• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 230
  • 79
  • 67
  • 25
  • 11
  • 11
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 545
  • 90
  • 75
  • 67
  • 64
  • 63
  • 62
  • 57
  • 55
  • 55
  • 54
  • 48
  • 48
  • 42
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

The application of the multisolute osmotic virial equation to cryobiology

Prickett, Richelle Catherine Unknown Date
No description available.
102

On nogo signaling regulation /

Trifunovski, Alexandra, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2006. / Härtill 7 uppsatser.
103

Effects of Hyperosmotic Medium on Hepatocyte Volume, Transmembrane Potential and Intracellular K<sup>+</sup> Activity

Wang, Kening, Wondergem, Robert 04 November 1991 (has links)
Hepatocyte transmembrane potential (Vm) behaves as an osmometer and varies with changes in extracellular osmotic pressure created by altering the NaCl concentration in the external medium (Howard, L.D. and Wondergem, R. (1987) J. Membr. Biol. 100, 53). We now have demonstrated similar effects on Vm by increasing external osmolality with added sucrose and not altering ionic strength. We also have demonstrated that hyperosmotic stress-induced depolarization of Vm results from changes in membrane K+ conductance, gK, rather than from changes in the K+ equilibrium potential. Vm and aki of hepatocytes in liver slices were measured by conventional and ion-sensitive microelectrodes, respectively. Cell water vols. were estimated by differences in wet and dry weights of liver slices after 10-min incubations. Effect of hyperosmotic medium on membrane transference number for K+, tk, was measured by effects on Vm of step-changes in external [K+]. Hepatocyte Vm decreased 34, 52 and 54% when tissue was superfused with medium made hyperosmotic with added sucrose (50, 100 and 150 mM). Correspondingly, aKi increased 10, 18 and 29% with this hyperosmotic stress of added sucrose. Tissue water of 2.92 ± 0.10 kg H2O/kg dry weight in control solution decreased to 2.60 ± 0.05, 2.25 ± 0.06 and 2.22 ± 0.05 kg H2O/kg dry weight with additions to medium of 50, 100 and 150 mM sucrose, respectively. Adding 50 mM sucrose to medium decreased tK from 0.20 ± 0.01 to 0.05 ± 0.01. Depolarization by 50% with hyperosmotic stress (100 mM sucrose) also occurred in Cl-free medium where Cl- was substituted with gluconate. We conclude that hepatocytes shrink during hyperosmotic stress, and the aKi increases. The accompanying decrease in Vm is opposite to that expected by an increase in aKi, and at least in part results from a concomitant decrease in gK. Changes in membrane Cl- conductance most likely do not contribute to osmotic stress-induced depolarization, since equivalent decreases in Vm occurred with added sucrose in cells depleted of Cl- by superfusing tissue with Cl-free medium.
104

Influence of lipids (arachidonic acid and cholesterol) on calcium signalling in rodent pancreatic beta cells

Yeung-Yam-Wah, Valerie 11 1900 (has links)
Ca2+ is an important mediator of stimulus-secretion coupling in beta cells of the pancreatic islets, which secrete insulin in response to elevation in plasma glucose concentration. I studied the actions of two lipids, arachidonic acid (AA) and cholesterol, on enzymatically-dissociated single beta cells of rat and mouse, using cytosolic Ca2+ ([Ca2+]i) measurement in conjunction with whole-cell patch-clamp techniques. AA, which is produced in the beta cell upon stimulation with either glucose or acetylcholine, was found to induce a large increase in [Ca2+]i that was dependent on both extracellular Ca2+ entry and intracellular Ca2+ release. Part of the AA-mediated extracellular Ca2+ entry was due to Ca2+ influx through the arachidonate-regulated Ca2+ (ARC) channels, which have not previously been reported in beta cells. The AA-mediated intracellular Ca2+ release was a result of Ca2+ mobilization from multiple inositol trisphosphate (IP3)-sensitive intracellular stores, including the endoplasmic reticulum (ER) and an acidic Ca2+ store that is probably the secretory granules. Therefore, in beta cells, the AA-mediated Ca2+ signal may amplify the [Ca2+]i rise induced by insulin secretagogues. Cholesterol is an integral component of cellular membranes and an important regulator of cellular functions. However, elevation of cholesterol level in the pancreatic islets reduces glucose-stimulated insulin secretion. I found that cholesterol overload impairs the glucose-stimulated [Ca2+]i increase in beta cells by two major mechanisms: the first is a decrease in glucose-stimulated ATP production, which is partly mediated by a decrease in glucose uptake, and the second is the reduction of voltage-gated Ca2+ current density. These effects of cholesterol may partly account for the decreased insulin secretion that develops in patients with type II diabetes, who typically exhibit hypercholesterolemia. In summary, different lipids may mediate beneficial or detrimental effects on Ca2+ regulation in rodent pancreatic beta cells.
105

Influence of lipids (arachidonic acid and cholesterol) on calcium signalling in rodent pancreatic beta cells

Yeung-Yam-Wah, Valerie Unknown Date
No description available.
106

Negative regulation of growth hormone (GH) signaling /

Rico Bautista, Elizabeth, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 4 uppsatser.
107

Mécanismes de pathogénie intracellulaire des Straphylococcus aureus hypervirulents au cours de l'infection osseuse / Mechanisms of intracellular pathogeny of Staphylococcus aureus in bone infection

Dupieux, Céline 28 June 2018 (has links)
Staphylococcus aureus est capable d’être internalisé par les cellules eucaryotes, notamment au cours des infections osseuses, puis d’induire la mort de la cellule. Deux principaux mécanismes ont été décrits comme associés à la cytotoxicité de S. aureus : l’échappement phagosomal et le détournement de l’autophagie. Nous avons exploré ces deux mécanismes et le rôle de plusieurs toxines staphylococciques majeures (alpha-toxine (Hla), phenol-soluble modulins (PSM), bêta-toxine (Hlb)) dans la mort cellulaire, grâce à un modèle in vitro d’infection intracellulaire et des mutants isogéniques. L’échappement phagosomal nécessitant l’expression d’Hlb, inactivée par l’insertion d’un phage chez la majorité des souches cliniques, nous avons testé l’hypothèse d’une excision de ce phage induite par le stress intracellulaire. Nous avons montré que la restauration de l’expression d’Hlb par excision du phage existe de manière spontanée mais n’est pas induite par le passage intracellulaire et n’est pas associée à une hausse de la cytotoxicité. Dans un second temps, nous avons exploré la cytotoxicité d’une souche de S. aureus hypervirulente et avons montré qu’elle est associée à un détournement de l’autophagie via l’inhibition de la fusion autophagosome-lysosome, ceci étant associé à l’expressions des PSMa. Au contraire, Hla, les PSMß et la d-toxine ne semblent jouer aucun rôle intracellulaire chez les S. aureus hypervirulents. Enfin, nous avons mis en évidence que, dans un autre fond génétique de S. aureus, associé au pied diabétique, la cytotoxicité est principalement liée à la capacité de multiplication intracellulaire de la souche, modulée par la présence d’un phage / Staphylococcus aureus is able to invade eukaryotic cells, in particular during bone infections, and induce cell death. Two mechanisms have been described as associated with S. aureus cytotoxicity: phagosomal escape and autophagy subversion. We investigated these two mechanisms and the respective roles of several staphylococcal toxins, alpha-toxin (Hla), phenol-soluble modulins (PSMs) and beta-toxin (Hlb), in cell death, using an in vitro intracellular infection model and isogenic mutants of S. aureus. Because Hlb is required for phagosomal escape but this toxin is inactivated by a prophage inserted into the hlb gene in most of clinical isolates of S. aureus, we tested the hypothesis of an excision of this phage induced by intracellular stress. We showed that restoration of Hlb expression due to the excision of hlb-converting phage exists spontaneously but is not induced by intracellular environment and does not increase the cytotoxicity of the strain. In a second part, we explored the cytotoxicity of an hypervirulent strain of S. aureus and demonstrated that it is associated with a subversion of host cell autophagy via an inhibition of autophagosome-lysosome fusion, in a PSMa-dependent manner. Conversely, Hla, PSMß and d-toxin appear to have no intracellular role in the cytotoxicity of hypervirulent S. aureus strains. Finally, we showed that, in another genetic background of S. aureus associated with diabetic foot ulcer, cytotoxicity was linked to the ability of intracellular replication of the strain, which was modulated by the presence of a phage
108

Analyzing UNC-50/GMH1 dependent membrane trafficking in yeast and C. elegans

Jeon, Suekyoung 03 December 2014 (has links)
No description available.
109

Cationic lipids involved in gene transfer increase intracellular calcium level/Les lipides cationiques impliqués dans le transfert de gène augmentent le niveau de calcium intracellulaire

Ouali, Mustapha 15 February 2007 (has links)
Cationic lipids are efficient tools to introduce nucleic acids and proteins into cells. Elucidation of the mechanism and cellular pathways associated to such a transport has been relatively slow, even though significant progress has been made in the characterization of the intracellular trafficking of cationic lipid/DNA complexes. Surprisingly, little is known about the effects of these delivery vectors on cell functioning. In the present thesis, we show that cationic lipids and cationic lipid/DNA complexes strongly increase the intracellular Ca2+ concentration. The end point of the Ca2+ increase was ~400 nM from a basal level of ~100 nM. The [Ca2+]i increase was studied using K562 and Jurkat cells cultured in vitro. This effect is weakened following addition of DNA to cationic liposomes, although remaining very large at cationic lipid/DNA ratios commonly used for cell transfection experiments. Removal of extracellular Ca2+ did not abolish this effect significantly and preincubating K562 cells with the Ca2+-ATPase inhibitor thapsigargin strongly abolished intracellular Ca2+ concentration increase, indicating that Ca2+ was released mainly from internal Ca2+ stores sensitive to thapsigargin. Pretreatment of the cells with the phospholipase C inhibitor U73122 blocked the intracellular Ca2+ concentration rise, suggesting an inositol pathway-dependent mechanism. LDH release assay indicates that in the conditions used for fluorescence measurement and in those used to transfer DNA into cells, cationic liposomes diC14-amidine and DOTAP had no massive cytotoxic effects. Cationic liposomes showed more toxicity than their corresponding complexes; this toxicity decreases in the presence of serum. The effect of cationic lipids on phosphatidylinositol-specific phospholipase C (PI-PLC) was quantitatively assessed using phosphatidylinositol (PI) and radiolabeled phosphatidylinositol ([3H]-PI). Incorporation of diC14-amidine into PC/PI vesicle activated PI-PLC and was shown to activate the hydrolysis of PI and [3H]-PI. Our data may suggest that mobilization of intracellular Ca2+ by complex could have an effect on the transfection process itself. These results indicate for the first time that cationic lipids and cationic lipid/DNA complexes are not inert and can affect the functioning of the cells by increasing their intracellular Ca2+.
110

Identification and Characterization of Metal Uptake Loci in Porphyromonas gingivalis

He, Jia 01 January 2007 (has links)
Manganese and iron homeostasis play an important role in oxidative stress protection in a variety of organisms. However, the transport and role of these metals in the periodontal pathogen Porphyromonas gingivalis were not well understood. Analysis of the genome of P. gingivalis W83 revealed the presence of two genes encoding homologs of ferrous iron transport protein, FeoB1 and FeoB2. The goal of this study was to determine the role of these two putative transporters in metal transport, their contributions to resistance to oxygen radicals and intracellular survival as well as the regulation and genetic organization of these two loci. Isogenic mutant strains deficient in FeoB1 and FeoB2, respectively, were generated and used in this study. The transport ability for manganese and iron was assessed and compared in feoB1, feoB2 mutant and wild type strains using 55Fe2+ and 54Mn2+. We demonstrated that feoB2 encodes a major manganese transporter, while FeoB1 functions as a major ferrous iron transporter. The roles of P. gingivalis FeoB1 and FeoB2 in oxidative stress defense and intracellular survival in host cells were determined using an oxidative stress survival assay and an in vitro infection assay, respectively. The feoB2 mutant exhibited reduced survival after exposure to H2O2 and to atmospheric oxygen and inside the host cells compared to the wild-type strain and its revertant, while the feoB1 mutant survived as well as the wild type strain under oxidative stress and possessed better capability to adhere to and survive in the host cells. Our results demonstrate that FeoB2 is required for protection of the bacterium from oxidative stress and for intracellular survival of P. gingivalis in host cells. However, FeoB1 is dispensable for both processes. Quantitative RT-PCR analysis revealed that expression of feoB2 in P. gingivalis is induced by oxidative stress. However, expression of feoB1 increased 2-fold upon exposure to lower growth temperature. Both observed inductions were specific and not detected under other stress conditions. We have also showed in this study that feoB2 is the second gene transcribed in an operon that is composed of a total of five genes and feoB1 is only co-transcribed with one downstream gene encoding a hypothetical protein. Notably, we also identified tandem repeats with potential to form stable stem-loop RNA secondary structure within the feoB2 and feoB1 transcripts.To our knowledge, this study has demonstrated the first connection among metal homeostasis, oxidative stress resistance and response to host cells in the periodontal pathogen, P. gingivalis.

Page generated in 0.1 seconds