• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 176
  • 31
  • 22
  • 12
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 425
  • 273
  • 167
  • 157
  • 157
  • 148
  • 122
  • 73
  • 66
  • 65
  • 51
  • 49
  • 46
  • 43
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

The Effects of Environment on the Atomic and Molecular Gas Properties of Star-Forming Galaxies / Environmental Effects on the ISM of Star-Forming Galaxies

Mok, Angus King Fai 11 1900 (has links)
Where a galaxy is located has a strong effect on its properties. The dense cluster environment is home to a large population of red, quiescent elliptical galaxies, whereas blue, star-forming, spiral galaxies are common in lower-density environments. This difference is intricately linked to the ability of the galaxy to form new stars and therefore ultimately to the fuel for star formation, the atomic and molecular gas. In this thesis, I use two large JCMT surveys to explore the effects of environment on the atomic gas, molecular gas, and star formation properties of a large sample of nearby gas-rich galaxies. From the NGLS and follow-up studies, I select a sub-sample of 98 HI-flux selected spiral galaxies. I measure their total molecular gas mass using the CO J=3-2 line and combine this data with measurements of their total atomic gas mass using the 21-cm line and star formation rate using attenuation-corrected H-alpha luminosity. I find an enhancement in the mean H2 mass and a higher H2-to-HI ratio for the Virgo Cluster sample. Virgo Cluster galaxies also have longer molecular gas depletion times (H2/SFR), which suggests that they are forming stars at a lower rate relative to their molecular gas reservoirs than non-Virgo galaxies. Next, I collect VLA 21 cm line maps from the VIVA survey and follow-up VLA studies of selected galaxies in the NGLS. I measure the surface density maps of the atomic gas, molecular gas, and star formation rate in order to determine radial trends. I find that the H2 distribution is enhanced near the centre for Virgo Cluster galaxies, along with a steeper total gas (HI + H2) radial profile. I suggest that this is due to the effects of moderate ram pressure stripping, which would strip away low-density gas in the outskirts while enhancing high-density gas near the centre. There are no trends with radius for the molecular gas depletion times, but the longer depletion times for the Virgo Cluster sample is still present. Finally, I use 850 micron continuum observations for 105 star-forming galaxies and CO J=2-1 line observations for 35 galaxies in the initial data release (DR1) of the JINGLE survey. I match the JINGLE galaxies to a SDSS group catalogue and measure environmental parameters such as the host halo mass, environment density, and location in phase space. I find that the molecular gas masses estimated from the 850 μm and CO J=2-1 line observations are well-correlated. The H2-to-HI ratio and the molecular gas depletion times do not appear to vary with stellar mass. I did not find any significant variation with environment in the DR1 sample, but I will apply this framework to the full JINGLE sample once the complete dataset is available. / Thesis / Doctor of Philosophy (PhD)
82

Towards Understanding Asteroid Cohesion: A Study of Adhesion on Micron-Sized Planetary Analogues using an Atomic Force Microscope (AFM) with Implications for Sample Return Analysis.

Jardine, Keanna 01 January 2023 (has links) (PDF)
Most small asteroids are defined as "rubble-piles," or bodies with zero tensile strength and large bulk porosity that are tenuously held together by cohesive forces. Improving the accuracy of predictions of asteroid strengths requires suitable laboratory measurements of relevant materials, as well as increasing the availability of materials from sample return. In this work, we use Atomic Force Microscopy (AFM) force measurements and particle characterization to characterize, evaluate, and decouple variables that affect cohesive forces that act between micron-sized grains. In our first investigation we explored interactions of JSC-1 lunar simulant grains using three sample sizes, three spherical AFM tip diameters, and varying relative humidity, observing that the results are very dependent on the RH and, by proxy, adsorbed water. We observed weaker adhesion with larger grain/tip size, which can be attributed to the changing contact area between the samples and the tips. We next performed experiments in vacuum conditions and characterized the cohesive values of a high-fidelity CI simulant (Exolith) based on the CI1 meteorite Orgueil. Our results show no significant trend in adhesion, but we do observe that some correlating characteristics of the grains, such as roughness, can dominate the work of adhesion. The chemical nature of the grains, including their affinity for water, also played a role in if they became more adhesive in vacuum conditions or less adhesive in vacuum conditions. Our studies decouple several factors that contribute to the complex physics of adhesion and even more complex idea of understanding adhesion in a space environment with irregularly shaped grains. This approach will pave the way to a better understanding of regolith surface properties, improve contact models for irregularly shaped particles, and provide suitable inputs for models of asteroid cohesion. This analysis technique can be used on future materials provided by sample return missions.
83

PROBING PHYSICAL CONDITIONS IN THE CRAB NEBULA WITH EMISSION LINE ANALYSIS

Wang, Xiang 01 January 2016 (has links)
We present a range of steady-state photoionization simulations, corresponding to different assumed shell geometries and compositions, of the unseen postulated rapidly expanding outer shell to the Crab Nebula. The properties of the shell are constrained by the mass that must lie within it, and by limits to the intensities of hydrogen recombination lines. In all cases the photoionization models predict very strong emission from high ionization lines that will not be emitted by the Crab’s filaments, alleviating problems with detecting these lines in the presence of light scattered from brighter parts of the Crab. The NIR [Ne VI] λ 7.652 mm line is a particularly good case; it should be dramatically brighter than the optical lines commonly used in searches. The C IV λ1549Å doublet is predicted to be the strongest absorption line from the shell, which is in agreement with HST observations. We show that the cooling timescale for the outer shell is much longer than the age of the Crab, due to the low density. This means that the temperature of the shell will actually “remember” its initial conditions. However, the recombination time is much shorter than the age of the Crab, so the predicted level of ionization should approximate the real ionization. In any case, it is clear that IR observations present the best opportunity to detect the outer shell and so guide future models that will constrain early events in the original explosion. Infrared observations have discovered a variety of objects, including filaments in the Crab Nebula and cool-core clusters of galaxies, where the H2 1-0 S(1) line is stronger than the infrared H I lines. A variety of processes could be responsible for this emission. Although many complete shock or PDR calculations of H2 emission have been published, we know of no previous simple calculation that shows the emission spectrum and level populations of thermally excited low-density H2. We present a range of purely thermal collisional simulations, corresponding to constant gas kinetic temperature at different densities. We consider the cases where the collisions affecting H2 are predominantly with atomic or molecular hydrogen. The resulting level population (often called “excitation”) diagrams show that excitation temperatures are sometimes lower than the gas kinetic temperature when the density is too low for the level populations to go to LTE. The atomic case goes to LTE at much lower densities than the molecular case due to larger collision rates. At low densities for the v=1 and 2 vibrational manifolds level populations are quasi-thermal, which could be misinterpreted as showing the gas is in LTE at high density. At low densities for the molecular case the level population diagrams are discontinuous between v=0 and 1 vibrational manifolds and between v=2, J=0, 1 and other higher J levels within the same vibrational manifold. These jumps could be used as density diagnostics. We show how much the H2 mass would be underestimated using the H2 1-0 S(1) line strength if the density is below that required for LTE. We give diagnostic diagrams showing level populations over a range of density and temperature. The density where the level populations are given by a Boltzmann distribution relative to the total molecular abundance (required to get the correct H2 mass), is shown for various cases. We discuss the implications of these results for the interpretation of H2 observations of the Crab Nebula and filaments in cool-core clusters of galaxies.
84

ZEEMAN EFFECT STUDIES OF MAGNETIC FIELDS IN THE MILKY WAY

Thompson, Kristen Lynn 01 January 2012 (has links)
The interstellar medium (ISM) of our Galaxy, and of others, is pervaded by ultra low-density gas and dust, as well as magnetic fields. Embedded magnetic fields have been known to play an important role in the structure and dynamics of the ISM. However, the ability to accurately quantify these fields has plagued astronomers for many decades. Unfortunately, the experimental techniques for measuring the strength and direction of magnetic fields are few, and they are observationally challenging. The only direct method of measuring the magnetic field is through the Zeeman effect. The goal of this dissertation is to expand upon the current observational studies and understanding of the effects of interstellar magnetic fields across various regions of the Galaxy. Zeeman effect observations of magnetic fields in two dynamically diverse environments in the Milky Way are presented: (1) An OH and HI absorption line study of envelopes of molecular clouds distributed throughout the Galaxy, and (2) A study of OH absorption lines toward the Galactic center region in the vicinity of the supermassive black hole Sgr A*. We have executed the first systematic observational survey designed to determine the role of magnetic fields in the inter-core regions of molecular clouds. Observations of extragalactic continuum sources that lie along the line-of-sight passing through Galactic molecular clouds were studied using the Arecibo telescope. OH Zeeman effect observations were combined with estimates of column density to allow for computation of the mass-to-flux ratio, a measurement of the gravitational to magnetic energies within a cloud. We find that molecular clouds are slightly subcritical overall. However, individual measurements yield the first evidence for magnetically subcritical molecular gas. Jansky VLA observations of 18 cm OH absorption lines were used to determine the strength of the line-of-sight magnetic field in the Galactic center region. This study yields no clear detections of the magnetic field and results that differ from a similar study by Killeen, Lo, & Crutcher (1992). Our results suggest magnetic fields no more than a few microgauss in strength.
85

Tarpžvaigždinės ekstinkcijos tyrimas Slibino-Cefėjaus žvaigždynų ribos kryptimi / Investigation interstellar extinction in Cepheus Flare

Maskoliūnas, Marius 24 September 2008 (has links)
Paukščių Tako Galaktikos sritį esančią Cefėjaus žvaigždyne sudaro keletas žvaigždėdaros regionų. Šiame darbe tirta sritis kurios centro koordinatės l=102.4 , b=+15.5 ir stebimo lauko dydis 1.2*1.2 laipsnio. Tyrimui naudota Vilniaus fotometrinė sistema su CCD kamera. / The Milky Way region in the direction of the Cepheus contains several star forming regions. The area of 1.2*1.2 deg size at l=102.4 , b=+15.5 are investigated using CCD photometry in the Vilnius system and described in this work.
86

Star formation and galaxy evolution of the local universe based on HIPASS /

Wong, Oiwei Ivy. January 2007 (has links)
Thesis (Ph.D.)--University of Melbourne, School of Physics, 2008. / Typescript. Includes bibliographical references (leaves 161-176).
87

Computational Studies on Interstellar Molecular Species : From Formation to Detection

Etim, Emmanuel Edet January 2016 (has links) (PDF)
Initiated with the purpose of assigning the Fraunhofer lines in the solar spectrum to atomic transitions in the 18th century, the collaboration between spectroscopists and astrophysicists has remained fruitful, successful and ever fascinating. This collaboration has resulted in the unique detection of over 200 different molecular species in the interstellar medium (ISM). These interstellar molecular species play significant roles in diverse fields such as atmospheric chemistry, astrochemistry, prebiotic chemistry, astrophysics, astronomy, astrobiology, etc, and in our understanding of the solar system ''the world around us''. This Thesis work focuses on understanding of the different aspects of the chemistry of the various classes of these molecular species. Chapter one starts with an historical perspective of what is now regarded as Molecular Astrophysics or Astrochemistry and discusses the interstellar medium and its properties; interstellar molecular species and their importance; molecular spectroscopy as an indispensible tool in interstellar chemistry and the different formation routes of these molecular species. It also discusses hydrogen bonding which is one of the most important of all the intermolecular interactions. The chapter ends by setting the stage for the present investigations. The chapter two of the Thesis saddled with the task of describing the methodology employed in this Thesis begins by setting the stage on the importance of computational chemistry in interstellar chemistry. It discusses the Gaussian 09 suite of programs and the various theoretical methods used in all the quantum chemical calculations reported in this Thesis. The chapter ends with a brief summary on the homebuilt Pulsed Nozzle Fourier Transform Microwave (PN-FTMW) spectrometer used for the preliminary studies on Isoprene...Argon weakly bound complex reported in the appendix. After the introductory chapters, chapter three begins with what is unarguably one of the most important classes of interstellar molecular species - 'interstellar isomers'. In this chapter, the Energy, Stability and Abundance (ESA) relationship existing among interstellar molecular species has been firmly established using accurate thermochemical parameters obtained with the composite models and reported observational data. From the relationship, “Interstellar abundances of related species are directly proportional to their stabilities in the absence of the effect of interstellar hydrogen bonding”. The immediate consequences of the relationship in addressing some of the questions in interstellar chemistry such as: Where are Cyclic Interstellar Molecules? What are the possible candidates for astronomical observation? Why are more Interstellar Cyanides than isocyanides? among others are briefly discussed. Following the ESA relationship, other studies addressing some of the whys and wherefores in interstellar chemistry are discussed in details. From ESA relationship, though there has not been any successful astronomical observation of any heterocycle, the ones so far searched remain the best candidates for astronomical observation in their respective isomeric groups. The observation of the first branched chain molecule in ISM is in agreement with the ESA relationship and the C5H9N isomers have been shown to contain potential branched chain interstellar molecules. That molecules with the C-C-O backbone have less potential of formation in ISM as compared to their counterparts with the C-O-C backbone has been demonstrated not to be true following the ESA relationship. A detailed investigation on the relationship between molecular partition function and astronomical detection of isomeric species (or related molecules) shows that there is no direct correlation between the two rather there is a direct link between the thermodynamic stability of the isomeric species (or related molecules) and their interstellar abundances which influences the astronomical observation of some isomers at the expense of others. Chapter four presents an interesting and a fascinating phenomenon among the interstellar molecular species as it discusses for the first time, the existence and effects of Interstellar Hydrogen Bonding. This interstellar hydrogen bonding is shown to be responsible for the deviations from thermodynamically controlled processes, delayed observation of the most stable isomers, unsuccessful observations of amino acids among other happenings in interstellar chemistry and related areas. On the prediction that ketenes are the right candidates for astronomical searches among their respective isomers, a ketenyl radical; HCCO has recently been detected in line with this prediction. The deviation from the rule that the ratio of an interstellar sulphur molecule to its oxygen analogue is close to the cosmic S/O ratio is well accounted for on the basis of hydrogen bonding on the surface of the dust grains. Detecting weakly bound complexes in ISM has not been a major interest in the field so far but the detectability of weakly bound complexes in ISM is very possible as discussed in this chapter. Following the conditions in which these complexes are observed in the terrestrial laboratory as compared to the ISM conditions; it suffices to say that weakly bound complexes are present and are detectable in ISM. They could even account for some of the 'U' lines. Chapter five of the Thesis discusses the Linear Interstellar Carbon Chains which are the dominant theme in interstellar chemistry accounting for over 20% of all the known interstellar and circumstellar molecular species. Accurate spectroscopic parameters within experimental accuracy of few kHz which are the indispensable tools for the astronomical observation of these molecular species; are obtained for over 200 different species from the various chains using an inexpensive combined experimental and theoretical approach. With the availability of the spectroscopic parameters; thermodynamics is utilized in accounting for the known systems and in examining the right candidates for astronomical searches. These molecular species are shown to also obey the ESA relationship observed for the isomeric species discussed in chapter three of this work. The effect of kinetics on the formation processes of these molecular species is well controlled by thermodynamics as discussed in this chapter. Finally, the application of these studies in reducing the 'U' lines and probing new molecular species has been briefly summarized. Chapter six discusses Interstellar Ions and Isotopologues which are two unique classes of interstellar molecular species. Different studies on interstellar ions and isotopologues are presented. From the studies on interstellar protonated species with over 100 molecular species; protonated species resulting from a high proton affinity prefers to remain protonated rather than transferring a proton and returning to its neutral form as compared to its analogue that gives rise to a lower proton affinity from the same neutral species. The studies on detectable interstellar anions account for the known interstellar anions and predict members of the C2nO-, C2nS-, C2n-1Si-, HC2nN-, CnP-, and C2n chains as outstanding candidates for astronomical observation including the higher members of the C2nH- and C2n-1N- groups whose lower members have been observed. From high level ab initio quantum chemical calculations; ZPE and Boltzmann factor have been used to explain the observed deuterium enhancement and the possibility of detecting more deuterated species in ISM. Though all the heterocycles that have so far been searched for in ISM have been shown to be the right candidates for astronomical observation as discussed in the ESA relationship, they have also been shown to be strongly bonded to the surface of the interstellar dust grains thereby reducing their abundances, thus, contributing to their unsuccessful detection except for furan which is less affected by hydrogen bonding. The D-analogues of the heterocycles are shown from the computed Boltzmann factor to be formed under the dense molecular cloud conditions where major deuterium fractionation dominates implying very high D/H ratio above the cosmic D/H ratio which suggests the detectability of these deuterated species. Chapter seven examines the isomerization of the most stable isomer (which is probably the most abundant) to the less stable isomer(s) as one of the plausible formation routes for interstellar molecular species. An extensive investigation on the isomerization enthalpies of 243 molecular species from 64 isomeric groups is reported. From the results, the high abundances of the most stable isomers coupled with the energy sources in interstellar medium drive the isomerization process even for relative enthalpy difference as high as 67.4 kcal/mol. Specifically, the cyanides and their corresponding isocyanides pairs appear to be effectively synthesized via this process. The following potential interstellar molecules; CNC, NCCP, c-C5H, methylene ketene, methyl Ketene, CH3SCH3, C5O, 1,1-ethanediol, propanoic acid, propan-2-ol and propanol are identified and discussed. In all the isomeric groups, isomerization appears to be an effective route for the formation of the less stable isomers (which are probably less abundant) from the most stable ones. Chapter eight summarizes the conclusions drawn from the different studies presented in this Thesis and also highlights some of the future directions of these studies. The first appendix presents the preliminary study on Isoprene...Ar weakly bound complex while the second appendix contains a study on interstellar C3S describing the importance of accurate dipole moment in calculating interstellar abundances of molecular species and in astrophysical and astronomical models.
88

Studies Of Diffuse Ultraviolet Radiation

Karnataki, Abhay 09 1900 (has links) (PDF)
Ever since the first observations of diffuse ultraviolet radiation by Hayakawa et al. (1969) and Lillie & Witt (1976), there has been an effort to understand its distribution and its origin. Unfortunately, because of the difficulty of the observations and the faintness of the background, many of the early observations were conspicuous more by their disagreements than by the light they shed on the topic. The state of the observations and theories before 1990 have been reviewed by Bowyer (1991) and Henry (1991). There has been significant progress in more recent years, particularly in the far ultraviolet (< 1200˚A) where Murthy et al. (1999) and Murthy & Sahnow (2004) have used spectroscopic data from the Voyager and FUSE (Far Ultraviolet Spectroscopic Explorer) spacecraft, respectively, to trace the radiation field over many different locations in the sky. There have also been a number of observations at longer wavelengths, most recently by the SPEAR instrument (Ryu et al. 2008, and references therein), but no systematic study of the UV background. The Galaxy Evolution Explorer (GALEX) offers us the opportunity to extend coverage of the diffuse background to a significant fraction of the sky with a sensitivity of better than 100 photons cm−2 sr−1 s−1 ˚A−1 . In this work, we will report on one such observation, that of the nebulosity observed near M82 by Sandage (1976). These GALEX observations are the first to probe the diffuse UV background at a spatial resolution comparable to other surveys of dust emission, notably the IR. We obtain a quantitative estimate of the Airglow, the Zodiacal Light and the Extragalactic Background Radiation. We have modelled the data with our monte carlo scattering simulation program, and inferred an estimate of albedo and scattering phase function parameter of the dust in Sandage region. In this thesis the methods and results of these deductions are explained in detail.
89

Hot, Cold, and Warm Interstellar Gas in Galaxy Mergers

Dunn, Brianne, Smith, Beverly J 05 April 2018 (has links)
For a set of merging galaxies in the local Universe, we use archival Chandra X-ray data along with published 2.6 mm CO and 21 cm HI fluxes to determine the hot, cold, and warm interstellar gas masses, respectively. We determine how the relative amount of the different gas phases vary with merger stage, star formation rate, star formation efficiency, and stellar mass. We use these results to test models of stellar feedback during merger-triggered starbursts.
90

A Theoretical Study of Elementary Processes in Interstellar Plasma

Forer, Joshua 01 January 2023 (has links) (PDF)
Interstellar plasma — interstellar clouds in particular — play an important role in determining the structure and evolution of galaxies. Understanding the time evolution of such plasmas requires knowledge of the chemical processes that drive their dynamics. Two processes are studied in this dissertation: radiative electron attachment (REA) via dipole-bound states (DBSs) and dissociative recombination (DR). Of the several hundred molecules detected in the interstellar medium, only eight anions have been detected: CN-, C3N-, C5N-, C7N-, C4H-, C6H-, C8H-, and C10H-. Their production mechanism is not well known; REA was suggested as a possible formation pathway, but previous theoretical studies have found that REA rate coefficients were too low to explain the formation of CN-, C3N-, and C5N-. It was later suggested that including DBSs — an electron weakly bound at a large distance to the large dipole moment of a neutral molecule — could appreciably enhance the REA rate coefficients. The first portion of this study is dedicated to investigating the role of the large dipole moment of rotating C3N using an accurate \it ab initio approach with electronic and rotational resolution. DBS wavefunctions of C3N- are calculated and used to obtain REA cross sections that produce even smaller rate coefficients, suggesting that C3N- is efficiently formed by a different process. The second part of this study investigates DR in the difficult case of molecules with low-lying eletronic resonances, although these are not necessary for the approach. An approach to treat both direct and indirect mechanisms of DR in a diatomic ion with electronic, vibrational, and rotational resolution using R-matrix scattering calculations, frame transformation theory, and multichannel quantum defect theory is presented and applied to the CH+ and CF+ molecular ions at low collision energies. The calculated CH+ cross sections agree well with recent rotationally state-resolved experimental results and overall better than previous theoretical results. The calculated CF+ cross sections agree well with experimental results, although these do not have rotational resolution, and overall better than previous theoretical results at low energies. Additionally, the method can study rovibronic (de-)excitation — a process in competition with DR. These are calculated and compared to previous theoretical calculations for CH+, which which our results agree well with the exception of dipole-driven rotational excitation cross sections. This discrepancy is tentatively attibuted to negelcting the contribution of higher partial waves in the description of the incident electron, which will be incorporated in future studies.

Page generated in 0.1197 seconds