111 |
A reliability comparison of recessed-gate and self-aligned gate small signal GaAs MESFETS utilizing an accelerated life test set designed for large scale automated testingRucker, Paul D. January 1987 (has links)
A large scale automated test set was designed and built to address the varied accelerated life test requirements of the GaAs industry. GaAs low-noise/small-signal MESFETs with 1 x 300 micron gate peripheries and 3 different gate structures were subjected to a 1000 hour high temperature storage test:
1) to compare the reliability performance and manufacturability of
a) recessed-gate MESFETs with TiPdAu gates
b) realigned self-aligned gate (RSAG) MESFETs with TiWN<sub>x</sub> Schottky and TiPdAu overlay
c) planarized self-aligned gate (PSAG) MESFETs with TiWN<sub>x</sub> Schottky and TiPdAu overlay.
2) to study the changes in I<sub>dss</sub>, R<sub>g</sub>, R<sub>o</sub>, g<sub>m</sub>, and V<sub>p</sub> over time and their effects upon MAG (Maximum Available Gain).
3) to study failure criteria and their applicability toward accurate life predictions.
The recessed-gate devices suffered from Au/GaAs channel interdiffusion resulting in substantial dc parameter degradation above 225°C with an activation energy of 1.7 eV. Although the most widely used device structure in the GaAs industry, its process is not conducive to parameter uniformity.
The realigned self-aligned gate (RSAG) devices are an initial attempt at the fabrication of a self-aligned gate analog MESFET. They were found to exhibit excellent electrical characteristics, but their reliability performance was unpredictable due to the critical nature of the .5 micron TiPdAu gate overlay realignment to a 1 micron TiWN<sub>x</sub> Schottky.
Planarized self-aligned gate (PSAG) devices were found to be readily manufacturable and to exhibit excellent reliability.
The use of a decrease in MAG was found to be a more meaningful failure criterion than a 20% change in I<sub>dss</sub>, which is employed extensively in the literature. / Master of Science
|
112 |
Ion implant tool throughput optimization for semiconductor manufacturingLo, Raymond W. 01 January 2003 (has links)
No description available.
|
113 |
Study of defects associated with implantation of high dose vanadium and chromium into (100) single crystal siliconNeelakantan, Rajesh 01 July 2003 (has links)
No description available.
|
114 |
A study of ion implanted and diffused calcium in film and bulk silicaElshot, Kitty 01 January 2004 (has links)
No description available.
|
115 |
Electrical analysis of low energy argon ion bombarded GaAsCole, Eric D. January 1988 (has links)
An electrical analysis was done on A1 and Au Schottky diodes fabricated on n-type (100) GaAs which had been bombarded with low energy Ar ions. The purpose of this study was to quantify electrically damage caused by the Ion Beam Etching (IBE) as functions of energy and fluence.
Electrical studies included Deep Level Transient Spectroscopy (DLTS), Current-Voltage (I-V), Capacitance-Voltage (C-V), ConductanceVoltage (G-V), Capacitance-Temperature (C-T), and Activation Energy Analysis. These electrical measurements were carried out on GaAs which had been exposed to a variety of treatments after IBE (such as chemical etch removal) to determine damage depth.
At the lowest energy studied, 0.5keV, Schottky reverse saturation currents (I<sub>sat</sub>) increased by over 4 orders of magnitude from the virgin case. The ideality factor, n, increased slightly while the breakdown voltage decreased. The most prominent changes occurred in the DLTS spectrum where it was observed that the native arsenic defect EL2 peak disappeared completely after ion etching. Concurrently a sharp increase in the diode conductivity with temperature was seen. It was found that chemical removal of 100Å of GaAs by chemical means could restore most of the diode parameters and the EL2 peak. It is proposed that the loss of EL2 is not related to a true physical reduction (i.e. an arsenic depletion) since calculations showed that the As loss would have extended beyond 3000Å for detectable DLTS changes. Also, the EL2 peak could be made to artificially disappear on a virgin sample with an external diode shunting resistor. The loss of the EL2 peak is, rather, attributed to a thin low resistivity surface layer having a partly amorphous nonstoichiometric crystal structure which can desensitize or mask the DLTS measurement. Surface chemical etch studies over the top of the Schottky diodes recovered 25% of the EL2 peak supporting this conclusion. Lower fluences had no effect at 0.5keV.
Increasing ion bombardment energy showed a steady degradation in diode ideality factors. The reverse breakdown voltage increased past the unetched value and the DLTS spectrum began to show a very slight return of EL2. At 3keV the ideality factor was large, indicating the presence of a somewhat thicker high resistance layer. In fact recovery of diode parameters and EL2 did not occur until after 100Å removal. This was much deeper than expected at this energy, according to theory.
Physical and lumped R-C electrical models are reported with an accompanying computer simulation of experimental DLTS results. The simulation used both thin low resistance and thick high resistance top layers to show that EL2 could be removed artificially. The models were also somewhat successful in explaining previously reported capacitance dispersion found in IBE GaAs. / Ph. D.
|
116 |
Simulation and process development for ion-implanted N-type silicon solar cellsNing, Steven 11 April 2013 (has links)
As the efficiency potential for the industrial P-type Al-BSF silicon solar cell reaches its limit, new solar cell technologies are required to continue the pursuit of higher efficiency solar power at lower cost. It has been demonstrated in literature that among possible alternative solar cell structures, cells featuring a local BSF (LBSF) have demonstrated some of the highest efficiencies seen to date. Implementation of this technology in industry, however, has been limited due to the cost involved in implementing the photolithography procedures required. Recent advances in solar cell doping techniques, however, have identified ion implantation as a possible means of performing the patterned doping required without the need for photolithography.
In addition, past studies have examined the potential for building solar cells on N-type silicon substrates, as opposed to P-type. Among other advantages, it is possible to create N-type solar cells which do not suffer from the efficiency degradation under light exposure that boron-doped P-type solar cells are subject to. Industry has not been able to capitalize on this potential for improved solar cell efficiency, in part because the fabrication of an N-type solar cell requires additional masking and doping steps compared to the P-type solar cell process. Again, however, recent advances in ion implantation for solar cells have demonstrated the possibility for bypassing these process limitations, fabricating high efficiency N-type cells without any masking steps.
It is clear that there is potential for ion implantation to revolutionize solar cell manufacturing, but it is uncertain what absolute efficiency gains may be achieved by moving to such a process. In addition to development of a solar specific ion implant process, a number of new thermal processes must be developed as well. With so many parameters to optimize, it is highly beneficial to have an advanced simulation model which can describe the ion implant, thermal processes, and cell performance accurately. Toward this goal, the current study develops a process and device simulation model in the Sentaurus TCAD framework, and calibrates this model to experimentally measured cells. The study focuses on three main tasks in this regard:
Task I - Implant and Anneal Model Development and Validation
This study examines the literature in solar and microelectronics research to identify features of ion implant and anneal processes which are pertinent to solar cell processing. It is found that the Monte Carlo ion implant models used in IC fabrication optimization are applicable to solar cell manufacture, with adjustments made to accommodate for the fact that solar cell wafers are often pyramidally textured instead of polished. For modeling the thermal anneal processes required after ion implant, it is found that the boron and phosphorus cases need to be treated separately, with their own diffusion models.
In particular, boron anneal simulation requires accurate treatment of boron-interstitial clusters (BICs), transient enhanced diffusion, and dose loss. Phosphorus anneal simulation requires treatment of vacancy and interstitial mediated diffusion, as well as dose loss and segregation. The required models are implemented in the Sentaurus AdvancedModels package, which is used in this study. The simulation is compared to both results presented in literature and physical measurements obtained on wafers implanted at the UCEP. It is found that good experimental agreement may be obtained for sheet resistance simulations of implanted wafers, as well as simulations of boron doping profile shape. The doping profiles of phosphorus as measured by the ECV method, however, contain inconsistencies with measured sheet resistance values which are not explained by the model.
Task II - Device Simulation Development and Calibration
This study also develops a 3D model for simulation of an N-type LBSF solar cell structure. The 3D structure is parametrized in terms of LBSF dot width and pitch, and an algorithm is used to generate an LBSF structure mesh with this parametrization. Doping profiles generated by simulations in Task I are integrated into the solar cell structure. Boundary conditions and free electrical parameters are calibrated using data from similar solar cells fabricated at the UCEP, as well as data from lifetime test wafers. This simulation uses electrical models recommended in literature for solar cell simulation.
It is demonstrated that the 3D solar cell model developed for this study accurately reproduces the performance of an implanted N-type full BSF solar cell, and all parameters fall within ranges expected from theoretical calculations. The model is then used to explore the parameter space for implanted N-type local BSF solar cells, and to determine conditions for optimal solar cell performance. It is found that adding an LBSF to the otherwise unchanged baseline N-type cell structure can produce almost 1% absolute efficiency gain. An optimum LBSF dot pitch of 450um at a dot size of 100um was identified through simulation. The model also reveals that an LBSF structure can reduce the fill factor of the solar cell, but this effect can be offset by a gain in Voc. Further efficiency improvements may be realized by implementing a doping-dependent SRV model and by optimizing the implant dose and thermal anneal.
Task III - Development of a Procedure for Ion Implanted N-type LBSF Cell Fabrication
Finally, this study explores a method for fabrication of ion-implanted N-type LBSF solar cells which makes use of photolithographically defined nitride masks to perform local phosphorus implantation. The process utilizes implant, anneal, and metallization steps previously developed at the UCEP, as well as new implant masking steps developed in the course of this study. Although an LBSF solar cell has not been completely fabricated, the remaining steps of the process are successfully tested on implanted N-type full BSF solar cells, with efficiencies reaching 20.0%.
|
117 |
Transition metal implanted ZnO: a correlation between structure and magnetismZhou, Shengqiang 05 May 2008 (has links) (PDF)
Nowadays ferromagnetism is often found in potential diluted magnetic semiconductor systems. However, many authors question the origin of this ferromagnetism, i.e. if the observed ferromagnetism stems from ferromagnetic precipitates rather than from carriermediated magnetic coupling of ionic impurities, as required for a diluted magnetic semiconductor. In this thesis, this question will be answered for transition-metal implanted ZnO single crystals. Magnetic secondary phases, namely metallic Fe, Co and Ni nanocrystals, are formed inside ZnO. They are - although difficult to detect by common approaches of structural analysis - responsible for the observed ferromagnetism. Particularly Co and Ni nanocrystals are crystallographically oriented with respect to the ZnO matrix. Their structure phase transformation and corresponding evolution of magnetic properties upon annealing have been established. Finally, an approach, pre-annealing ZnO crystals at high temperature before implantation, has been demonstrated to sufficiently suppress the formation of metallic secondary phases.
|
118 |
Transition metal implanted ZnO: a correlation between structure and magnetismZhou, Shengqiang 22 April 2008 (has links)
Nowadays ferromagnetism is often found in potential diluted magnetic semiconductor systems. However, many authors question the origin of this ferromagnetism, i.e. if the observed ferromagnetism stems from ferromagnetic precipitates rather than from carriermediated magnetic coupling of ionic impurities, as required for a diluted magnetic semiconductor. In this thesis, this question will be answered for transition-metal implanted ZnO single crystals. Magnetic secondary phases, namely metallic Fe, Co and Ni nanocrystals, are formed inside ZnO. They are - although difficult to detect by common approaches of structural analysis - responsible for the observed ferromagnetism. Particularly Co and Ni nanocrystals are crystallographically oriented with respect to the ZnO matrix. Their structure phase transformation and corresponding evolution of magnetic properties upon annealing have been established. Finally, an approach, pre-annealing ZnO crystals at high temperature before implantation, has been demonstrated to sufficiently suppress the formation of metallic secondary phases.
|
119 |
Formation of Supersaturated Alloys by Ion Implantation and Pulsed-Laser AnnealingWilson, Syd Robert 08 1900 (has links)
Supersaturated substitutional alloys formed by ion implantation and rapid liquid-phase epitaxial regrowth induced by pulsed-laser annealing have been studied using Rutherford-backscattering and ion-channeling analysis. A series of impurities (As, Sb, Bi, Ga, In, Fe, Sn, Cu) have been implanted into single-crystal (001) orientation silicon at doses ranging from 1 x 10^15/cm2 to 1 x 10^17/cm2. The samples were subsequently annealed with a Ω-switched ruby laser (energy density ~1.5 J/cm2, pulse duration 15 x 10-9 sec). Ion-channeling analysis shows that laser annealing incorporates the Group III (Ga, In) and Group V (As, Sb, Bi) impurities into substitutional lattice sites at concentrations far in excess of the equilibrium solid solubility. Channeling measurements indicate the silicon crystal is essentially defect free after laser annealing. The maximum Group III and Group V dopant concentrations that can be incorporated into substitutional lattice sites are determined for the present laser-annealing conditions. Dopant profiles have been measured before and after annealing using Rutherford backscattering. These experimental profiles are compared to theoretical model calculations which incorporate both dopant diffusion in liquid silicon and a distribution coefficient (k') from the liquid. It is seen that a distribution coefficient (k') far greater than the equilibrium value (k0) is required for the calculation to fit the experimental data. In the cases of Fe, Zn, and Cu, laser annealing causes the impurities to segregate toward the surface. After annealing, none of these impurities are observed to be substitutional in detectable concentrations. The systematics of these alloys systems are discussed.
|
120 |
Rutherford backscattering in ion-implanted and pulsed laser annealed Si and GeKiger, Shanalyn. January 1985 (has links)
Call number: LD2668 .T4 1985 K53 / Master of Science
|
Page generated in 0.1993 seconds