• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 148
  • 34
  • 30
  • 15
  • 12
  • 6
  • 5
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 347
  • 112
  • 63
  • 46
  • 46
  • 39
  • 36
  • 35
  • 35
  • 32
  • 29
  • 26
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Retinal Pigment Epithelium Cell Alignment on Nanostructured Collagen Matrices

Ulbrich, Stefan, Friedrichs, Jens, Valtink, Monika, Murovski, Simo, Franz, Clemens M., Müller, Daniel J., Funk, Richard H. W., Engelmann, Katrin January 2011 (has links)
We investigated attachment and migration of human retinal pigment epithelial cells (primary, SV40-transfected and ARPE-19) on nanoscopically defined, two-dimensional matrices composed of parallel-aligned collagen type I fibrils. These matrices were used non-cross-linked (native) or after riboflavin/UV-A cross-linking to study cell attachment and migration by time-lapse video microscopy. Expression of collagen type I and IV, MMP-2 and of the collagen-binding integrin subunit α2 were examined by immunofluorescence and Western blotting. SV40-RPE cells quickly attached to the nanostructured collagen matrices and aligned along the collagen fibrils. However, they disrupted both native and cross-linked collagen matrices within 5 h. Primary RPE cells aligned more slowly without destroying either native or cross-linked substrates. Compared to primary RPE cells, ARPE-19 cells showed reduced alignment but partially disrupted the matrices within 20 h after seeding. Expression of the collagen type I-binding integrin subunit α2 was highest in SV40-RPE cells, lower in primary RPE cells and almost undetectable in ARPE-19 cells. Thus, integrin α2 expression levels directly correlated with the degree of cell alignment in all examined RPE cell types. Specific integrin subunit α2-mediated matrix binding was verified by preincubation with an α2-function-blocking antibody, which impaired cell adhesion and alignment to varying degrees in primary and SV40-RPE cells. Since native matrices supported extended and directed primary RPE cell growth, optimizing the matrix production procedure may in the future yield nanostructured collagen matrices serving as transferable cell sheet carriers. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
122

Distinct Migratory Properties of M1, M2, and Resident Macrophages Are Regulated by α<sub>d</sub>β<sub>2</sub>and α<sub>m</sub>β<sub>2</sub>Integrin-Mediated Adhesion

Cui, Kui, Ardell, Christopher L., Podolnikova, Nataly P., Yakubenko, Valentin P. 15 November 2018 (has links)
Chronic inflammation is essential mechanism during the development of cardiovascular and metabolic diseases. The outcome of diseases depends on the balance between the migration/accumulation of pro-inflammatory (M1) and anti-inflammatory (M2) macrophages in damaged tissue. The mechanism of macrophage migration and subsequent accumulation is still not fully understood. Currently, the amoeboid adhesion-independent motility is considered essential for leukocyte migration in the three-dimensional environment. We challenge this hypothesis by studying the contribution of leukocyte adhesive receptors, integrins αMβ2, and αDβ2, to three-dimensional migration of M1-polarized, M2-polarized, and resident macrophages. Both integrins have a moderate expression on M2 macrophages, while αDβ2 is upregulated on M1 and αMβ2 demonstrates high expression on resident macrophages. The level of integrin expression determines its contribution to macrophage migration. Namely, intermediate expression supports macrophage migration, while a high integrin density inhibits it. Using in vitro three-dimensional migration and in vivo tracking of adoptively-transferred fluorescently-labeled macrophages during the resolution of inflammation, we found that strong adhesion of M1-activated macrophages translates to weak 3D migration, while moderate adhesion of M2-activated macrophages generates dynamic motility. Reduced migration of M1 macrophages depends on the high expression of αDβ2, since αD-deficiency decreased M1 macrophage adhesion and improved migration in fibrin matrix and peritoneal tissue. Similarly, the high expression of αMβ2 on resident macrophages prevents their amoeboid migration, which is markedly increased in αM-deficient macrophages. In contrast, αD- and αM-knockouts decrease the migration of M2 macrophages, demonstrating that moderate integrin expression supports cell motility. The results were confirmed in a diet-induced diabetes model. αD deficiency prevents the retention of inflammatory macrophages in adipose tissue and improves metabolic parameters, while αM deficiency does not affect macrophage accumulation. Summarizing, β2 integrin-mediated adhesion may inhibit amoeboid and mesenchymal macrophage migration or support mesenchymal migration in tissue, and, therefore, represents an important target to control inflammation.
123

Hematopoietic stem cells in co-culture with mesenchymal stromal cells - modeling the niche compartments in vitro

Ordemann, Rainer, Jing, Duohui, Fonseca, Ana-Violeta, Alakel, Nael, Fierro, Fernando A., Muller, Katrin, Bornhauser, Martin, Ehninger, Gerhard, Corbeil, Denis 04 January 2016 (has links) (PDF)
Background Hematopoietic stem cells located in the bone marrow interact with a specific microenvironment referred to as the stem cell niche. Data derived from ex vivo co-culture systems using mesenchymal stromal cells as a feeder cell layer suggest that cell-to-cell contact has a significant impact on the expansion, migratory potential and ‘stemness’ of hematopoietic stem cells. Here we investigated in detail the spatial relationship between hematopoietic stem cells and mesenchymal stromal cells during ex vivo expansion. Design and Methods In the co-culture system, we defined three distinct localizations of hematopoietic stem cells relative to the mesenchymal stromal cell layer: (i) those in supernatant (non-adherent cells); (ii) those adhering to the surface of mesenchymal stromal cells (phase-bright cells) and (iii) those beneath the mesenchymal stromal cells (phase-dim cells). Cell cycle, proliferation, cell division and immunophenotype of these three cell fractions were evaluated from day 1 to 7. Results Phase-bright cells contained the highest proportion of cycling progenitors during co-culture. In contrast, phase-dim cells divided much more slowly and retained a more immature phenotype compared to the other cell fractions. The phase-dim compartment was soon enriched for CD34+/CD38− cells. Migration beneath the mesenchymal stromal cell layer could be hampered by inhibiting integrin β1 or CXCR4. Conclusions Our data suggest that the mesenchymal stromal cell surface is the predominant site of proliferation of hematopoietic stem cells, whereas the compartment beneath the mesenchymal stromal cell layer seems to mimic the stem cell niche for more immature cells. The SDF-1/CXCR4 interaction and integrin-mediated cell adhesion play important roles in the distribution of hematopoietic stem cells in the co-culture system.
124

INTEGRIN α6β4 PROMOTES PANCREATIC CANCER INVASION BY ALTERING DNA REPAIR-MEDIATED EPIGENETICS

Carpenter, Brittany L. 01 January 2016 (has links)
Integrin α6β4 is upregulated in pancreatic carcinoma, where signaling promotes metastatic properties, in part by altering the transcriptome. Such alterations can be accomplished through DNA demethylation of specific promoters, as seen with the pro-metastatic gene S100A4. I found that signaling from integrin α6β4 dramatically upregulates expression of amphiregulin (AREG) and epiregulin (EREG), ligands for the epidermal growth factor receptor (EGFR), and that these ligands promote pancreatic carcinoma invasion. To determine if AREG and EREG are regulated by DNA methylation, pancreatic cancer cells with low AREG and EREG expression were treated with the DNA methyltransferase inhibitor 5-aza-2’-deoxycytidine (5-Aza-CdR), resulting in stable overexpression of AREG and EREG, and this induction required signaling from integrin α6β4. Similarly, treatment of cells with high integrin α6β4 with the methyl donor S-adenosylmethionine inhibited gene expression of AREG and EREG. Whole genome bisulfite sequencing on pancreatic cancer cells reveled hypomethylation of the promoter regions of AREG and EREG when integrin α6β4 is high, and these regions correspond to H3K27Ac, indicative of enhancer location. Interestingly, I also observed genome-wide DNA demethylation, and a large proportion of altered CpGs correspond to potential enhancers. It is currently accepted that active DNA demethylation occurs via DNA repair. I tested this hypothesis by treating cells with Gemcitabine, which inhibits multiple components of DNA repair, including DNA demethylation mediated by GADD45A. Gemcitabine treatment resulted in marked reduction in AREG and EREG expression. To further test the involvement of GADD45A, I used RNAi-mediated knockdown or cDNA overexpression to alter GADD45A levels. In both instances, AREG and EREG expression positively correlated with GADD45A, particularly when integrin α6β4 is high, indicating that GADD45A is a rate-limiting step in AREG and EREG overexpression. Similarly, using stable shRNA, I show that Thymine DNA Glycosylase (TDG), and TET1 known modulators of DNA demethylation, are required for AREG and EREG expression in integrin α6β4 high cells, and nuclear localization of TDG is much higher in cells with high integrin α6β4. Using a specific inhibitor I found that AREG and EREG expression is dependent on Parp-1. Finally, I determined that integrin α6β4 signaling enhances cells ability to respond to and survive in the presence of DNA damage, and that active DNA repair is required for integrin α6β4 mediated DNA demethylation. Taken together, these data indicate that DNA repair is required to maintain overexpression of AREG and EREG in response to signaling from integrin α6β4 and that integrin α6β4 promotes this overexpression by enhancing DNA repair.
125

Molecular mechanism of the Fibroblast Growth Factor Receptor, egl-15, and α-integrin receptor, ina-1, in gland cell migration during embryonic development of the Caenorhabditis elegans pharynx

Kim, Shinhye 21 January 2015 (has links)
Caenorhabditis elegans is a powerful tool to study cellular migration and morphogenesis during organ development. During pharynx development, the dorsal gland cell, g1p, is born in the anterior aspect of the pharyngeal primordium and undergoes a form of morphogenesis called retrograde extension. egl-15, the single Fibroblast Growth Factor Receptor (FGFR) in C. elegans and ina-1, one of two α-integrin receptors, are both required for the proper extension or migration of g1p cell. Mutations in either egl-15 or ina-1 show similar gland cell over-migration defects where the gland cell body migrates past the terminal bulb and is located in proximity of the intestine. The kinase domain of EGL-15 was found to be required for migration and transgenic rescue strategies were used to determine the tissue of EGL-15 function. RNA interference was used to determine if egl-15 and ina-1 are functioning in the same pathway to regulate gland cell migration. / February 2015
126

LYSOPHOSPHATIDIC ACID PRODUCTION AND SIGNALING IN PLATELETS

Fulkerson, Zachary Bennett 01 January 2011 (has links)
Lysophosphatidic acid (LPA) belongs to a class of extracellular lipid signaling molecules. In the vasculature, LPA may regulate platelet activation and modulate endothelial and smooth muscle cell function. LPA has therefore been proposed as a mediator of cardiovascular disease. The bulk of circulating LPA is produced from plasma lysophosphatidylcholine (LPC) by autotaxin (ATX), a secreted lysophospholipase D (lysoPLD). Early studies suggest that some of the production of circulating LPA is platelet-dependent. ATX possesses an N-terminal somatomedin B-like domain suggesting the hypothesis that ATX interacts with platelet integrins which may localize ATX to substrate in the membrane and/or alter the catalytic activity of ATX. Using static adhesion and soluble binding assays we found that ATX does indeed bind to platelets and cultured mammalian cells in an integrin-dependent manner which is blocked by integrin function-blocking peptides and antibodies. This binding increases both the activity of ATX and localization of its product, LPA, to the platelet/cell membrane. LPA is generally stimulatory to human platelets although platelets from a small population of donors are refractory to LPA stimulation. Likewise LPA is inhibitory to murine platelets. We previously found that LPA receptor pan-antagonists reduce agonist-induced platelet activation, and partial stimulation of LPA5 specifically increases platelet activation in humans. Since both LPA5 and LPA4 are present at significant levels in human platelets, we hypothesized that LPA4 is responsible for an inhibitory pathway and LPA5 is responsible for an inhibitory pathway. We used mice deficient in LPA4 to test this model. Isolated platelet function tests revealed no major difference between lpa4-/- mice compared with WT mice although lpa4-/- mice were more prone to FeCl3-induced thrombosis. Paradoxically, chimeric mice reconstituted with lpa4-/- deficient bone marrow derived cells were protected from thrombosis. These discrepancies may be explained by involvement of endothelial cells and the relative scarcity of LPA receptors in murine platelets compared with human platelets. Taken together, these results demonstrate two critical regulators of LPA signaling and open up new avenues to further our understanding of atherothrombosis.
127

Interaction of the cytoskeletal protein talin with the integrin beta3 subunit cytoplasmic tail: Characterization of the talin rod IBS2 integrin binding site.

Moes, Michèle 11 October 2007 (has links)
Talin is a multifunctional cytoskeletal protein that plays a critical role in linking the actin cytoskeleton to the integrin family of transmembrane cell adhesion receptors. Two distinct integrin binding sites have been identified in talin, one present in the globular head domain (IBS1) and involved in integrin activation, and a second (IBS2), that has been delineated to a 130 residue fragment of the talin rod domain, but whose functional role is still elusive (Tremuth et al.,2004). The objective of the present study was to define the minimal structure of talin IBS2 and to investigate its functional role in the integrin-cytoskeleton connection. In the first part of this study, we used a combination of three different experimental approaches to define the minimal structure of talin IBS2: 1) an in silico bioinformatics approach to analyse sequence conservation of talin IBS2, 2) an in vivo cell biology approach to study the subcellular localization of recombinant talin fragments covering IBS2 in CHOáIIbâ3 cells, and 3) an in vitro biochemical approach consisting in protein overlay, pull down and Surface Plasmon Resonance (SPR) assays, to study the direct interaction between talin IBS2 and the integrin â3 subunit. We delineated IBS2 to a single amphipathic á-helical repeat of 23 residues within the talin rod domain. We further provided evidence that a two amino acid mutation(L2094I2095/AA) was sufficient to inactivate the IBS2 site, due to a disruption of the á helix structure, as demonstrated by infrared spectroscopy. In addition, we identified 2 lysine residues (K2085, K2089) exposed on the solvent face of á helix 50, which are directly involved in the talin IBS2-integrin interaction. In the second part of this study, we investigated the functional role of talin IBS2 in spreading defective talin (-/-) cells and showed that in contrast to full-length wild type talin, an IBS2 LI/AA mutant talin was unable to fully rescue the spread phenotype of these cells. These results provide the first direct evidence that IBS2 in the talin rod is essential to link integrins to the actin cytoskeleton.
128

Characterizing putative cellular mediators of West Nile virus infections in bird and mosquito tissues

Partridge, Alison 14 September 2015 (has links)
West Nile virus (WNV) is a mosquito-borne virus that infects many bird species. Examination of American crows and house sparrows from the Winnipeg region confirmed that WNV levels were at least 1000 times higher in crows than sparrows. No species differences were observed in the level of transcripts encoding a putative WNV receptor, β3 integrin. Differences in mosquito vector competence can be due to differences in the ability of WNV to enter mosquito cells. Using RNAi techniques, the role of two clathrin coat adaptor proteins in facilitating WNV infections in mosquito cells was examined, and the findings suggest that these proteins may act as resistance factors in Aedes aegypti, and as susceptibility factors in Culex quinquefasciatus. These findings will contribute to our understanding of the molecular basis of vector competence in different mosquitoes, and may help us determine whether other species could serve as potential vectors of this health-threatening virus. / October 2015
129

Dynamika akrozomální reakce při vnitrodruhové kompetici spermií hlodavců. / Dynamics of acrosome reaction during intra-specific sperm competition in rodents.

Veselá, Kateřina January 2012 (has links)
Dynamics of acrosome reaction during intra-specific sperm competition in rodents Sperm acrosome integrity is disturbed in promiscuous species field mice (Apodemus) and more than half of the spermatozoa undergoing spontaneous acrosome reaction (AR) before binding to the zona pellucida. In Muridae it is documented a generally high rate of spontaneous AR, and the percentage increases in promiscuous species up to 60 % in 60 min capacitation in vitro. The acrosome integrity positively corellates with presence of CD46 protein which absence in wood mouse is fenotypicaly same as in CD46 knock-out mouse leading to accelerated spontaneous AR. It is necessary to clarify whether for mouse sperm it is essential the primary binding of intact sperm to zona pellucida of the egg or whether it is preferred secondary sperm binding after spontaneous AR. In this context, the question is whether there is a relocalization of the key fusion protein IZUMO in sperm during spontaneous AR. IZUMO relocalization was monitored by immunofluorescence at specific times of capacitation in vitro during spontaneous and induced AR. IZUMO relocalization as closely connected to actin cytoskeleton, and β1 integrins. Dynamics and localization of β1 integrin during spontaneous and induced AR was also detected by immunofluorescence. Our results...
130

Computational studies of talin-mediated integrin activation

Kalli, Antreas C. January 2013 (has links)
Integrins are large heterodimeric (αβ) cell surface receptors that play a key role in the formation of focal adhesion complexes and are involved in various signal transduction pathways. They are ‘activated’ to a high affinity state by the formation of an intracellular complex between the membrane, the integrin β-subunit tail and talin, a process known as ‘inside-out activation’. The head domain of talin, a FERM domain homologue, plays a vital role in the formation of this complex. Recent studies also suggest that kindlins act in synergy with talin to induce integrin activation. Despite much available structural and functional data, details of how talin activates integrins remain elusive. In this thesis a multiscale simulation approach (using a combination of coarse-grained and atomistic molecular dynamics simulations) together with NMR experiments were employed to study talin-mediated integrin inside-out activation. A number of novel insights emerged from these studies including: (i) the crucial role of negatively charged lipids in talin/membrane association; (ii) a novel V-shape conformation of the talin head domain which optimizes its interactions with negatively charged lipids; (iii) that interactions of talin with negatively charged moieties in the membrane orient talin to optimize interactions with the β cytoplasmic tail; (iv) that binding of talin to the β cytoplasmic tail promotes rearrangement of the integrin TM helices and weakens the integrin α/β association; and (v) that an increase in the tilt angle of the β integrin TM helix initiates a scissoring movement of the two integrin TM helices. These results, combined with experimental data, provide new insights into the mechanism of integrin inside-out activation. The same multiscale approach was used to demonstrate the crucial role of the Gx3G motif in the packing of the integrin transmembrane helices. Using recent structural data the integrin/talin complex was modelled and inserted in bilayers which resemble the biological plasma membrane. The results demonstrate the dynamic nature of the integrin receptor and suggest that the integrin/talin complex alters the lipid organization and motion in the outer and inner bilayer leaflets in an asymmetric way and that diffusion of lipids in the vicinity of the protein is slowed down. The work in this thesis demonstrates that multiscale simulations have considerable strengths when applied to investigations of structure/function relationships in membrane proteins.

Page generated in 0.0656 seconds