• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 5
  • 5
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 75
  • 21
  • 20
  • 16
  • 16
  • 16
  • 13
  • 12
  • 12
  • 12
  • 11
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

INFLUENCE OF TITANIUM INTERLAYER THICKNESS ON THE ADHESION OF TiCN THIN FILMS DEPOSITED ON STAINLESS STEEL

Brown, Austin 07 1900 (has links)
Hard coatings deposited by physical vapour deposition (PVD) are commonly used to improve the scratch resistance and hardness of objects made of softer materials such as steel, and they can also be used as decorative coatings since they exhibit a wide range of different colours. In this research, stainless steel tableware utensils were coated with multilayer Ti/TiCN thin films to give the tableware a wear-resistant decorative finish. A cathodic arc PVD system was used to deposit the coatings since it has the potential to produce very dense coatings with excellent adhesion and wear-resistance properties in relatively short deposition times. Several system parameters were varied between deposition cycles to create a large set of samples which included: changing the amount of flatware present inside of the chamber during deposition, changing the size of the flatware used, changing the mounting location of the flatware inside of the chamber, and changing the depletion level of the titanium cathode targets used to deposit titanium. It was found that changing these variables had an effect on the deposition rate of the coating and thus had an effect on the thickness of the titanium interlayer, which was found to be an important factor in achieving good adhesion of the TiCN layer. The optimal titanium interlayer thickness was found to be in the range of approximately 120 to 230 nm. / Thesis / Master of Applied Science (MASc)
12

Nanoparticle enhanced eutectic reaction during diffusion brazing of aluminium to magnesium

Akhtar, T.S., Cooke, Kavian O., Khan, Tahir I., Shar, M.S. 14 August 2019 (has links)
Yes / Diffusion brazing has gained much popularity as a technique capable of joining dissimilar lightweight metal alloys and has the potential for a wide range of applications in aerospace and transportation industries, where microstructural changes that will determine the mechanical and chemical properties of the final joint must be controlled. This study explores the effect of Al2O3 nanoparticles on the mechanical and microstructural properties of diffusion brazed magnesium (AZ31) and aluminium (Al-1100) joints. The results showed that the addition of Al2O3 nanoparticle to the electrodeposited Cu coating increased the volume of eutectic liquid formed at the interface which caused a change to the bonding mechanism and accelerated the bonding process. When the Cu/Al2O3 nanocomposite coatings were used as the interlayer, a maximum bond strength of 46 MPa was achieved after 2 min bonding time while samples bonded using pure-Cu interlayers achieved maximum strength after 10 min bonding time. Chemical analysis of the bond region confirmed that when short bonding times are used, the intermetallic compounds formed at the interface are limited to the compounds consumed in the eutectic reaction.
13

Material Extrusion based Additive Manufacturing of Semicrystalline Polymers: Correlating Rheology with Print Properties

Das, Arit 09 September 2022 (has links)
Filament-based material extrusion (MatEx) additive manufacturing has garnered huge interest in both academic and industrial communities. Moreover, there is an increasing need to expand the material catalog for MatEx to produce end use parts for a wide variety of functional applications. Current approaches towards MatEx of semicrystalline thermoplastics are in their nascent stage with fiber reinforcements being one of the most common techniques. MatEx of commodity semicrystalline thermoplastics has been investigated but most of the current methods are extremely material and machine specific. The goal of this dissertation is to enable MatEx of semicrystalline polymers with mechanical properties approaching that of injection molded parts. Tailored molecular architectures of blends that can control the crystallization kinetics from the melt state are investigated. By modifying the crystallization time window, the time during which chain diffusion can occur across the deposited layers is prolonged, which allows for a stronger bond between layers. Such differences in the crystallization process impact the z-axis adhesion and residual stress state, which directly affect mechanical properties and warpage in the printed parts. The impact of blend composition on polymer chain diffusion, crystallization profiles, and print properties resulting from the repeated non-uniform thermal history in filament based MatEx is studied. The melt flow behaviour is characterized using rheology and its effect on the interlayer adhesion of printed parts and print precision is explored. The extent of polymer chain re-entanglement post deposition on the printer bed is quantitatively determined using interrupted shear rheology protocols. Tensile bars are printed and mechanically characterized to analyze the tensile performance of the printed parts. Correlating the rheological findings with the mechanical performance of the printed parts provides valuable insights into the complex interlayer welding process during MatEx and is critical to improving existing machine designs and feedstocks in order to achieve printed parts with properties approaching their injection molded counterparts. The results will be essential in identifying optimal processing conditions to maximize material specific printed part performance as well as highlight the associated limitations to enable MatEx of next generation materials. / Doctor of Philosophy / Compared to traditional subtractive manufacturing techniques, additive manufacturing (AM) has the potential to transform modern manufacturing capabilities due to its unique advantages including design flexibility, mass customization, energy efficiency, and economic viability. The filament-based material extrusion (MatEx), also referred to as fused filament fabrication (FFF), employing thermoplastic polymers (and composites) has emerged as one of the most common AM modality for industrial adoption due to its operational simplicity. However, the widespread application of MatEx has been limited due to the lack of compatible materials, anisotropic mechanical properties, and lack of quality assurance. Most of the research on FFF has been performed on amorphous polymers with almost negligible levels of crystalline content such as polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS). Semicrystalline polymers are an attractive choice for FFF feedstocks compared to the amorphous ones due to their improved thermal resistance, toughness, and deformability. However, processing semicrystalline polymers using FFF is challenging due to the volumetric shrinkage encountered during crystallization from the melt state. This results in the buildup of significant levels of residual stresses at temperatures lower than the crystallization temperature of the polymer resulting in warpage of the printed parts. The research presented in this dissertation aims to address the aforementioned challenges by characterizing semicrystalline polymer feedstocks under conditions representative of the multiphysics encountered during a typical FFF process. Several strategies to limit shrinkage and warpage are discussed that involve tuning the thermal profile and crystallization kinetics during printing. The former is achieved by addition of thermally conductive carbon fiber reinforcements while the latter is realized by blending amorphous resins or low crystallinity polymers to the semicrystalline polymer matrix. The fibers results in a more homogenous temperature distribution during printing while the incorporation of the resins modify the rate of crystallization; both of which play a pivotal role in reducing the residual stress build-up and hence minimizing the warpage during printing. The printability of the materials is investigated based on the shear- and temperature dependent viscous response of the polymers. The printed parts with fiber reinforcements exhibit high levels of mechanical anisotropy compared to the blends with the resins, likely due to differences in polymer chain mobility at the interface. The tensile properties of the printed polymer blends are slightly inferior to those obtained using traditional manufacturing techniques; however, properties close to 90-95% of injection molded properties are recovered through a simple post-processing thermal annealing step. The obtained results will assist in optimizing the processing parameters and feedstock formulation in order to consistently produce printed parts with minimal defects and tailored mechanical properties for functional applications.
14

Alterungsverhalten von polymeren Zwischenschichtmaterialien im Bauwesen / Ageing Behaviour of Polymeric Interlayer Materials in Civil Engineering

Kothe, Michael 21 February 2014 (has links) (PDF)
Verbund- und Verbundsicherheitsgläser zeichnen sich durch ein breites Anwendungsspektrum im Bauwesen, im Automobilbau und der Photovoltaikindustrie aus. Dabei werden insbesondere an Verbundsicherheitsglas hohe Anforderungen hinsichtlich der Sicherheitseigenschaften gestellt. Diese Eigenschaften, wie Splitterbindung und Resttragfähigkeit, werden durch einen Verbund aus mindestens zwei Glasscheiben mit einem polymeren Zwischenschichtmaterial realisiert. Aktuell werden in etwa 95% aller Fälle Zwischenschichten aus Polyvinylbutyral für die Herstellung von Verbundsicherheitsglas eingesetzt, da einzig dieses Material bauaufsichtlich geregelt ist. Dabei sind aber auch verschiedene andere Materialien, wie Ethylen-Vinylacetat, thermoplastische Polyurethane oder Ionomere als Zwischenschichten einsetzbar. Aufgrund ihrer Eigenschaften erweisen sich diese für spezielle Anwendungsgebiete als besonders geeignet. Gegenstand dieser Arbeit ist die Untersuchung verschiedener polymerer Zwischenschichtmaterialien hinsichtlich ihrer Eignung für die Herstellung von Verbund- und Verbundsicherheitsgläsern, speziell im Vergleich zur Polyvinylbutyral-Folie. Dabei wird ein besonderes Augenmerk auf das Alterungsverhalten der Zwischenschichten gelegt, um deren Eignung auch für mehrere Jahrzehnte Standzeit, wie sie für Bauwerke zu erwarten ist, einschätzen zu können. Um das Alterungsverhalten der verschiedenen polymeren Zwischenschichtmaterialien beurteilen zu können, werden zunächst die Materialeigenschaften der verschiedenen Zwischenschichten im ungealterten Zustand an reinen Substanzprüfkörpern beziehungsweise ungealterten Verbundgläsern ermittelt. Als Alterungsszenarien werden eine Temperaturlagerung, eine Beanspruchung durch wechselnde klimatische Bedingungen, sowie eine Lagerung unter aggressiven Medien und eine Bestrahlungsprüfung zur Beurteilung der Langzeitstabilität durchgeführt. Die verschiedenen Alterungstests mit kleinformatigen Verbundglas-Prüfkörpern wirken sich dabei sowohl auf das optische Erscheinungsbild der Verbundgläser, als auch auf die Materialeigenschaften aus. Neben der Bildung von Blasen, Delaminationen oder Trübungen, führen diese Tests durch chemische Reaktionen oder physikalische Umlagerungen zur Veränderung des Steifigkeits- und Abbauverhaltens der polymeren Zwischenschichtmaterialien. Auf Grundlage der Ergebnisse der in dieser Arbeit durchgeführten Alterungstests erscheinen das untersuchte Ionomer (DuPont SentryGlas) und ein thermoplastisches Polyurethan (Huntsman Krystalflex PE399) am besten für einen dauerhaften Einsatz als Zwischenschichtmaterial für Verbund- und Verbundsicherheitsgläser als geeignet. Durch eine Anpassung der Einbausituation oder eine Beschränkung der Einsatzgebiete und der damit einhergehenden klimatischen Beanspruchungen können auch die anderen Materialien vorteilhaft eingesetzt werden. / Laminated glass and laminated safety glass are used in a wide range of applications, for example in construction, automotive and photovoltaic industry. High demands on security properties are made, especially to laminated safety glass. These properties, such as binding glass fragments in case of breakage and the residual bearing capacity, will be realized by a composite of at least two panes of glass with a polymeric interlayer material. Currently, in about 95% of all cases, interlayer of polyvinyl butyral are used for the production of laminated safety glass, because this is the only material, which is approved by the building authorities. Various other polymeric materials such as ethylene vinyl acetate, ionomers and thermoplastic polyurethanes can also be used as interlayers. Based on their properties, these materials are suitable for special applications. Subject of this thesis is the study of various polymeric interlayer materials in reference to their suitability for the production of laminated glass and laminated safety glass, especially in comparison to the polyvinyl butyral interlayer. Especially the ageing behaviour of the interlayer is investigated to estimate their suitability over the lifetime of several decades, which is expected for building structures. To evaluate the ageing behaviour, the material properties of the different polymeric interlayer materials are first determined on the pure, unaged material or unaged laminates. Different ageing scenarios are carried out to assess the longterm stability, such as a temperature storage test, a climatic stress test as well as test under aggressive media and high irradiation. These ageing tests with small-scale test specimens will affect both the appearance of the laminated glass, as well as the material properties. In addition to the formation of bubbles, delamination or haze, these tests lead to changes in stiffness and degradation behaviour of the polymeric interlayer materials by chemical reactions or physical rearrangements. Based on the results of the ageing tests in this thesis, the investigated ionomer (DuPont SentryGlas) and a thermoplastic polyurethane (Huntsman Krystalflex PE399) are best suited for a long-term use as interlayer material for laminated glass or laminated safety glass. By changing the structural design or limiting the range of applications, the other investigated materials can also show their advantages for different applications.
15

Alterungsverhalten von polymeren Zwischenschichtmaterialien im Bauwesen: Ageing Behaviour of Polymeric Interlayer Materials in Civil Engineering

Kothe, Michael 03 December 2013 (has links)
Verbund- und Verbundsicherheitsgläser zeichnen sich durch ein breites Anwendungsspektrum im Bauwesen, im Automobilbau und der Photovoltaikindustrie aus. Dabei werden insbesondere an Verbundsicherheitsglas hohe Anforderungen hinsichtlich der Sicherheitseigenschaften gestellt. Diese Eigenschaften, wie Splitterbindung und Resttragfähigkeit, werden durch einen Verbund aus mindestens zwei Glasscheiben mit einem polymeren Zwischenschichtmaterial realisiert. Aktuell werden in etwa 95% aller Fälle Zwischenschichten aus Polyvinylbutyral für die Herstellung von Verbundsicherheitsglas eingesetzt, da einzig dieses Material bauaufsichtlich geregelt ist. Dabei sind aber auch verschiedene andere Materialien, wie Ethylen-Vinylacetat, thermoplastische Polyurethane oder Ionomere als Zwischenschichten einsetzbar. Aufgrund ihrer Eigenschaften erweisen sich diese für spezielle Anwendungsgebiete als besonders geeignet. Gegenstand dieser Arbeit ist die Untersuchung verschiedener polymerer Zwischenschichtmaterialien hinsichtlich ihrer Eignung für die Herstellung von Verbund- und Verbundsicherheitsgläsern, speziell im Vergleich zur Polyvinylbutyral-Folie. Dabei wird ein besonderes Augenmerk auf das Alterungsverhalten der Zwischenschichten gelegt, um deren Eignung auch für mehrere Jahrzehnte Standzeit, wie sie für Bauwerke zu erwarten ist, einschätzen zu können. Um das Alterungsverhalten der verschiedenen polymeren Zwischenschichtmaterialien beurteilen zu können, werden zunächst die Materialeigenschaften der verschiedenen Zwischenschichten im ungealterten Zustand an reinen Substanzprüfkörpern beziehungsweise ungealterten Verbundgläsern ermittelt. Als Alterungsszenarien werden eine Temperaturlagerung, eine Beanspruchung durch wechselnde klimatische Bedingungen, sowie eine Lagerung unter aggressiven Medien und eine Bestrahlungsprüfung zur Beurteilung der Langzeitstabilität durchgeführt. Die verschiedenen Alterungstests mit kleinformatigen Verbundglas-Prüfkörpern wirken sich dabei sowohl auf das optische Erscheinungsbild der Verbundgläser, als auch auf die Materialeigenschaften aus. Neben der Bildung von Blasen, Delaminationen oder Trübungen, führen diese Tests durch chemische Reaktionen oder physikalische Umlagerungen zur Veränderung des Steifigkeits- und Abbauverhaltens der polymeren Zwischenschichtmaterialien. Auf Grundlage der Ergebnisse der in dieser Arbeit durchgeführten Alterungstests erscheinen das untersuchte Ionomer (DuPont SentryGlas) und ein thermoplastisches Polyurethan (Huntsman Krystalflex PE399) am besten für einen dauerhaften Einsatz als Zwischenschichtmaterial für Verbund- und Verbundsicherheitsgläser als geeignet. Durch eine Anpassung der Einbausituation oder eine Beschränkung der Einsatzgebiete und der damit einhergehenden klimatischen Beanspruchungen können auch die anderen Materialien vorteilhaft eingesetzt werden. / Laminated glass and laminated safety glass are used in a wide range of applications, for example in construction, automotive and photovoltaic industry. High demands on security properties are made, especially to laminated safety glass. These properties, such as binding glass fragments in case of breakage and the residual bearing capacity, will be realized by a composite of at least two panes of glass with a polymeric interlayer material. Currently, in about 95% of all cases, interlayer of polyvinyl butyral are used for the production of laminated safety glass, because this is the only material, which is approved by the building authorities. Various other polymeric materials such as ethylene vinyl acetate, ionomers and thermoplastic polyurethanes can also be used as interlayers. Based on their properties, these materials are suitable for special applications. Subject of this thesis is the study of various polymeric interlayer materials in reference to their suitability for the production of laminated glass and laminated safety glass, especially in comparison to the polyvinyl butyral interlayer. Especially the ageing behaviour of the interlayer is investigated to estimate their suitability over the lifetime of several decades, which is expected for building structures. To evaluate the ageing behaviour, the material properties of the different polymeric interlayer materials are first determined on the pure, unaged material or unaged laminates. Different ageing scenarios are carried out to assess the longterm stability, such as a temperature storage test, a climatic stress test as well as test under aggressive media and high irradiation. These ageing tests with small-scale test specimens will affect both the appearance of the laminated glass, as well as the material properties. In addition to the formation of bubbles, delamination or haze, these tests lead to changes in stiffness and degradation behaviour of the polymeric interlayer materials by chemical reactions or physical rearrangements. Based on the results of the ageing tests in this thesis, the investigated ionomer (DuPont SentryGlas) and a thermoplastic polyurethane (Huntsman Krystalflex PE399) are best suited for a long-term use as interlayer material for laminated glass or laminated safety glass. By changing the structural design or limiting the range of applications, the other investigated materials can also show their advantages for different applications.
16

Comparative Analysis on Dissimilar Laser Welding of Ti6AL4V and Ni-Ti with Vanadium and Niobium Interlayer

Dahal, Saroj 02 May 2023 (has links)
No description available.
17

Determining the interwall spacing in carbon nanotubes by using transmission electron microscopy / Undersökning av väggavstånden i kolnanorör med hjälp av transmissions-elektronmikroskopi

Tyborowski, Tobias January 2016 (has links)
The interwall spacing of multi-walled carbon nanotubes has an effect on their physical and chemical properties. Tubes with larger interwall spacing - compared to the spacing where the carbon atoms are in their natural distance to each other - are for instance expected to be mechanically less stable. Considering the MWCNT interwall spacing’s dependence on the tube size, three interesting previous studies with slightly different conclusions can be found. All of them conclude an increase of the interwall spacing with a decreasing tube size. We describe their analysis procedure, compare them to each other and to our own measured data. In the beginning of our analyses, we determine the expected inaccuracy for measured distances out of TEM images being up to 10 % and we show the impacts of the TEM’s defocus, a powerful setting in TEM imaging. Finally, we suppose that the interwall spacings are not as strongly varying as one previous study concludes, but our analyses are relatively in harmony with the two other studies. The interwall spacings from tubes with an inner diameter larger than 5 nm are relatively constant within the whole tube. Furthermore, it appears that the middle spacings (excluding the outer- and innermost ones) show values that are most consistent with the interlayer spacings of turbostratic graphite. In underfocused images, the outer- and innermost spacings tend to have values being slightly smaller than the middle ones from the same tube.
18

Développement d'éléments de construction en bois de pays lamellés assemblés par tourillons thermo-soudés / Development of local laminated wood construction element using welded-through dowels

Resch, Ludovic 12 November 2009 (has links)
Le soudage du bois constitue un nouveau procédé d’assemblage, deux pièces de bois sont assemblées sans aucun adhésif, ni organe métallique. Ce travail étudie la faisabilité d’éléments de construction en bois lamellé à échelle 1 comme des poutres, des parois et des planchers, en utilisant le soudage de chevilles (Fagus sylvatica) dans des avivés (Picea abies) des forêts locales (VOSGES). La maîtrise du procédé étant primordiale pour étudier sa reproductibilité, une machine prototype est développée. Les paramètres d’asservissement et la mesure des efforts appliqués sont maîtrisés précisément par un logiciel. La fabrication contrôlée d’échantillons et de poutres soudées permet de caractériser les propriétés mécaniques élémentaires.L’étude du comportement des poutres et des planchers fait appel à la théorie des poutres à connexions imparfaites. Une approche par éléments finis montre que le modèle analytique de KREUZINGER n’approche pas suffisamment la distribution des contraintes dans la section composite, un modèle analytique est développé selon l’approche de GIRHAMMAR : le modèle exact généralisé. Les essais de poutres montrent une trop grande souplesse de la liaison et sa sensibilité au fluage. Les essais sur le plancher conduisent à des caractéristiques intéressantes en termes de rigidité et de confort. Les parois, non optimisées, montrent des résultats prometteurs pour le contreventement. Les premiers éléments sur l’utilisation du soudage du bois dans la construction sont présentés. Cette technologie se révèlerait compétitive dans la réalisation d’éléments constructifs en 3D. Dans un contexte de développement durable, cette approche constructive est porteuse d’avenir / Wood welding is a new assembly concept; two pieces of wood can be connected without any adhesive or any metal fastener. This study present the feasibility in usable scale, to produce laminated elements for construction like beams, walls and floors, using welded dowels (Fagus sylvatica) to connect planks (Picea abies) from local forests (Vosges). To be used, it is essential that the welding process has to be reproducible; a prototype machine was designed in this aim. It mastered the main parameters of welding like rotation speed and efforts. A convivial software pilot efficiently the machine. This allows a controlled fabrication of welded samples and beams to characterize their basic resistance properties. The behaviour of beams and floors is given by composite beam with interlayer slip theory. A finite elements approach showed that the KREUZINGER’s analytical model does not allow to describe well enough the stress distribution in a multi layer composite section, an analytical model is then develop from GIRHAMMAR’s composite beams theory: the so call generalized exact model. Tests of beams show that the dowel connection is too weak and will have then a great sensitivity to creep. Tests on floor provide interesting features in terms of rigidity and comfort. The walls which are not optimized show encouraging results for racking resistance. The first items for the use of wood welding in construction are presented. This technology will be competitive in achieving constructive elements in 3D. In a context of sustainable development, this constructive approach takes its full meaning
19

Congestion-Aware Cross-Layer Design for Wireless Ad Hoc Networks

Yang, Ning, 08 July 2004 (has links)
Ad hoc networks have emerged recently as an important trend of future wireless systems. The evolving wireless networks are seriously challenging the traditional OSI layered design. In order to provide high capacity wireless access and support new multimedia network, the various OSI layers and network functions should be considered together while designing the network. In this thesis, we briefly discuss performance optimization challenges of ad hoc networks and cross-layer design. Ad hoc wireless networks were implemented by using Network Simulator NS-2 and the wireless physical, data link, dynamic source routing (DSR) routing protocol models have been included in the simulation. Simulations show that the performance begins to drop at the moderate offered load due to congestion. In addition, the mobility and fading cause the route failures and packet loss in wireless environment. To improve the performance for wireless networks, we implemented a congestion-aware cross-layer design in NS-2. The MAC layer adaptively selects a transmission data rate based on the channel signal strength information from physical layer and congestion information from network layer. The MAC layer utilization gathered at MAC layer is sent to DSR as a congestion aware routing metric for optimal route discovery. We modified the source codes of 802.11 MAC layer and DSR protocol. The simulations show that rate adaptation in MAC layer improves the network performance in terms of throughput, delivery ratio, and end-to-end delay; using congestion information from MAC layer in routing discovery improves the performance of the network benefited from overall network load balance.
20

Quantum interaction phenomena in p-GaAs microelectronic devices

Clarke, Warrick Robin, Physics, Faculty of Science, UNSW January 2006 (has links)
In this dissertation, we study properties of quantum interaction phenomena in two-dimensional (2D) and one-dimensional (1D) electronic systems in p-GaAs micro- and nano-scale devices. We present low-temperature magneto-transport data from three forms of low-dimensional systems 1) 2D hole systems: in order to study interaction contributions to the metallic behavior of 2D systems 2) Bilayer hole systems: in order to study the many body, bilayer quantum Hall state at nu = 1 3) 1D hole systems: for the study of the anomalous conductance plateau G = 0.7 ???? 2e2/h The work is divided into five experimental studies aimed at either directly exploring the properties of the above three interaction phenomena or the development of novel device structures that exploit the strong particle-particle interactions found in p-GaAs for the study of many body phenomena. Firstly, we demonstrate a novel semiconductor-insulator-semiconductor field effect transistor (SISFET), designed specifically to induced 2D hole systems at a ????normal???? AlGaAs-on-GaAs heterojunction. The novel SISFETs feature in our studies of the metallic behavior in 2D systems in which we examine temperature corrections to ????xx(T) and ????xy(T) in short- and long-range disorder potentials. Next, we shift focus to bilayer hole systems and the many body quantum Hall states that form a nu = 1 in the presence of strong interlayer interactions. We explore the evolution of this quantum Hall state as the relative densities in the layers is imbalanced while the total density is kept constant. Finally, we demonstrate a novel p-type quantum point contact device that produce the most stable and robust current quantization in a p-type 1D systems to date, allowing us to observed for the first time the 0.7 structure in a p-type device.

Page generated in 0.0869 seconds