• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 38
  • 22
  • 19
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 162
  • 53
  • 33
  • 27
  • 23
  • 22
  • 20
  • 20
  • 20
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Přirozená obnova smrčin ve Vysokých Tatrách po velkoplošné disturbanci / Natural regeneration of spruce stands in Vysoké Tatry (High Tatras) after large scale disturbation

Michalová, Zuzana January 2012 (has links)
The observational study on natural regeneration of Norway spruce (Picea abies) was provided during seasons 2010 and 2011 in the windthrow area of High Tatra National Park. The main aim of this master thesis was to describe the distribution pattern in Norway spruce regeneration as well as to estimate the spatial scale, which most preciselly describes the differences in its phenotypic variability. Following step was to determine the relative influence of abiotic and stand factors on the growth characteristics and abundance of spruce seedlings. The Main focus lied on stressing the role of biotic interactions, like intraspecific and interspecific competition, leading to certain discrepancies in the phenotype, as well as in abundance of spruce seedlings.The reponse in variability in spruce traits was recognized at each spatial level. The results showed clear causality between soil moisture and vegetation composition, which both directly modified not only the phenotype of spruce seedlings and plants, but have even influenced their counts on particular stands.
132

Impacts of global changes on biological invasions and interspecific hybridization within the Tetramorium caespitum ant species complex / Impacts des changements globaux sur les invasions biologiques et l'hybridation interspécifique au sein du complexe d'espèces de fourmis Tetramorium caespitum

Cordonnier, Marion 26 November 2018 (has links)
Changement climatique, urbanisation, invasions biologiques et hybridation interspécifique constituent des menaces majeures pour la biodiversité. L'objectif de cette thèse a été d'évaluer leurs effets interactifs sur les fourmis du genre Tetramorium de la vallée du Rhône, France. Près de 2000 colonies de 5 espèces de Tetramorium ont été étudiées. Les résultats démontrent que le climat et l'urbanisation limitent leurs aires de répartition et que l'urbanisation impacte leurs distributions simultanément à plusieurs échelles spatiales. Les probabilités d'occurrence de T. immigrans dépendent de l'interaction entre facteurs climatiques et urbains. Quatre populations génétiques de T. immigrans résultent de plusieurs introductions de sources externes, ce qui signifie que cette espèce n’est pas indigène dans les zones urbaines du nord. T. immigrans et T. caespitum produisent des hybrides dans les zones de sympatrie. La détection de rétrocroisements et de discordances entre ADN mitochondrial et nucléaire suggère que cette hybridation conduit à une descendance fertile, donc de l’introgression. Les profils d'hydrocarbures cuticulaires sont bien différenciés entre les deux espèces et sont corrélés à une agression forte contre les hétérospécifiques. Ces espèces présentent un système d'accouplement monogyne polyandre, dans lequel les reines hybrides mais pas les pères hybrides contribuent à la descendance hybride. Les études sur l'hybridation interspécifique n'ont qu'occasionnellement concerné les changements globaux ou invasions biologiques. Ces concepts eux-mêmes sont peu étudiés ensemble et leurs effets interactifs sont négligés dans la littérature actuelle. La prise en compte de ces interrelations et l'exploration de plusieurs échelles sont essentielles pour mieux comprendre les processus qui génèrent des modèles d'échange génétique / Climate change, urbanization, biological invasions and interspecific hybridization are major current threats to biodiversity. The objective of this thesis was to assess their interactive effects in Tetramorium ant species from the Rhône-Saône valley in France. Using a broad array of tools from several fields of biology, I worked on almost two thousand colonies from five Tetramorium species including T. immigrans and T. caespitum. Both climate and urbanization limited the ranges of these species, and urbanization impacted their distributions simultaneously at several spatial scales. The occurrence probabilities of T. immigrans depended on the interaction between climatic and urban factors. Several introductions from external sources seemed to have given rise to four genetically distinct populations of T. immigrans, making it likely that it is not native to the northernmost urban areas. Hybridization and introgression between T. immigrans and T. caespitum was frequent in zones of sympatry, and the detection of nuclear DNA backcrosses and mitochondrial-nuclear DNA discordance between the two species suggested that hybridization lead to fertile offspring (i.e. introgression). Cuticular hydrocarbon profiles were clearly differentiated between the two species and were correlated to heightened interspecific aggression against heterospecifics. Both species presented a monogyne polyandrous mating system, in which hybrid queens but no hybrid fathers contributed to hybrid offspring. Few studies on interspecific hybridization have addressed global change or biological invasions. These concepts are infrequently studied together, and their interactive effects are overlooked in the current literature. Taking these interrelationships into account and exploring multiple scales are essential to better understand the processes that generate patterns of genetic exchange
133

Examining the competitive abilities of cornflower (Centaurea cyanus) in a growth chamber experiment. / Studie av den relativa konkurrensförmågan hos blåklint (Centaurea cyanus) odlad i växtkammare.

Karlsson, Emil January 2019 (has links)
Competition between different species (interspecific competition) is an important factor to consider when estimating population trends, geographic distributions, and management options of species. Many historically common vascular plant species found in agricultural environments have been negatively affected by changes in community composition and in turn, changes in competition pressures. Even so, the relative importance of plant competition in an ecological context is still unclear. In this study I examine the competitive ability of the meadow plant cornflower (Centaurea cyanus L.) when grown together with common oat (Avena sativa) and common poppy (Papaver rhoeas), during a seven-week long growth chamber experiment. Seeds were sown in pots in four different setups; 1) C. cyanus control, 2) C. cyanus + P. rhoeas, 3) C. cyanus + A.sativa, 4) All three species. Six different growth parameters were measured (aboveground dry-weight, belowground dry-weight, root length, leaf area, number of leaves and above/belowground dry-weight ratio). I found that growth rates of C. cyanus were significantly inhibited according to all six growth parameters when C. cyanus competed solely with A. sativa. Competition from P. rhoeas had an insignificant effect on C. cyanus growth in five out of six growth parameters. Finally, I discuss the possibility that historically common meadow plants have declined in abundance in part because of weak competitive abilities, and that rare vascular plant species are negatively affected by growing in proximity with cereal crops.
134

Analysis of the agronomic and economic performances of lentil-spring wheat intercrops in organic farming

Viguier, Loïc Arthur 12 July 2018 (has links) (PDF)
Lentil (Lens culinaris Med.) is an important component of the human diet in the world, but in the meantime, Europe produces only 26% of the lentils it consumes. This is partly due to strong agronomic weaknesses that reduce yield such as lodging, bruchid beetles and weeds, especially in organic farming. Intercropping, the simultaneous growing of two or more species in the same field is tested here as an option to reduce these drawbacks and develop organic lentil production. The aims of this thesis were to (1) assess the potential of lentil-spring wheat intercrops to produce organic lentil, (2) understand the mechanisms that explain their performances, and (3) evaluate the profitability of such intercrops. A two-year field experiment was carried out in southwestern France in 2015 and 2016 under organic farming rules. Four lentil and two wheat cultivars were grown as sole crops and intercrops in multiple additive and substitutive designs. Our results showed that the total intercrop attainable grain yield was higher than the mean of sole crops. Yet, lentil yield in intercrop was lower than in sole crop as the result of a strong competition for resources from wheat in early lentil growth stages reducing the number of branches per plant of lentil. This led to lower gross margins of intercrops. However, lentil lodging was strongly reduced in intercrops thus its mechanical harvest efficiency increased. This led to similar mechanically harvested yields of lentil in intercrop and sole crop. Consequently, after mechanical harvest and grain cleaning, the marketable gross margin of intercrops was higher than that of sole crops. Our results suggest that (1) intercrop had no effect on bruchids, (2) the most effective intercrop is when lentil is at sole crop density and wheat at 15-20%, (3) intercrop performance is due to complementary use of N pools through legume N2 fixation and (4) the intensity of interspecific interactions depends on year, wheat density and genotypes. Our work indicates that lentil-spring wheat intercrop can develop organic lentil production but a better understanding of Genotype x Environment x Cropping system interactions may be useful to design optimized managements.
135

Using Introduced Species of Anolis Lizards to Test Adaptive Radiation Theory

Stroud, James T. 02 March 2018 (has links)
Adaptive radiation – the proliferation of species from a single ancestor and diversification into many ecologically different forms – has long been heralded as an important process in the generation of phenotypic diversity. However, the early stages of adaptive radiation are notoriously elusive to observe and study. In this dissertation, I capitalize on communities of introduced non-native Anolis lizards as analogues of early stage adaptive radiations. In Chapter II, I begin by reviewing the concept of “ecological opportunity” – a classic hypothesis put forward as a potential key to understanding when and how adaptive radiation occurs. In Chapter III, I investigate the mechanisms which allow for coexistence and community assembly among ecologically-similar species. To do this I investigate range dynamics and assembly patterns of introduced anoles on the oceanic island of Bermuda. I discover that interspecific partitioning of the structural environment facilitates species coexistence, however the order of species assembly was an important predictor of final community composition. In Chapter IV, I then investigate how interspecific interactions between coexisting species may drive phenotypic divergence. This is the process of character displacement, which has been widely hypothesized to be an important mechanism driving phenotypic divergence in adaptive radiations. To do this I investigate sympatric and allopatric populations of introduced Cuban brown anoles (Anolis sagrei) and Puerto Rican crested anoles (A. cristatellus) in Miami FL, USA. I identify morphological shifts in sympatry, driven by divergence in habitat use and decreases in abundance. This study provides evidence of how selection on both ecologically and sexually-important traits can both drive phenotypic divergence during character displacement. Finally, in Chapter V, after taking advantage of non-native species as model eco-evolutionary systems in previous chapters, I investigate the potentially harmful effects that their presence may have on vulnerable native biodiversity. To do this I investigate the conservation risk posed by newly-discovered populations of A. sagrei on Bermuda to Critically Endangered endemic Bermuda skinks (Plestiodon longirostris). Through a detailed analysis of habitat use, diet, population size, and morphology of A. sagrei on Bermuda, we conclude it likely poses a high conservation threat to P. longirostris through interspecific competition.
136

Restoration ecology of ecosystems invaded by Triadica sebifera (Chinese tallow tree): theory and practice

Gabler, Christopher 24 July 2013 (has links)
Invasive exotic species threaten biodiversity and ecosystem functions globally, creating need for and encumbering ecological restoration. When restoring exotic plant-dominated ecosystems, reinvasion pressure is the rate of new exotic recruitment following mature exotic removal. It can vary broadly among similarly invaded habitats and is crucial to restoration outcomes and costs, but is difficult to predict and poorly understood. Initial results from the experimental restoration of a wetland dominated by Triadica sebifera led us to develop the ‘outgrow the stress’ hypothesis. It holds: (1) Variation in reinvasion pressure is driven by differences in propagule abundance and spatiotemporal availability of realized recruitment windows, which are defined by abiotic conditions and biotic interactions. (2) Differences in reinvasion pressure become masked by exotic dominance when increases in niche breadth during development enable exotic persistence across sites where recruitment windows range from frequent to episodic. We validated this hypothesis. First, we used greenhouse and field experiments to quantify Triadica’s moisture niche early in development. By two months post-germination, seedling tolerances broadened to include conditions unsuitable for germination. This clearly demonstrated a rapid ontogenetic niche expansion, which could decouple mature Triadica density and average reinvasion pressure. Second, we used a greenhouse mesocosm experiment to quantify how recruitment window duration, competition and fertility impacted population-level Triadica establishment in stressful environments. As ‘outgrow the stress’ predicts, longer windows increased Triadica success and multi-factor interactions were common, with competition and fertility effects varying among environmental contexts. Third, we substantiated predictions of ‘outgrow the stress’ regarding propagule availability and soil moisture by manipulating these in a multi-site field experiment spanning eleven experimental restorations of Triadica-dominated habitats along a moisture gradient. Triadica reinvasion pressure varied broadly among sites but correlated with moisture and fertility. Propagule availability drove reinvasion in favorable environments, but availability of suitable conditions trumped propagules in extreme environments. Competition reduced Triadica performance and sometimes survival. Triadica prevalence reduced native plant prevalence. Six restorations require minimal Triadica management for success. This work advances our understanding and enables better predictions of reinvasion pressure and invasions in general. Accurate predictions enhance restoration efficiency by informing site selection and optimal management strategies.
137

Spatial aggregations in annual wild plant communities: Competition, Performance, and Coexistence / Räumliche Aggregation in einjährigen Ackerwildpflanzenansaaten: Auswirkungen auf Konkurrenz, Produktivität und Koexistenz

Waßmuth, Birte Eleen 06 November 2008 (has links)
No description available.
138

Effet de la salinité sur la compétition entre le roseau (Phragmites australis) et les quenouilles (Typha spp.)

Paradis, Étienne January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
139

Spatial heterogeneity in ecology

Mealor, Michael A. January 2005 (has links)
This project predominantly investigated the implications of spatial heterogeneity in the ecological processes of competition and infection. Empirical analysis of spatial heterogeneity was carried out using the lepidopteran species Plodia interpunctella. Using differently viscous food media, it was possible to alter the movement rate of larvae. Soft Foods allow the movement rate of larvae to be high, so that individuals can disperse through the environment and avoid physical encounters with conspecifics. Harder foods lower the movement rate of larvae, restricting the ability of individuals to disperse away from birth sites and avoid conspecifics encounters. Increasing food viscosity and lowering movement rate therefore has the effect of making uniform distributed larval populations more aggregated and patchy. Different spatial structures changed the nature of intraspecific competition, with patchy populations characterised by individuals experiencing lower growth rates and greater mortality because of the reduced food and space available within densely packed aggregations. At the population scale, the increased competition for food individuals experience in aggregations emerges as longer generational cycles and reduced population densities. Aggregating individuals also altered the outcome of interspecific competition between Plodia and Ephestia cautella. In food media that allowed high movement rates, Plodia had a greater survival rate than Ephestia because the larger movement rate of Plodia allowed it to more effectively avoid intraspecific competition. Also the faster growth rate, and so larger size, of Plodia allowed it to dominate interspecific encounters by either predating or interfering with the feeding of Ephestia. In food that restricts movement, the resulting aggregations cause Plodia to experience more intraspecific encounters relative to interspecific, reducing its competitive advantage and levelling the survival of the two species. Spatial structure also affected the dynamics of a Plodia-granulosis virus interaction and the evolution of virus infectivity. Larval aggregation forced transmission to become limited to within host patches, making the overall prevalence of the virus low. However potentially high rates of cannibalism and multiple infections within overcrowded host aggregations caused virus-induced mortality to be high, as indicated by the low host population density when virus is presented. Also aggregated host populations cause the evolution of lower virus infectivity, where less infective virus strains maintain more susceptible hosts within the aggregation and so possess a greater transmission rate. The pattern of variation in resistance of Plodia interpunctella towards its granulosis virus was found using two forms of graphical analysis. There was a bimodal pattern of variation, with most individuals exhibiting either low or high levels of resistance. This pattern was related to a resistance mechanism that is decreasingly costly to host fitness.
140

Diapause by seed predators and parasitoids in Chionochloa mast seeding communities

Sarfati, Michal January 2008 (has links)
Chionochloa, a genus of snow tussock grasses native to New Zealand, exhibits pronounced mast seeding. Chionochloa suffers very high levels of pre-dispersal flower and seed predation by three main insects: Eucalyptodiplosis chionochloae, a cecidomyiid midge, which is formally described here; Megacraspedus calamogonus, a gelechiid moth and Diplotoxa similis, a chloropid fly. Seven species of parasitoids that attack these seed predators were discovered. Four species parasitize M. calamogonus (one tachinid fly and three hymenopteran wasps), one parasitizes D. similis (Hymenoptera: Eulophidae) and two parasitize E. chionochloae, (a pteromalid wasp Gastrancistrus sp. and a platygastrid wasp Zelostemma chionochloae, which is given a formal description here). The abundance, predation levels by each of the insect species, and interactions between all the organisms in the community were studied across three elevations at Mount Hutt over three summer seasons. M. calamogonus was most abundant at 450 m altitude during all three seasons. D. similis was most common at 1070 m altitude, while its predation levels peaked in low flowering seasons and decreased in high seasons. E. chionochloae was abundant in all three altitudes and increased its predation levels with increasing flowering intensity. E. chionochloae was confirmed to use prolonged diapause of at least three years. Prolonged diapause was also confirmed in its two parasitoids. Chionochloa plants were manipulated with various treatments to test the effect on diapause in E. chionochloae and its two parasitoids. Treatments included plant warming, root pruning, gibberellic acid sprayed on the plants and combinations of these treatments. All three insects changed their emergence in response to some treatments and therefore it was suggested that combined with risk-spreading diapause, they may use some predicting to emerge from prolonged diapause. E. chionochloae control their diapause following some of the cues that Chionochloa use for flowering, while Z. chionochloae and Gastrancistrus in some cases follow their host’s cues and in others use similar cues as Chionochloa plants. Emergence or diapause predictions differed across elevations and plant species in all three insect seed/flower predators. E. chionochloae had female-biased sex ratios in different populations even after prolonged diapause. There was week evidence that both parasitoid species are female-biased in the first emergence year and male-biased after more than one year in diapause. Therefore it was suggested that diapause is not more costly for females of E. chionochloae and its parasitoid than for males. Females of all three species were not found to be better predictors (i.e, more likely to respond to treatments by not entering extended diapause) than males. The complex interactions of all the organisms in this web are thought to be sensitive to climate, and it was suggested that the global climate change may alter this sensitive system.

Page generated in 0.0723 seconds