• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 55
  • 5
  • 1
  • Tagged with
  • 160
  • 114
  • 71
  • 69
  • 67
  • 51
  • 44
  • 40
  • 38
  • 37
  • 33
  • 22
  • 21
  • 21
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Etudes théoriques à propos de l'origine exogène des molécules prébiotiques

Lattelais, Marie 19 December 2008 (has links) (PDF)
La recherche de molécules prébiotiques dans le milieu interstellaire est importante pour comprendre le rôle potentiel de la chimie interstellaire dans la synthèse des molécules à l'origine de la vie. Aujourd'hui nous sommes confrontés à une apparente contradiction observationnelle : des acides aminés ont été identifiés dans les météorites mais aucun n'a été observé de façon certaine dans le milieu interstellaire. Dans un premier temps, nous utilisons les méthodes de calcul moléculaire DFT et ab-initio de la chimie quantique pour étudier la stabilité relative des isomères détectés dans le milieu interstellaire, ce qui nous conduit à établir un "Principe d'Energie Minimale" (PEM) stipulant que l'isomère le plus stable thermodynamiquement est le plus abondant. En s'appuyant sur ce principe, nous évaluons les possibilités de détection de nouvelles molécules prébiotiques dans le milieu interstellaire, en particulier les acides aminés. Puis, en suivant la même démarche, nous vérifions pour les météorites, que le lien entre abondance et ordre thermodynamique est respecté au niveau des acides aminés, ce qui nous permet de contraindre les conditions de formation dans les corps parents. Dans un second temps, nous utilisons les méthodes périodiques en ondes planes pour étudier les collages d'espèces moléculaires sur les grains carbonés et glacés interstellaires. Nous montrons l'existence d'une physisorption sélective pour certains types d'isomères. Elle entraînerait un biais observationnel sur les abondances relatives de ces isomères, ce qui nous donnerait une possibilité d'explication pour les quelques apparentes exceptions au PEM.
92

Excitation collisionnelle de molécules d'intérèt astrophysique : théorie et interprétation d'observations

Lique, François 28 June 2006 (has links) (PDF)
Pour interpréter les observations astrophysiques, il est nécessaire de connaître les taux d'excitation collisionnelle des molécules par les espèces les plus abondantes (He, H2). Cette thèse présente des taux de collisions ro-vibrationnelle de SO ainsi que de CS pour des températures allant de 5 à 1500K. Des potentiels d'interaction à 2 et 3 dimensions pour les systèmes SOHe et CSHe ont été calculés par des méthodes ``Clusters Couplés". Une approche hybride combinant Close-Coupling et méthodes IOS a été utilisée pour l'excitation rotationnelle. Les nouveaux taux de collisions présentent des différences par rapport à ceux précédemment publiées. Les taux d'excitation ro-vibrationnelle de SO et CS ont aussi été calculés : ils sont très inférieurs à ceux rotationnelle. Enfin, ces nouveaux taux de collisions ont été introduits dans des codes de transfert radiatif : leur utilisation peut changer de façon significative l'interprétation de l'abondance interstellaire de SO et CS.
93

Aspects dynamiques du milieu interstellaire

Lesaffre, Pierre 30 September 2002 (has links) (PDF)
Ce travail de thèse met en oeuvre la microphysique très riche <br />du milieu interstellaire dans plusieurs problèmes hydrodynamiques <br />à très haute résolution, tous associés à la formation des étoiles.<br /><br /> La première partie du travail concerne le développement d'un <br />modèle numérique monodimensionnel que nous avons appliqué à trois <br />domaines différents.<br /><br /> Dans les jets protostellaires, nous dégageons les temps de mise <br />à l'état stationnaire des chocs. Nous précisons les domaines <br />d'application de l'hypothèse quasi-stationnaire, et mettons au <br />jour une instabilité liée à la reformation de la molécule H2<br />dans les chocs dissociants. Pour ces derniers chocs, nous <br />produisons un réseau chimique simplifié qui rendra possible leur <br />étude tridimensionnelle.<br /><br /> Dans le cadre des régions de photo-ionisation, nous utilisons <br />le même code pour discuter le rôle de l'instabilité de Rayleigh-Taylor <br />dans la formation des structures en piliers observées. Il nous <br />apparaît que la gravitation est l'un des principaux responsables <br />de la naissance de cette instabilité. De plus, nous produisons <br />les premières simulations dynamiques d'un front mixte d'ionisation <br />et de photodissociation.<br /><br /> Enfin, le code se révèle très utile pour rendre compte de <br />l'effondrement sphérique des condensations préstellaires. <br />Nous confrontons nos modèles à des contraintes observationnelles <br />dégagées sur IRAM 04191. Nous montrons que les conditions initiales <br />d'Ébert-Bonnor sont préférables à la sphère singulière isotherme. <br />Le traitement détaillé du transfert de l'énergie associé à la chimie <br />des agents refroidissant constitue encore une très nette amélioration.<br /><br /> La deuxième partie de ce travail se concentre sur l'étude <br />théorique de l'instabilité thermique. L'étude linéaire révèle <br />une longueur caractéristique de fragmentation qui fournit un <br />critère de raffinement utile aux maillages à résolution adaptative. <br />L'étude homobare qui prédit la répartition de la masse permet <br />aussi de prévoir le coût des simulations avec raffinement de maillage. <br />Ces deux outils analytiques fournissent les premières pistes <br />vers l'interprétation des spectres de masse observés. L'examen <br />des rôles complémentaires de la gravité et de l'instabilité <br />thermique permet de formuler des scénarios pour la fragmentation <br />du milieu interstellaire. Enfin, des simulations numériques tridimensionnelles <br />réalisées avec le code RAMSES à raffinement adaptatif de maillage <br />confirment qualitativement ces résultats.
94

Echanges hydrogène/deutérium dans les glaces interstellaires : une origine de la deutération sélective

Ratajczak, Alexandre 08 March 2012 (has links) (PDF)
Le milieu interstellaire (MIS) où se forment les étoiles est constitué de gaz très dilué dominé par l'hydrogène moléculaire, et de grains de poussière de taille submicrométrique. Ces poussières jouent un rôle crucial en atténuant la lumière des étoiles lointaines, protégeant ainsi les molécules du gaz des rayonnements ultra-violets, et en servant de catalyseurs à une chimie hétérogène à très basse température. Outre la synthèse de l'hydrogène moléculaire, la surface des grains permet de former des molécules organiques dites complexes comme le méthanol (CH3OH) à partir de l'hydrogénation (et la deutération) du monoxyde de carbone (CO). Les glaces ainsi formées participent à la complexification moléculaire du MIS et seront à terme intégrées au sein de disques de poussières, berceaux des astéroïdes, comètes et exo-planètes. L'objectif de cette thèse est l'étude des mécanismes d'échanges hydrogène-deuterium sur certains groupements fonctionnels de molécules organiques simples, méthanol par exemple, présentes à la surface ou dans les manteaux des grains interstellaires. La thèse est centrée sur une exploration expérimentale de ces processus en phase condensée, à l'aide d'une expérience de cryogénie synthétisant des glaces à très basse température (15K) couplée à un spectromètre infrarouge. Nous montrons que ces échanges se produisent avant la sublimation du manteau de glace sur des groupes fonctionnels capables d'établir des liaisons hydrogènes avec les molécules d'eau voisines. Le processus catalysant est vraisemblablement la cristallisation de la glace d'eau. Des études cinétiques nous permettent d'évaluer les énergies d'activation du transfert H/D (6745K) et de la transition amorphe-cristalline (8100K), et de déterminer la constante de vitesse d'échange dans le domaine de température 120-140~K. Cette constante de vitesse est, de plus, comparée à des calculs semi-classiques basés sur un traitement ab initio. En marge de ces expériences, des observations millimétriques de la molécule de méthanol en direction de proto-étoiles confirment une variabilité des abondances relatives des isotopologues simplement deutérés de cette molécule en fonction de la masse de la protoétoile.
95

Echanges hydrogène/deutérium dans les glaces interstellaires : une origine de la deutération sélective / Deuterium/hydrogen exchanges in interstellar ices

Ratajczak, Alexandre 08 March 2012 (has links)
Le milieu interstellaire (MIS) où se forment les étoiles est constitué de gaz très dilué dominé par l'hydrogène moléculaire, et de grains de poussière de taille submicrométrique. Ces poussières jouent un rôle crucial en atténuant la lumière des étoiles lointaines, protégeant ainsi les molécules du gaz des rayonnements ultra-violets, et en servant de catalyseurs à une chimie hétérogène à très basse température. Outre la synthèse de l'hydrogène moléculaire, la surface des grains permet de former des molécules organiques dites complexes comme le méthanol (CH3OH) à partir de l'hydrogénation (et la deutération) du monoxyde de carbone (CO). Les glaces ainsi formées participent à la complexification moléculaire du MIS et seront à terme intégrées au sein de disques de poussières, berceaux des astéroïdes, comètes et exo-planètes. L'objectif de cette thèse est l'étude des mécanismes d'échanges hydrogène-deuterium sur certains groupements fonctionnels de molécules organiques simples, méthanol par exemple, présentes à la surface ou dans les manteaux des grains interstellaires. La thèse est centrée sur une exploration expérimentale de ces processus en phase condensée, à l'aide d'une expérience de cryogénie synthétisant des glaces à très basse température (15K) couplée à un spectromètre infrarouge. Nous montrons que ces échanges se produisent avant la sublimation du manteau de glace sur des groupes fonctionnels capables d'établir des liaisons hydrogènes avec les molécules d'eau voisines. Le processus catalysant est vraisemblablement la cristallisation de la glace d'eau. Des études cinétiques nous permettent d'évaluer les énergies d'activation du transfert H/D (6745K) et de la transition amorphe-cristalline (8100K), et de déterminer la constante de vitesse d'échange dans le domaine de température 120-140~K. Cette constante de vitesse est, de plus, comparée à des calculs semi-classiques basés sur un traitement ab initio. En marge de ces expériences, des observations millimétriques de la molécule de méthanol en direction de proto-étoiles confirment une variabilité des abondances relatives des isotopologues simplement deutérés de cette molécule en fonction de la masse de la protoétoile. / The interstellar medium where stars are formed consists of a dilute gas which is dominated by molecular hydrogen and dust grains less than a few microm in size. The dust plays a crucial role in the attenuation of light from the stars. They also protect molecules within the gas from UV photons. Furthermore, they serve as heterogeneous catalysts for chemistry at low temperature. The surface of the grains also permit the formation of complex organic molecules such as methanol via the hydrogenation and/or deuteration of carbon monoxide. The ices are formed and subsequently participate in increasing the molecular complexity of the clouds. Finally, they are incorporated into debris disks, asteroids, comets, and exoplanets. The objective of this thesis is to study the mechanism of hydrogen/deuterium exchange within certain functionnal groups of simple organic molecules such as methanol, which are present on the surface of these grain mantles. The thesis is focused on the experimental determination of these processes in the condensed phase. This will be achieved with the aid of a cryogenic synthesis of the ices at very low temperatures coupled with infrared spectrometry. We observe that it is possible for the exchange to proceed before the sublimation of the ice mantles. However, this is only the case when the functional groups within the molecule may form hydrogen bonds with water. From our results we see that this process seems to be catalysed by the crystalization of the water ice. The kinetics study permits us to evalute the activation energy for the H/D exchange (6745 K) and for the transition from amorphous to crystaline ice (8100 K). In addition it also allows us to determine the rate constant for the exchange in the temperature range 120-140 K. In addition we have performed theoretical calulation in an attempt to elucidate the mechanism for the exchange. However, the experimental rate constant for the exchange is much larger in comparison to the one predicted by a semi- classical treatment based on the AB initio potential we have obtained. Further to this observations of methanol towards protostars have been conducted. These observations show that there is a variation in the relative abundance of the CH2DOH and CH3OD. This variation in relative abundance seems to have some dependence upon the mass of the protostar, with high mass stars showing (CH2DOH/CH3OD ≤ 1) and low/intermiediate mass stars showing (CH2DOH/CH3OD >> 3).
96

Nuage hypermassif, chocs et efficacité de formation stellaire / Hypermassive cloud, shock and stellar formation efficiency

Louvet, Fabien 22 September 2014 (has links)
Les étoiles massives, de type O ou B, sont d'une importance capitale pour le budget énergétique des galaxies et l'enrichissement du milieu interstellaire. Néanmoins, leur formation, contrairement à celle des étoiles de type solaire reste sujet à débats, sinon une énigme. Les toutes premières étapes de la formation des étoiles massives ainsi que la formation de leur nuage parent sont des thèmes qui stimulent une grande activité sur les plans théorique et observationnel depuis une décennie. Il semble maintenant acquis que les étoiles massives naissent dans des cœurs denses massifs, qui se forment au travers de processus dynamiques, tels que les flots de gaz collisionnels. Au cours de ma thèse, j'ai mené une étude approfondie de la formation des cœurs denses et des étoiles massives au sein de la structure hypermassive W43-MM1, localisée à 6~kpc du soleil. Dans un premier temps, j'ai montré une corrélation directe entre l'efficacité à former des étoiles et la densité volumique des nuages moléculaires, en décalage avec un certain nombre d'études précédentes. En effet, la distribution spatiale et de masse des cœurs denses massifs en formation au sein de W43-MM1 suggère que ce filament hypermassif est en phase de flambée de formation d'étoiles, flambée d'autant plus grande que l'on se rapproche de son cœur. J'ai comparé ces résultats observationnels aux modèles numériques et analytiques d'efficacité de formation stellaire les plus récents. Cette confrontation permet non seulement d'apporter de nouvelles contraintes sur la formation des filaments hypermassifs, mais suggère aussi que la compréhension de la formation d'étoiles dans les nuages hypermassifs nécessite une description fine de la structure de ces objets exceptionnels. En second lieu, ayant montré que la formation des étoiles massives est fortement dépendante des propriétés des filaments qui les forment, je me suis naturellement intéressé aux processus de formation de ces filaments, grâce à une étude de leur dynamique globale. Plus précisément, j'ai utilisé un traceur de chocs (la molécule de SiO) pour discerner les chocs dûs aux processus locaux de formation des étoiles (jets et flots bipolaires), des chocs dûs aux processus permettant la formation du nuage. J'ai ainsi pu, via une étude sans précédent alliant observations et modélisation de chocs dans une région formant de nombreuses étoiles, montrer l'existence de chocs à basse vitesse, première signature directe de la formation du nuage moléculaire dans lequel les étoiles massives se forment. Ces résultats constituent une étape importante reliant, via des processus dynamiques, la formation des nuages moléculaires à la formation des étoiles massives. / O and B types stars are of paramount importance in the energy budget of galaxies and play a crucial role enriching the interstellar medium. However, their formation, unlike that of solar-type stars, is still subject to debate, if not an enigma. The earliest stages of massive star formation and the formation of their parent cloud are still crucial astrophysical questions that drew a lot of attention in the community, both from the theoretical and observational perspective, during the last decade. It has been proposed that massive stars are born in massive dense cores that form through very dynamic processes, such as converging flows of gas. During my PhD, I conducted a thorough study of the formation of dense cores and massive stars in the W43-MM1 supermassive structure, located at ~ 6 kpc from the sun. At first, I showed a direct correlation between the star formation efficiency and the volume gas density of molecular clouds, in contrast with scenarii suggested by previous studies. Indeed, the spatial distribution and mass function of the massive dense cores currently forming in W43-MM1 suggests that this supermassive filament is undergoing a star formation burst, increasing as one approaches its center. I compared these observational results with the most recent numerical and analytical models of star formation. This comparison not only provides new constraints on the formation of supermassive filaments, but also suggests that understanding star formation in high density, extreme ridges requires a detailed portrait of the structure of these exceptional objects. Second, having shown that the formation of massive stars depends strongly on the properties of the ridges where they form, I studied the formation processes of these filaments, thanks of the characterization of their global dynamics. Specifically, I used a tracer of shocks (SiO molecule) to disentangle the feedback of local star formation processes (bipolar jets and outflows) from shocks tracing the pristine formation processes of the W43-MM1 cloud. I was able, via an unprecedented study combining observations and modeling of shocks in a starbust region, to show the existence of widespread low velocity shocks, that are the first direct signature of the formation of the massive molecular cloud from which massive stars form.These results are an important step connecting, via dynamical processes, the formation of molecular clouds to the formation of massive stars.
97

Star formation across cosmic time and its influence on galactic dynamics / La formation des étoiles au cours de l'histoire de l'univers et son influence sur la dynamique des galaxies

Freundlich, Jonathan 01 December 2015 (has links)
Les observations montrent qu'il y a dix milliards d'années, les galaxies formaient bien plus d'étoiles qu'aujourd'hui. Comme les étoiles se forment à partir de gaz moléculaire froid, cela signifie que les galaxies disposaient alors d'importants réservoirs de gaz, et c'est ce qui est observé. Mais les processus de formation d'étoiles pourraient aussi avoir été plus efficaces : qu'en est-il ? Les étoiles se forment dans des nuages moléculaires géants liés par leur propre gravité, mais les toutes premières étapes de leur formation demeurent relativement mal connues. Les nuages moléculaires sont eux-mêmes fragmentés en différentes structures, et certains scénarios suggèrent que les filaments interstellaires qui y sont observés aient pu constituer la première étape de la formation des coeurs denses dans lesquels se forment les étoiles. En quelle mesure leur géométrie filamentaire affecte-t-elle les coeurs pré-stellaires ? Des phenomènes de rétroaction liés à l'évolution des étoiles, comme les vents stellaires et les explosions de supernovae, participent à la régulation de la formation d'étoiles et peuvent aussi perturber la distribution de matière noire supposée entourer les galaxies. Cette thèse aborde l'évolution des galaxies et la formation des étoiles suivant trois perspectives : (i) la caractérisation des processus de formation d'étoiles à des échelles sous-galactiques au moment de leur pic de formation ; (ii) la formation des coeurs pré-stellaires dans les structures filamentaires du milieu interstellaire ; et (iii) les effets rétroactifs de la formation et de l'évolution des étoiles sur la distribution de matière noire des galaxies. / Observations show that ten billion years ago, galaxies formed their stars at rates up to twenty times higher than now. As stars are formed from cold molecular gas, a high star formation rate means a significant gas supply, and galaxies near the peak epoch of star formation are indeed much more gas-rich than nearby galaxies. Is the decline of the star formation rate mostly driven by the diminishing cold gas reservoir, or are the star formation processes also qualitatively different earlier in the history of the Universe? Ten billion years ago, young galaxies were clumpy and prone to violent gravitational instabilities, which may have contributed to their high star formation rate. Stars indeed form within giant, gravitationally-bound molecular clouds. But the earliest phases of star formation are still poorly understood. Some scenarii suggest the importance of interstellar filamentary structures as a first step towards core and star formation. How would their filamentary geometry affect pre-stellar cores? Feedback mechanisms related to stellar evolution also play an important role in regulating star formation, for example through powerful stellar winds and supernovae explosions which expel some of the gas and can even disturb the dark matter distribution in which each galaxy is assumed to be embedded. This PhD work focuses on three perspectives: (i) star formation near the peak epoch of star formation as seen from observations at sub-galactic scales; (ii) the formation of pre-stellar cores within the filamentary structures of the interstellar medium; and (iii) the effect of feedback processes resulting from star formation and evolution on the dark matter distribution.
98

Impact of radiative transfer and chemistry on the formation of molecular clouds / Impact du transfert radiatif et de la chimie sur la formation des nuages moléculaires

Valdivia, Valeska 24 September 2015 (has links)
Le milieu interstellaire (MIS) est un système extrêmement complexe. Il correspond à une échelle intermédiaire entre les étoiles et les galaxies. Le gaz interstellaire est présent dans toute la galaxie, remplissant l’espace entre les étoiles. Une grande diversité de processus couplés, comme la gravité, le champs magnétiques, la turbulence et la chimie, participe à son évolution, faisant de la modélisation du MIS un problème ardu. Une description correcte du MIS nécessite un bon traitement des équations de la magnetohydrodynamique (MHD), de la gravité, du bilan thermique et de l’évolution chimique à l’intérieur du nuage moléculaire.L’objectif de ce travail de thèse est une meilleure compréhension de la formation et de l’évolution des nuages moléculaires, et plus particulièrement de la transition du gaz atomique en gaz moléculaire. Nous avons réalisé des simulations numériques de la formation des nuages moléculaires et de la formation de l’hydrogène moléculaire sous l’influence de la gravité et de la turbulence MHD, en utilisant des estimations précises de l’écrantage par les poussières et de l’auto-écrantage par la molécule H2. Ceci a été calculé grâce à une méthode en arbre, à même de fournir une rapide estimation des densités de colonne.Nous avons trouvé que l’hydrogène moléculaire se forme plus rapidement que prévu par les estimations classiques du fait de l’augmentation de densité locale provoquée par les fluctuations turbulentes du gaz. L’hydrogène moléculaire, formé à des densités plus élevées, peut alors migrer vers les régions plus chaudes et moins denses.Les densités de colonne totale d’hydrogène moléculaire montrent que la transition HI-H2 se produit à des densités de colonne de quelques 10^20 cm−2. Nous avons calculé les populations des niveaux rotationnels de H2 à l’équilibre thermique et intégré le long de plusieurs lignes de visée. Ces résultats reproduisent bien les valeurs observées par Copernicus et FUSE, suggérant que la transition observée et les populations excitées pourraient être une conséquence de la structure multi-phasique des nuages moléculaires. Comme la formation de H2 précède la formation des autres molécules, le H2 chaud pourrait permettre le développement d’espèces endothermiques et éventuellement expliquer certains aspects de la richesse moléculaire observée dans l’ISM. / The interstellar medium (ISM) is a highly complex system. It corresponds to an intermediate scale between stars and galaxies. The interstellar gas is present throughout the galaxy, filling the volume between stars. A wide variety of coupled processes, such as gravity, magnetic fields, turbulence and chemistry, participate in its evolution, making the modeling of the ISM a challenging problem. A correct description of the ISM requires a good treatment of the magnetohydrodynamics (MHD) equations, gravity, thermal balance, and chemical evolution within the molecular clouds.This thesis work aims at a better understanding of the formation and evolution of molecular clouds, specially how they become "molecular", paying particular attention to the transition HI-to-H2. We have performed ideal MHD simulations of the formation of molecular clouds and the formation of molecular hydrogen under the influence of gravity and turbulence, using accurate estimates for the shielding effects from dust and the self-shielding for H2, calculated with a Tree-based method, able to provide fast estimates of column densities.We find that H2 is formed faster than predicted by the usual estimates due to local density enhancements created by the gas turbulent motions. Molecular hydrogen, formed at higher densities, could then migrate toward low density warmer regions.Total H2 column densities show that the HI-to-H2 transition occurs at total column densities of a few 10^20 cm−2. We have calculated the populations of rotational levels of H2 at thermal equilibrium, and integrated along several lines of sight. These two results reproduce quite well the values observed by Copernicus and FUSE, suggesting that the observed transition and the excited populations could arise as a consequence of the multi-phase structure of molecular clouds. As H2 formation is prior to further molecule formation, warm H2 could possibly allow the development of a warm chemistry, and eventually explain some aspects of the molecular richness observed in the ISM.
99

The Role of AGN Feedback in Galaxy Formation / Le rôle de la rétroaction des noyaux actifs dans la formation des galaxies

Bieri, Rebekka 26 September 2016 (has links)
L’objectif de ma thèse porte sur les interactions entre les noyaux actifs de galaxies et le milieu interstellaire des galaxies. En particulier, je mets l’accent sur les deux mécanismes possibles responsables de la production des vents par les trous noirs : les jets et les vents produits par le rayonnement de ces trous noirs. Les simulations hydrodynamiques de haute résolution des galaxies comprenant la rétroac- tion d’un jet ont montré que l’activité des noyaux actifs peut conduire à une pression exces- sive sur les régions denses de formation stellaire dans les galaxies, et donc à augmenter la formation d’étoiles, conduisant à un effet positif de rétroaction. Je montre que ces noyaux actifs induits par pression régulée et formation d’étoiles peuvent aussi être une explica- tion possible des taux de formation stellaire élevés observés dans l’Univers à haut décalage spectral. De plus, j’ai également étudié en détails comment le rayonnement émis à partir d’un disque d’accrétion autour du trou noir agit efficacement avec le milieu interstellaire et entraîne un fort vent galactique, en simulant la propagation des photons à partir des équations hydrodynamiques du rayonnement. Les simulations montrent que la grande luminosité d’un quasar est en effet capable de conduire des vents à grande échelle et à grande vitesse. Le rayonnement infrarouge est nécessaire pour transérer efficacement le gaz par multi-diffusion sur la poussière dans les nuages denses. Le nombre typique de multi-diffusion diminue rapidement quand le nuage central de gaz central se dilate et se rompt, ce qui permet au rayonnement de s’échapper à travers les canaux à faible densité. / Supermassive black holes (SMBHs) are known to reside in the centres of most large galaxies. The masses of these SMBHs are known to correlate with large-scale properties of the host galaxy suggesting that the growth of the BHs and large-scale structures are tightly linked. A natural explanation for the observed correlation is to invoke a self-regulated mechanism involving feedback from Active Galactic Nuclei (AGN). The focus of this thesis is on the interactions between AGN outflows and the ISM and how the feedback impacts the host galaxy. In particular, it focuses on the two possible mechanism of outflows, namely, outflows related to AGN jets and outflows produced by AGN radiation. High resolution, galaxy scale hydrodynamical simulations of jet-driven feedback have shown that AGN activity can over-pressurise dense star-formation regions of galaxies and thus enhance star formation, leading to a positive feedback effect. I propose, that such AGN-induced pressure-regulated star formation may also be a possible explanation of the high star formation rates recently found in the high-redshift Universe. In order to study in more detail the effects of over-pressurisation of the galaxy, I have performed a large set of isolated disc simulations with varying gas-richness in the galaxy. I found that even moderate levels of over-pressurisation of the galaxy boosts the global star formation rate by an order of magnitude. Additionally, stable discs turn unstable which leads to significant fragmentation of the gas content of the galaxy, similar to what is observed in high-redshift galaxies. The observed increase in the star formation rate of the galaxy is in line with theoretical predictions. I have also studied in detail how radiation emitted from a thin accretion disc surrounding the BH effectively couples to the surrounding ISM and drives a large scale wind. Quasar activity is typically triggered by extreme episodes of gas accretion onto the SMBH, in particular in high-redshift galaxies. The photons emitted by a quasar eventually couple to the gas and drive large scale winds. In most hydrodynamical simulations, quasar feedback is approximated as a local thermal energy deposit within a few resolution elements, where the efficiency of the coupling between radiation of the gas is represented by a single parameter tuned to match global observations. In reality, this parameter conceals various physical processes that are not yet fully un- derstood as they rely on a number of assumptions about, for instance, the absorption of photons, mean free paths, optical depths, and shielding. To study the coupling between the photons and the gas I simulated the photon propagation using radiation-hydrodynamical equations (RHD), which describe the emission, absorption and propagation of photons with the gas and dust. Such an approach is critical for a better understanding of the coupling between the radiation and gas and how hydrodynamical sub-grid models can be improved in light of these results...
100

Adsorption on interstellar analog surfaces : from atoms to organic molecules / Adsorption sur surfaces analogues interstellaires : des atomes aux molécules organiques

Doronin, Mikhail 28 September 2015 (has links)
Les interactions gaz-grains jouent un rôle important dans la chimie des milieux interstellaires et protoplanétaires. Le paramètre-clé qui gouverne les échanges entre la surface des grains et la phase gazeuse est l’énergie d’adsorption Ea. Ce travail a pour but de développer une approche jointe expérimentale et théorique afin de déterminer les énergies d’adsorption pour des atomes et molécules d’intérêt astrophysique sur des substrats-modèles des surfaces des grains de poussière interstellaires. Expérimentalement, la méthode employée est la désorption programmée en température (TPD). Le travail a contribué en l’établissement d’une méthode de traitement des courbes de désorption, basée sur une distribution d’énergie d’adsorption et utilisant un set limité de données à plusieurs rampes de chauffage, pour déterminer le couple de paramètres de l’équation de Polanyi-Wigner que sont l’énergie d’adsorption et le préfacteur. D’un point de vue de la chimie théorique, les énergies d’adsorption sont déterminées en utilisant la théorie de la fonctionnelle de la densité (DFT) implémentée dans le module Vienna Ab initio Simulation Package (VASP). Cette méthode permet également d’accéder aux géométries d’adsorption, ainsi qu’aux différents sites sur la surface. La méthode expérimentale a été validée par une comparaison avec un système connu : l’adsorption du méthanol CH3OH sur le graphite. L’adsorption des gaz rares Ar/Kr/Xe sur les glaces d’eau a été étudiée comme un cas d’intérêt pour la planétologie. L’adsorption de l’acétonitrile (CH3CN) et de son isomère l’isoacétonitrile (CH3NC) sur les surfaces de graphite, de quartz et de glaces d’eau a également été étudiée, puisque ces deux molécules sont détectées dans le milieu interstellaire. Les énergies d'adsorption trouvées dans le cadre de ce travail seront intégrées dans la base des données KIDA. / Gas-grain interaction plays an important role in the chemistry of the cold interstellar medium and protoplanetary disks. A key parameter for modeling the exchange between grain surfaces and gas phase is adsorption energy, Ea. This work aims to develop a reliable and systematic experimental/theoretical approach to determine the adsorption energies of relevant atoms and molecules on models of interstellar grain surfaces. Employed experimental technique is the Temperature Programmed Desorption. Developed experimental protocol and data treatment technique based on distribution of adsorption energies and use of a set of heating rates enable to determine the coupled parameters of Polanyi-Wigner equation: adsorption energy Ea and prefactor N. Computational chemistry approach, Density Functional Theory (DFT) as implemented in Vienna Ab initio Simulation Package (VASP) is used to get the insight on the behaviour of the surface-adsorbate systems at the atomic level. This approach allows as well to determine adsorption energies. A presence of multiple adsorption sites with different adsorption energies is predicted. Methanol CH3OH adsorption on graphite is used as a known example to validate the technique. Ar/Kr/Xe adsorption on water ice is studied as a case relevant for planetology. Acetonitrile (CH_3CN) and methyl isocyanide (CH_3NC) adsorption on water ice, quartz and graphite is investigated since those two molecules are both detected in the interstellar medium. Adsorption energies determined in this work will be included in KIDA database.

Page generated in 0.0696 seconds