• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 90
  • 40
  • 8
  • 7
  • 5
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 191
  • 191
  • 43
  • 40
  • 39
  • 29
  • 28
  • 21
  • 19
  • 17
  • 17
  • 16
  • 16
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Multi-targeting of the innate immune system by Toll/interleukin-1 receptor domain-containing bacterial effectors and the consequences in bacterial immune-evasion / Ciblage multiple du système immunitaire inné par les effecteurs bactériens contenant un domaine Toll/interleukin-1 receptor (TIR) et les conséquences dans l’évasion immunitaire bactérienne

Imbert, Paul 25 November 2016 (has links)
Le domaine TIR (Toll/interleukin (IL)-1 receptor) est une composante essentielle du système immunitaire inné, celui-ci est présent dans les récepteurs TLR (Toll-like receptor) et les protéines adaptatrices associées comme MyD88 et TIRAP. La détection de pathogènes déclenche l'interaction entre les domaines TIR permettant ainsi l'initiation et la propagation de la signalisation par les TLRs. Aussi, de nombreux pathogènes produisent des effecteurs contenant un domaine TIR tels que BtpA et BtpB chez Brucella abortus, TirS chez Staphylococcus aureus ou TcpC chez l'uropathogènique Escherichia coli. Tous ces effecteurs bloquent la signalisation des TLRs et sont capables de perturber les voies de signalisation de l'immunité innée pendant l'infection. Cependant les mécanismes moléculaires impliqués restent la plupart du temps non caractérisés et dans certains cas controversés. Dans le but de mieux comprendre le fonctionnement de ce type d'effecteurs bactériens, j'ai caractérisé chez Pseudomonas aeruginosa PA7 un nouvel effecteur contenant un domaine TIR que nous avons renommé PumA pour Pseudomonas UBAP1 Modulator A. En parallele, j'ai aussi participé à des projets de caractérisation de deux autres effecteurs avec un TIR domain : BtpB et TirS. Ainsi, PumA est un facteur essentiel pour la virulence de P. aeruginosa PA7 et son domaine TIR est essentiel pour interaction avec deux protéines adaptatrice, TIRAP et MyD88. Durant l'infection de cellules épithéliales pulmonaires par P. aeruginosa PA7, PumA est responsable du contrôle de la translocation du facteur de transcription NF-κB dans le noyau. De plus, la production de PumA dans une souche de P. aeruginosa non-TIR confère à cette bactérie de nouvelles propriétés d'immuno-modulation. PumA cible aussi UBAP1, une protéine du complexe de tri endosomal requis pour le transport, ESCRT-I (endosomal sorting complex require for transport I) qui a été récemment montré pour moduler l'activation de récepteur de cytokine. Nos résultats montrent que UBAP1 peut s'associer avec TIRAP et MyD88, provoquant le mouvement de MyD88 à la membrane cytoplasmique, suggérant une nouvelle voie cellulaire commune entre UBAP1 et les TLRs, et révélant UBAP1 comme nouvelle cible pour des effecteurs bactériens dans le cadre du contrôle des réponses immunitaires de l'hôte / In higher eukaryotes, the innate immune system provides the first line of defense against invading pathogens. The Toll/interleukin-1 receptor (TIR) domain is an essential component of the innate immune system. This domain is present in Toll-like receptors (TLRs) and associated adaptor proteins such as MyD88 and TIRAP. Pathogen detection requires interaction between the TIR domains, which initiates and triggers propagation of TLR signaling. However, many pathogens produce a TIR domain-containing protein such as BtpA and BtpB in Brucella abortus, TirS in Staphylococcus aureus or TcpC in the uropathogenic strain Escherichia coli. These effectors block TLR signaling and are able to disrupt innate immune response during infection. However, the molecular mechanisms involved remain mostly uncharacterized and in some cases controversial. The objective of this thesis was to study bacterial effectors containing a TIR domain particularly at the molecular level. For this, we focused on Pseudomonas aeruginosa PA7, an atypical multi-drug resistant strain that contains an effector with a TIR domain that we named PumA, for Pseudomonas UBAP1 Modulator A. In addition, during these four years of thesis work I also participated in the characterization of two other effectors with a TIR domain: BtpB in B. abortus and TirS in S. aureus.We found that PumA is essential for virulence of P. aeruginosa PA7 and its TIR domain is the key element for interaction with two adaptor proteins MyD88 and TIRAP. During infection of lung epithelial cells by P. aeruginosa PA7, PumA is responsible for controlling the translocation of NF-?B into the nucleus indicative of activation of this transcription factor. In addition, production of PumA by a TIR-deficient strain of P. aeruginosa confers to this bacterium a new immuno-modulation property. Furthermore, PumA targets ubiquitin-associated protein 1 (UBAP1), a protein of the endosomal sorting complex required for transport I (ESCRT-I) which has recently been shown to modulate cytokine receptor activation. Our results also show that UBAP1 can associated with TIRAP and MyD88, causing movement of MyD88 to the cytoplasmic membrane and suggesting a new cellular pathway between UBAP1 and TLRs. In summary, our data reveal UBAP1 as a novel target for bacterial effectors implicated in control of host immune responses
62

The Impacts of Inflammation on Adult Prostate Stem Cells

Paula Cooper (9189491) 04 August 2020 (has links)
<p>Adult prostate stem cells (PSC) are a rare epithelial progenitor population in the prostate. While essential for normal homeostasis, they have also been implicated in hyperplasia and cancer initiation. While studies have shown that inflammatory growth factors and cytokines can fuel stem cell expansion, the impact of inflammation on PSC is not well understood. To study the impact of inflammation on the prostate, the Ratliff laboratory developed the Prostate Ovalbumin Expressing Transgenic 3 (POET3), an inducible mouse model of abacterial T cell mediated prostate inflammation, which functions as a model for human autoimmune prostatitis. Previous studies using the POET3 demonstrated that inflammation increased proliferation and differentiation of PSC enrichments. Based on these findings, it was speculated that inflammation impacts prostate stem cells to enhance mechanisms of survival, possibly as a means of tissue protection.</p><p>Since androgen receptor (AR) signaling is the major driver of cellular differentiation and survival in the prostate, it was further hypothesized that inflammation promotes AR signaling in the PSC. To address this hypothesis, PSC and their resulting organoids from inflamed and non-inflamed (naïve) POET3 mice as well as human patient samples were assessed for AR and its signaling components.</p><p>These data were expanded by single cell mRNA sequencing using Fluidigm’s C1 platform, which revealed changes in stem cell populations, differential expression of interleukin 1 alpha (IL-1⍺) and its signaling components, and upregulation of various genes associated with immune regulation. Thus, experiments described herein probed the impacts of inflammation on AR, IL-1⍺, and T cell regulatory abilities in the PSC.</p>The results of these studies indicate that indeed, inflammation increases PSC survival. Inhibition of IL-1⍺ via inflammation-mediated up-regulation of IL-1 receptor antagonist (IL-1RA) promotes AR signaling, resulting in proliferation, differentiation, and AR target gene expression which can be modulated by Enzalutamide (a clinical AR inhibitor). Furthermore, PSC from inflamed mice are able to suppress cytotoxic T cell function in <i>ex vivo</i> assays. These studies set the foundation for new ways to treat proliferative diseases of the prostate by targeting IL-1⍺, AR, and immune regulation in the PSC.
63

Regulation of Colony-Stimulating Factor-1 Biosynthesis

Ku, Chun-Ying 05 1900 (has links)
Recent studies suggest that synthesis of the Colony-stimulating factor (CSF) is a well regulated process. However, the molecular mechanisms of the signal transduction of the various inducers of CSF such as monokines and lymphokines are not well understood. Using Interleukin 1 (IL-1) stimulation of CSF-1 in the MIA PaCa-2 cell line as a model system, the involvement of G-protein has been studied. The IL-1 induction of CSF-1 synthesis can be inhibited by both Pertussis toxin and Cholera toxin, which are known to modify the Gᵢ and Gₛ proteins respectively, thus activating adenylate cyclase to release more cAMP. The toxin inactivation can be prevented by inhibitors of the ADP-ribosylation such as, benzamide and MBAMG. Addition of dibutyryl-cAMP inhibits the IL-1 induced CSF production. Both Theophylline and Forskolin which increase cAMP by inhibiting phosphodiesterase and stimulating adenylate cyclase respectively, also inhibit CSF-1 production. Results from these studies have shown that cAMP level inversely regulates the biosynthesis of CSF-1. Preincubation of MIA PaCa-2 cells with IL-1 and 5'- guanylylimidodiphosphate (GppNHp) prevents the inhibitory effect of pertussis toxin on CSF-1 production. These data are consistent with the hypothesis that IL-1 binds to its receptor and couples to Gᵢ∝ resulting in the inhibition of adenylate cyclase and reducing cAMP level. Lowering of the' cAMP level leads to the activation of CSF-1 gene expression. The activity of another inducer of CSF-1 production in this system, 12-0-tetradecanoylphorbol-13-acetate (TPA), can be abolished by 1- (5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), which is a specific inhibitor of protein kinase C. However, H-7 failed to inhibit IL-1 stimulated CSF-1 production. Other known activators of protein kinase C namely, Ca²⁺ and L-α-l-oleoyl-2-acetoyl-sn- 3-glycerol (OAG), also increase CSF production. On the other hand, Indomethacin which is known to inhibit prostaglandin E (PGE), stimulates CSF-1 production in MIA PaCa-2 cells. These data suggest that different mechanisms for stimulation of CSF-1 synthesis exist in MIA PaCa-2 cells depending on the inducer. The IL-1 stimulated pathway which does not require PKC activity and appears to be associated with adenylyl cyclase regulation whereas phorbol ester induced pathway involves protein kinase C in the signaling process as expected.
64

Der Einfluss proinflammatorischer Cytokine (TNF-alpha und IL-1 beta) auf die Mechanik und Energetik in humanem Myokard / The effect of proinflammatory cytokines TNF-alpha and IL-1 beta on economy of contraction in human myocardium

Heuer, Stefan Matthias January 2007 (has links) (PDF)
Die proinflammatorischen Cytokine TNF-alpha und IL-1 beta werden im Myokard bei akuter und chronischer Herzinsuffizienz sezerniert. Ihr negativer Einfluß auf Inotropie und Kontraktionsökonomie des Myokards wurde in zahlreichen In-Vitro und Tiermodellen nachgewiesen. Bisherige Versuche einer therapeutischen Intervention in klinischen Studien waren trotz guter Erfolge in Tiermodellen bislang erfolglos. Um diese Diskrepanz zu untersuchen wurden erstmals Messungen der Kontraktilität und Kontraktionsökonomie an humanem Myokard durchgeführt. Weiterhin wurden Untersuchungen bezüglich der postulierten Signaltransduktion mittels der Sphingomyelinaseaktivität Ergebnisse Sowohl TNF-alpha; als auch IL-1&#61538; zeigen übereinstimmend mit In-Vitro Versuchen an nicht-humanem Myokard eine deutlich Minderung der Kontraktilität und Steigerung des kontraktionsabhängigen Sauerstoffverbrauchs. IL-beta führt darüber hinaus zu einer erhöhten diastolischen Kraft. Die Relaxationsgeschwindigkeit wird nicht beeinträchtigt. Glutathion vermindert diese Effekte in 10 molarer Konzentration fast vollständig. Eine Steigerung der Aktivität der neutralen oder sauren Sphingomyelinase kann nicht als Bestandteil der Signaltransduktion bestätigt werden. Schlussfolgerung Alleinig auf TNF-alpha zielende Therapieansätze inhibieren die negativen Einflüsse von Cytokinen im ischämischen und postischämischen Myokard nicht ausreichend. Glutathionapplikation kann TNF-alpha und IL-beta Effekte auf das Myokard inhibieren. / The proinflammatory cytokines TNF-a and IL-1b impair economy of contraction in human myocardium TNF-alpha and IL-1beta impair myocardial function in different animal species and in human myocardium. Prospective clinical trials studying TNF-a antagonists in patients with chronic heart failure failed to show a benefit. Therefore reasons for this possibly species-related discrepancy are to be examined. In the present study TNF-alpha and IL-1beta not only reveal an immediate negative inotropic effect but increase specific oxygen demand in human right atrial myocardium. Enhanced oxygen consumption was not caused by an elevated basal metabolism but an impaired economy of contraction. Furthermore, glutathione is able to inhibit the effect of both cytokines. The results suggest that proinflammatory cytokines have a considerable effect on myocardial mechano-energetic parameters in human myocardium as well. The sole inhibition of TNF-a as it was done in recent clinical trials does not seem prospectful.
65

Associação entre polimorfismos dos genes IL1B, IL1RN e TNFA e a periodontite agressiva e a periodontite crônica severa / Association between IL1B, IL1RN and TNFA polymorphisms and agressive and severe chronic periodontitis

Magali Silveira Monteiro Ribeiro 27 April 2009 (has links)
A periodontite é um processo inflamatório crônico de origem bacteriana mediado por citocinas, em especial, interleucina-1 (IL1) e fator de necrose tumoral (TNF&#945;). Polimorfismos genéticos de IL1 e TNFA têm sido associados com a variação de expressão dessas proteínas, o que poderia justificar as diferenças interindividuais de manifestação da doença. O objetivo do presente estudo foi investigar possíveis associações entre os genes IL1B, IL1RN e TNFA e a suscetibilidade à periodontite agressiva e à periodontite crônica severa. Foram selecionados 145 pacientes do Estado do Rio de Janeiro, 43 com periodontite agressiva (PAgr) (33,1 4,8 anos), 52 com periodontite crônica severa (PCr) (50,6 5,8 anos) e 50 controles (40,1 7,8 anos). Os DNAs genômicos dos integrantes dos grupos PAgr, PCr e controle foram obtidos através da coleta de células epiteliais bucais raspadas da parte interna da bochecha com cotonete. Os SNPs IL1B -511C>T, IL1B +3954C>T e TNFA -1031T>C foram analisados pela técnica de PCR-RFLP, utilizando as enzimas de restrição Ava I Taq I e Bpi I, respectivamente. O polimorfismo de número variável de repetições in tandem (VNTR) no intron 2 do gene IL1RN foi feita pela análise direta dos amplicons. Todos os polimorfismos foram analisados por eletroforese em gel de poliacrilamida 8%. As frequências alélica e genotípica do polimorfismo IL1B +3954C>T no grupo PCr foram significativamente diferentes das observadas no grupo controle (p=0,003 e p=0,041, respectivamente). A freqüência do alelo A2 do polimorfismo IL1RN VNTR intron2 no grupo PAgr foi significativamente maior do que no grupo controle (p=0,035). Não houve associação entre os polimorfismos IL1B -511C>T e TNFA -1031T>C e as periodontites agressiva e crônica. A presença dos alelos 2 nos genótipos combinados de IL1RN VNTR intron2 e IL1B +3954C>T no grupo PCr foi significativamente maior quando comparada ao grupo controle (p=0,045). Entretanto, não se observou associação entre as combinações genotípicas IL1B -511C>T / IL1B +3954C>T e IL1RN VNTR / IL1B -511C>T e a predisposição à doença periodontal. De acordo com os nossos resultados podemos sugerir que, para a população estudada, o polimorfismo IL1B +3954C>T interfere no desenvolvimento da periodontite crônica, enquanto a presença do alelo A2 do polimorfismo IL1RN VNTR intron2 pode ser considerado como indicador de risco para a periodontite agressiva. O presente estudo também nos permite sugerir que a ausência de homozigose dos alelos 1 nos genótipos combinados de IL1RN VNTR intron2 e IL1B +3954C>T pode representar maior suscetibilidade à periodontite crônica severa. / Periodontitis is a chronic inflammatory disease of bacterial origin mediated by cytokines, especially interleukin 1 (IL1) and tumor necrosis factor (TNF&#945;). Genetic polymorphisms of IL1 and TNF&#945; have been associated with expression variation of these proteins, what could justify interindividual differences in the disease forms. The aim of this study was to investigate possible associations between IL1B, IL1RN and TNFA genes and the susceptibility to aggressive periodontitis and severe chronic periodontitis. We selected 145 patients from Rio de Janeiro state, 43 with aggressive periodontitis (PAgr) (33.1 4.8 years old), 52 with severe chronic periodontitis (PCr) (50.6 5.8 years old), and 50 controls (40.1 7.8 years old). Genomic DNAs of patients of PAgr, PCr and control groups were obtained through the collection of oral epithelial cells scraped from the inside cheek with a swab. The SNPs IL1B -511C>(p<0,05) T, IL1B +3954C>T, and TNFA -1031T>C were analyzed by PCR-RFLP technique using the restriction enzymes Ava I, Taq I and Bpi I, respectively. The polymorphism of variable number of tandem repeats (VNTR) in intron2 of the IL1RN gene was done by direct analysis of amplicons. All polymorphisms were analyzed by 8% polyacrylamide gel electrophoresis. Allelic and genotypic frequencies of the IL1B +3954C>T polymorphism in the PCr group were significantly different as compared to those observed in the control group (p=0.003 and p=0.041, respectively). The frequency of A2 allele of IL1RN intron 2 VNTR polymorphism in the PAgr group was significantly higher than in the control group (p=0.035). There was no association between the polymorphisms IL1B -511C>T and TNFA -1031T>C and aggressive and chronic periodontitis. The presence of alleles 2 in combined genotypes of IL1RN intron 2VNTR and IL1B +3954 C>T in the PCr group was significantly higher as compared to the control group (p=0.045). However no associations between the genotypic combinations IL1B -511C>T IL1B +3954C>T and IL1RN VNTR / IL1B -511C>T and predisposition to periodontal disease were observed. According to our results one can suggest that for the studied population the IL1B +3954C>T polymorphism interferes in the development of chronic periodontitis, whereas the presence of the A2 allele of IL1RN intron 2 VNTR polymorphism may be considered as an indicator of risk for aggressive periodontitis. The present study also allows us to suggest that the absence of homozygous for alleles 1 in the combined genotypes of IL1RN intron 2 VNTR and IL1B +3954C>T may increase the susceptibility to severe chronic periodontitis.
66

Charakterisierung von Foamyvirus-Adenovirus-Hybridvektoren zur Gentherapie bei der Rheumatoiden Arthritis / Characterisation of foamy virus-adenovirus hybrid vectors for gene therapy of the arthritides

Weber, Conrad January 2011 (has links) (PDF)
Die rheumatoide Arthritis (RA) ist eine chronische, progressive und systemische Autoimmunerkrankung, in deren Zentrum das dauerhaft entzündete Synovialgewebe der Gelenke steht. Aufgrund vielfältiger Knochen- und Knorpel-destruierender Prozesse kommt es zu irreversiblen Funktionalitätsverlusten der betroffenen Gelenke. Eine tragende Rolle bei der Ausprägung der klinischen Manifestationen wird dabei der exzessiven Synthese des proinflammatorischen Cytokins IL-1 zugesprochen. Dessen Aktivität kann durch kompetitive Blockade des IL-1 Rezeptors Typ I mit dem natürlich vorkommenden, antiinflammatorischen IL-1 Rezeptorantagonisten (IL-1Ra) inhibiert werden. Der Cytokin-blockierende Therapieansatz mit Anakinra, einem rekombinant hergestellten IL-1Ra, konnte die pharmakologischen Behandlungsmöglichkeiten der RA seit 2001 wesentlich erweitern. Gleichwohl erfordern die geringen Halbwertszeiten von IL-1Ra regelmäßige subkutane Injektionen, um hinreichende therapeutische Wirkstoffspiegel im Patienten aufrecht zu erhalten. Vor diesem Hintergrund bieten somatische Gentherapiekonzepte eine vielversprechende Alternative zu den konventionellen Behandlungsstrategien bei der RA-Therapie. Ein IL-1Ra-Gentransfer ins Gelenk soll die persistierende, lokale, endogene Synthese des therapeutischen IL-1Ra-Proteins ermöglichen und lässt in dieser Hinsicht eine nachhaltige Verbesserung der klinischen Symptomatik erwarten. In dieser Arbeit wurden dafür gentherapeutische Foamyvirus-Adenovirus-Hybridvektoren (FAD) zur Expression des IL-1Ra entwickelt und die Funktionalität der Konstrukte evaluiert. Die Vektoren sollten die effizienten adenoviralen Transduktionsmechanismen mit dem Potential der foamyviralen somatischen Integration für einen direkten in vivo Gentransfer kombinieren. Das System besteht aus einem adenoviralen Hochkapazitätsvektor vom Serotyp 5, der eine selbstinaktivierende PFV-Vektorkassette unter Kontrolle des Reversen Tetracyclin Transaktivator Systems (Tet-On) enthält. In FAD-transduzierten Zellen wurde die funktionelle Induzierbarkeit der PFV-Vektorexpression nachgewiesen und die Kinetik der PFV-Partikelfreisetzung charakterisiert. Nach Induktion der PFV-Vektorkassette konnte in FAD-transduzierten Zellen ein langfristig-stabiler IL-1Ra-Gentransfer gezeigt werden. Ferner konnten protektive Effekte eines FAD-vermittelten IL-1Ra-Gentransfers im Zellkulturmodell nachgewiesen werden. Tierexperimentelle Untersuchungen zeigten eine erfolgreiche Transduktion von Synovialzellen nach intraartikulärer Applikation von FAD-Vektoren. Das Tetracyclin-regulierbare Hybridvektorsystem zur Expression des IL-1Ra, das in der vorliegenden Arbeit geschaffen wurde, könnte zukünftig die Basis für ein effektives Werkzeug zum intraartikulären Gentransfer in der klinischen Praxis bieten. / Rheumatoid arthritis (RA) is a chronic, progressive and systemic autoimmune disease, characterized by invasive synovial hyperplasia. Several inflammatory cartilage- and bone- destroying processes lead to an irreversible loss of joint functionality. The excessive synthesis of the pro-inflammatory cytokine IL-1 has been implicated as a primary mediator of pathology in RA. The activity of IL-1 is initiated upon binding to the IL-1 receptor type I and can be inhibited by the naturally occurring anti-inflammatory IL-1 receptor antagonist (IL1-Ra) protein. The cytokine-blocking therapeutic approach with anakinra, a recombinant form of IL-1Ra, has significantly improved the pharmacological treatment of RA since 2001. Nevertheless, due to the short half-life of IL-1Ra, repeated subcutaneous injections are required to maintain therapeutic concentrations in the patient. Thus, somatic gene therapy may offer a promising alternative to conventional therapeutic strategies for treating RA. Following gene delivery of IL-1Ra, it may be expected that a sustained improvement of clinical symptoms is achievable due to the endogenous cellular synthesis and local secretion of the therapeutic IL-1Ra protein. In this work, foamy virus-adenovirus hybrid vectors (FAD) were developed for the expression of IL-1Ra and the functionality of the constructs was evaluated. The hybrids combine the high transduction efficiency of adenovirus vectors with the integrative potential provided by prototype foamy virus (PFV) vectors, for direct in vivo gene transfer. In the system, a complete expression cassette for self-inactivating PFV vectors, which is under the control of the tetracycline-dependent regulatory system (Tet-On), was inserted into the backbone of a serotype 5-based high-capacity adenoviral vector. In FAD-transduced cells, the induction of the PFV vector cassette was demonstrated and the release of secondary infectious PFV vectors was characterized. After the induction of the PFV vector cassette in FAD-transduced cells, a stable long-term IL1-Ra expression was shown. Furthermore, the anti-inflammatory potential of the FAD-mediated IL-1Ra gene transfer was successfully evaluated in a cell culture model. Animal studies indicated successful transduction of cells in the synovium after intra-articular application of FAD-vectors. The tetracycline-inducible hybrid vector system for the expression of IL-1Ra, which was created in the present work, may provide the future basis for an effective tool for intra-articular gene transfer in clinical settings.
67

The Interrelationship of BRCA1 185delAG, Interleukin-1β, and Ovarian Oncogenesis

Woolery, Kamisha 27 June 2014 (has links)
While the etiology of ovarian cancer (OC) is not completely understood, evidence suggests that chronic inflammation may promote malignant transformation. However, familial history remains the strongest risk factor for developing OC and is associated with germline BRCA1 mutations, such as the 185delAG mutation. Normal human ovarian surface epithelial cells expressing the 185delAG mutant, BRAT, exhibit molecular and pathological changes that may contribute to OC oncogenesis. In the current study, I sought to determine whether BRAT could promote an inflammatory phenotype by investigating BRAT's impact on the expression of the proinflammatory cytokine, Interleukin-1β (IL-1β). Using a culture model system of normal human ovarian surface epithelial (OSE) cells with and without the BRCA1 185delAG frameshift mutation, BRAT, I investigated BRAT's role in IL-1β expression. OSE cells stably expressing the 185delAG mutation and ovarian surface epithelial cells with endogenous 185delAG were analyzed for differential target gene expression by real time PCR, western blot, ELISA, luciferase reporter and siRNA assays. Normal and malignant breast epithelial cell lines transiently expressing BRAT were also evaluated by real time PCR to determine whether BRAT-induced IL-1β expression is tissue specific. BRAT-expressing OSE cells exhibited enhanced IL-1β mRNA and protein expression. However, expression of BRAT in all breast cell lines failed to significantly alter IL-1β expression levels so that BRAT-mediated IL-1β expression promoting a chronic inflammatory phenotype conducive to malignant transformation may be limited to the ovary. Secondly, since OSE cells expressing the BRCA1 185delAG mutation have increased levels of IL-1β that may contribute to malignant transformation, in a pilot study, I sought to assess whether elevated urinary levels of IL-1β are associated with OC as well as compare urinary IL-1β levels with clinical parameters. Urinary and serum levels of IL-1β were analyzed by ELISA and biostatistical analysis from a patient cohort consisting of healthy women (N=10), women with ovarian benign disease (N=23), women with OC (N=32), women with other benign gynecological conditions (N=22), and women with other gynecological cancers (N=6). Urinary IL-1β levels were elevated in patients with ovarian benign disease and a first degree family history of ovarian and/or breast cancer. Urinary IL-1β levels were also correlated with increased body mass index. Urinary and serum IL-1β levels were increased in ovarian benign and OC patient samples supporting the theory of elevated urinary IL-1β being associated with cancer progression. Lastly, I sought to begin early molecular characterization of BRCA1 185delAG to better understand its role in ovarian transformation. I isolated 185delAG protein expressed in E. coli and utilized web tools to analyze the amino acid sequence to determine the molecular and structural characteristics. The study results showed the predicted BRCA1 185delAG protein product is an ordered, self-aggregating, alpha helical protein structurally and molecularly distinct from wild-type BRCA1. The BRCA1 185delAG amino acid sequence contained domains with resemblance to the Peptidase M20 family. Isolation of the BRCA1 185delAG protein product will allow for further protein analysis to better understand its' oncogeneic functions; as well as, elucidate the mechanism of tissue-specific BRAT-mediated IL-1β expression since increased IL-1β expression may represent an early step contributing to OC.
68

Therapeutic effect of Interleukin-4 and Interleukin-1 Receptor Antagonist in Actinobacillus pleuropneumoniae challenged pigs

Khan, Shamila January 2005 (has links)
Immunological stressors, in the form of clinical and sub-clinical disease are currently controlled using both prophylactic antibiotics in-feed, and therapeutic antibiotic treatment. Respiratory disease, primarily Actinobacillus pleuropneumoniae (App) infection, is recognised as a major factor causing reduced productivity in pigs. This thesis reports investigations into the use of novel immunomodulators in particular Interleukin 4 (IL-4) and Interleukin 1 receptor antagonist (IL-1ra) as alternatives to antibiotics to treat App infection. Immunological and molecular biological assays were used to investigate and accumulate data. An in vitro study undertaken to find potential anti-inflammatory substances, revealed that Interleukin 8 (IL-8) mRNA production stimulated by PMA or LPS in whole pigs' blood was suppressed by IL-4. IL-1ra also suppressed stimulated IL-8 mRNA production by heat killed App bacteria (KB) in vitro. An acute LPS challenge in pigs in vivo however, showed no variation in illness or weight loss between pigs treated prophylactically with anti-inflammatory substance (IL-4 and IL-1ra) and saline treated pigs. The use of plasmids as a delivery system for anti-inflammatory substance did not show promise since it did not enhance growth or prolong the expression of the substances in the pigs. However, in the chronic App challenge model IL-4 and IL-1ra administered prophylactically in vivo showed an ability to improve growth. The therapeutic administration of IL-4 and IL-1ra to App challenged pigs showed no difference in pigs' growth, regardless of the treatment or control administered. To conclude, IL-4 and IL-1ra showed promise when administered prophylactically and improved growth and abrogated disease under conditions of App challenge. However when IL-4 and IL-1ra where administered therapeutically they did not perform as well. Moreover these compounds have potential as a commercial application to reduce the growth reduction caused by disease such as App.
69

Inflammatory cytokines and NFκB in Alzheimer’s disease

Fisher, Linda January 2006 (has links)
<p>Alzheimer’s disease is the most common form of dementia. It is a neurodegenerative disorder characterized by extracellular senile plaques and intracellular neurofibrillary tangles. The main constituent of the senile plaques is the neurotoxic β-amyloid peptide. Surrounding the senile plaques are activated astrocytes and microglia, believed to contribute to neurotoxicity through secretion of proinflammatory cytokines, like interleukin-1β and interleukin-6. For many inflammatory actions, including the cytokine induction in glial cells, the transcription factor NFκB plays a key role. This suggests that therapeutical strategies aimed to control the development of Alzheimer’s disease could include administration of drugs that hinder NFκB activation.</p><p>The major aim of this thesis was to examine the effects of β-amyloid together with interleukin-1β on cytokine expression as well as NFκB activation in glial cells. The possibility to block NFκB activation, and downstream effects like interleukin-6 expression, by using an NFκB decoy was investigated. The possibility to improve the cellular uptake of the decoy by linking it to a cell-penetrating peptide was also investigated.</p><p>The results obtained provide supportive evidence that inflammatory cytokines are induced by β-amyloid, and that they can indeed potentiate its effects. The results further demonstrate that by blocking NFκB activation, the induction of interleukin-6 expression can be inhibited. By using an improved cellular delivery system, the uptake of the NFκB decoy and hence the downstream cytokine inhibition could be increased. In conclusion, these results demonstrate the possibility to decrease the inflammatory reactions taken place in Alzheimer’s disease brains, which may ultimately lead to a possible way of controlling this disorder.</p>
70

Regulation of Fibroblast Activity by Keratinocytes / Keratinocyters påverkan på fibroblasters aktivitet

Nowinski, Daniel January 2005 (has links)
<p>In the healing of cutaneous wounds, paracrine communication between keratinocytes and fibroblasts regulates cell differentiation, proliferation and synthesis of extracellular matrix. Deficient epidermal coverage, as seen in burn-wounds, frequently results in hypertrophic scars. Previous studies suggest that keratinocytes downregulate the production of collagen and profibrotic factors in fibroblasts. We hypothesized that keratinocytes downregulate the expression of the profibrotic factor connective tissue growth factor (CTGF) in fibroblasts, and regulate fibroblast expression of genes important to wound healing. In keratinocyte-fibroblast cocultures, keratinocytes downregulated CTGF mRNA and protein in fibroblasts, through the secretion of interleukin-1 (IL-1) α. Using Affymetrix DNA microarrays, it was demonstrated that factors from keratinocytes regulate the expression of 69 genes important to wound healing. The regulation of 16 of these genes was confirmed by Northern blotting, and IL-1α from keratinocytes regulated all the 16 genes examined. IL-1-mediated CTGF gene regulation was further investigated. Both IL-1 isoforms, α and β, suppressed CTGF expression through an inhibition of CTGF promoter activity. Interestingly, transforming growth factor-β-stimulated Smad phosphorylation was not affected by IL-1. Finally, we hypothesized that CTGF is downregulated in burn wound by split-thickness skin grafting and that the expression of CTGF is suppressed during reepithelialization. The expression of CTGF protein was decreased in successfully skin-grafted wound areas, and increased in open, granulating burn wounds. Moreover, CTGF protein expression was absent beneath the migrating edge of reepithelialization <i>ex vivo</i>. In conclusion, we demonstrate that, in <i>in vitro</i> models, keratinocyte-derived IL-1α regulates the expression of CTGF and other genes with importance to wound healing. Furthermore, it is shown that CTGF expression is suppressed by epidermal wound coverage i burn wounds. These findings may have implications for the understanding of keratinocyte-fibroblast interplay during wound healing and in hypertrophic scar pathogenesis.</p>

Page generated in 0.089 seconds