and structure begin early in human life and continue with increasing age and degeneration. These changes coincide with the loss of a distinct cell population, notochordally-derived immature NP cells, which may play a key role in the generation and maintenance of this tissue. These cells reside in a gelatinous, highly-hydrated extracellular matrix (ECM) environment and exhibit in situ cell-matrix and cell-cell interactions which are quite distinct from cells in other regions of the disc or in other cartilagenous, including expression of laminin cell-matrix receptors and cell-associated laminin proteins. The ECM environment is known to be a key regulator of cellular behaviors, with ECM ligands and elasticity modulating cell adhesion, organization, differentiation, and phenotype. The primary motivating hypothesis of this thesis is that the unique ECM environment of the NP plays a key role in modulating immature NP cell behaviors, and that laminin ligands, in combination with ECM elasticity, modulate immature NP cell behaviors including adhesion, organization, and phenotype.</p><p>To investigate this hypothesis, flow cytometric analyses were performed to examine IVD cell integrin receptor expression over time in culture, including assessment of key laminin-binding integrin subunits. The roles of specific integrin receptors modulating NP cell adhesion to ECM proteins were identified in studies utilizing function-blocking antibodies. NP cell adhesion, spreading, and relative cell adhesion strength was assessed on various ECM constituents, including specific isoforms of laminin. Additionally, studies were performed to examine the roles of ECM ligand and substrate stiffness in modulating NP cellular organization, utilizing polyacrylamide gel substrates with tunable mechanical properties and functionalized with different ECM ligands. Finally, the role of ECM environment was examined on one key measure of NP cell function, proteoglycan production, over time in culture.</p><p>NP cells isolated from immature NP tissues were found to express high levels of the laminin-binding integrin subunit alpha 6 ex situ and maintain this expression over time in culture. Function blocking studies revealed this receptor to be a key regulator of NP cell adhesion to laminin, in contrast to cells from the adjacent AF region, which did not express this receptor nor adhere to laminin. Cell adhesion studies demonstrated that NP cells preferentially interact with two laminin isoforms, LM-511 and LM-332, in comparison to other ECM proteins, with enhanced cell attachment, spreading, and adhesion strength on surfaces coated with these ligands. These findings correspond with laminin isoform and receptor expression patterns identified in immature NP tissues. Additionally, NP cell-cell interactions were found to be modulated by both ECM ligand and substrate stiffness, with soft, laminin-functionalized substrates promoting self-assembly of NP cells into cell clusters with morphologies similar to those identified in immature NP tissues. Finally, culture of immature NP cells on soft, laminin-rich substrates was found to promote a key measure of NP cell function, proteoglycan synthesis.</p><p>The studies presented here demonstrate that immature NP cells interact uniquely with laminin extracellular matrix proteins, and that laminin ligands and matrix elasticity are two key regulators of NP cell organization and phenotype in the IVD. These findings suggest that alterations in one or both of these factors during IVD aging or degeneration may contribute to the differentiation or loss of this unique cell population. Additionally, these results indicate that soft, laminin-functionalized biomaterials may be appropriate for in vitro culture and expansion of immature NP cells, as well as for use in NP tissue engineering strategies.</p> / Dissertation
|
160 |
Force activation of I domain containing and lacking integrins on live cellsParks, William 16 July 2010 (has links)
Cellular adhesion plays a crucial role in the biological function of cells, allowing them to communicate and signal, as well as physically anchor, by enabling them to adhere to either other cells or the extra cellular matrix (ECM). This process is regulated by several factors including intrinsic bond kinetics, internal cellular signaling, environment, force exerted on the bond, and force history of the bond. Concerning the force and force history dependence, the observation of catch bonds in integrin binding has asked as more questions than it has answered.
To explore the force and force history dependence this process, each bond was loaded to a peak force before relaxing to a much lower force that was held for the duration of the measurement. Two different integrins were studied, both of which have in previous works exhibited a catch bond. Furthermore, the effects of different metal ion conditions and an allosteric antagonist were also studied to elucidate the conformational effects on force priming of integrin. What was observed was that I domain, or αA domain, possessing integrin, whether tested against its more active or less active binding state, changed very little in terms of off rate once the priming force was applied. However in the I domain, or αA domain, lacking integrin, the observed off rate changed as well. It seems that force priming is capable of causing integrin to bind in a stronger manner regardless of the other conditions used to either activate or inhibit binding. However the way in which the binding is strengthened depends on the receptors structure.
|
Page generated in 0.0561 seconds