• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanosensing and Symmetry of Potassium Channels Studied by Molecular Dynamics Simulations

Brennecke, Julian Tim 02 October 2018 (has links)
No description available.
2

Understanding the mechanism of permeation through graphene-based membranes using molecular dynamics simulations

Dix, James January 2017 (has links)
The UN predicts that by 2050 there will water shortages throughout the globe. Current sources for safe, clean drinking water are being over mined and exhausted. Seawater provides an alternative water source, but a high salt content makes it unsuitable for the majority of applications. However, reverse osmosis lowers the salt content producing water that is safe for human consumption. Reverse osmosis uses a semi-permeable membrane to prevent the transport of salt but allows for the transport of water. Currently these membranes are susceptible to fouling and contamination, which reduces their efficiency. Graphene-oxide membranes offer a new material for reserves osmosis membranes. Sheets of graphene-oxide are stacked in a layered structure. The separation between the sheets can be controlled using physical confinement, resulting in limited ion permeation of abundant cations in seawater, like Na+ and K+. This is believed to be due to the separation of 0.76 nm between the graphene sheets, forcing the ions to lose its surrounding water molecules, making it unfavourable for the ion to travel through the membrane. Molecular dynamics simulations can give an atomic level insight into the molecular processes within GO membranes. Recent simulations have shown that charged species are attracted to graphene surfaces due to polarisation of the pi-electron system. This work has managed to incorporate these ion-pi interactions into molecular dynamics simulations. Including ion-pi interactions caused some ions, like Na+ and K+, to prefer to lose water molecules and reside at a graphene surface. This work observed the same phenomena when ions were confined to graphene channel ranging from 1.3 nm - 0.7 nm. This observation could have a large impact on whether dehydration is limiting the permeation of these two ions, or if there are additional processes that limit their molecular transport.
3

Electrophysiological characterization of the human two-pore channel 2

Lam, Andy Ka Ming January 2015 (has links)
The Two-pore channel (TPC1-3) family represents a recently identified class of endolysosomal ion channels. TPCs were originally proposed to be promising candidate channels for NAADP-induced Ca<sup>2+</sup> release. However, subsequent studies have emerged to propose an alternative view where TPCs may be Na+-selective channels regulated by the lysosome-specific phosphoinositide PI(3,5)P2 or voltage in an isoform-dependent manner. This thesis asks the question of whether pharmacological and ion permeation properties of TPCs, in particular the human TPC2, may satisfy or may be consistent with the requirement of a potential NAADP-sensitive Ca<sup>2+</sup>-release channel. These fundamental properties of hTPC2 were approached using patch-clamp electrophysiology and confocal fluorescence microscopy, and were analysed quantitatively to extract relevant physical parameters important to our understanding of their physiological and functional significance. Chapter 2 presents the basic electrophysiological characterisation of hTPC2. It follows a logical way by first determining the ion permeation properties, followed by the investigation of its physical relation with fractional Ca<sup>2+</sup> current and Ca<sup>2+</sup> nanodomains to rigorously prove that this Na<sup>+</sup> selectivity is sufficient to ensure negligible Ca<sup>2+</sup> leakage both experimentally and theoretically. This follows the logic that matter must not be created nor destroyed so that a Na+-selective channel that poses a physiologically significant energy barrier to Ca<sup>2+</sup> permeation from one side would not lead to the creation of Ca<sup>2+</sup> on the other side. Chapter 3 represents a natural progression from Chapter 2 and is aimed at investigating the underlying mechanisms responsible for the electrophysiological ion selectivity observed. This chapter also follows a logical way by first identifying spermine as a high valence intracellular blocker, its mutual antagonism with different external ionic species that allows the determination of ion-binding affinity, followed by the determination of the concentration dependence of ion conduction to identify possible lower affinity binding. By considering all the above qualities, the outcome is a coherent description and connection of ion binding selectivity, kinetic selectivity and ion binding configuration with the observed electrophysiological selectivity. Chapter 4 discusses the missing puzzles and how these questions might be addressed.
4

Determinants of water and ion permeation through nanopores studied by Molecular Dynamics simulations / Untersuchung der bestimmenden Faktoren der Wasser- und Ionenpermeation durch Nanoporen mit Hilfe von Molekulardynamik- Simulationen

Portella Carbó, Guillem 30 April 2008 (has links)
No description available.
5

Ion selectivity of the NaK channel investigated by solid-state NMR

Hendriks, Kitty 24 May 2022 (has links)
Ionenkanäle sind für die zelluläre Homöostase und die elektrische Aktivität in höheren Eukaryoten essentiell. Die vorliegende Arbeit widmet sich dem nichtselektiven Kanal NaK und seinen kaliumselektiven Mutanten. Die Bedeutung von Ionenkanälen wird in Kapitel 1 speziell für die kationenselektive Ionenkanal-Superfamilie diskutiert. Darin werden verschiedene Vertreter dieser Superfamilie untersucht und ihre Strukturen und Ionenselektivität analysiert. In Kapitel 2 wird gezeigt, dass NaK zwei unterschiedliche Selektivitätsfilterkonformationen aufweist, die entweder durch Na+- oder K+-Ionen stabilisiert sind. Unter Verwendung von Festkörper-NMR Spektroskopie und molekulardynamischen Simulationen wurden zwei Ionenleitungswege entdeckt. In Kapitel 3 wurde eine Kristallstruktur von NaK ermittelt, welche die vorhergesagte und für den Seiteneintrittsmechanismus essentielle seitliche Ionenbindungsstelle bestätigt. Die zwei Untereinheiten in der asymmetrischen Einheit zeigen die dynamische Natur der unteren Teile der Transmembranhelices sowie duale Konformationen für die Reste im Selektivitätsfilter. Im Gegensatz zu NaK sind die kaliumselektiven Mutanten ionensensitiver, wie in Kapitel 4 gezeigt: Unter Na+-Bedingungen verliert der gesamte Selektivitätsfilter in den kaliumselektiven Mutanten seine Stabilität. Die stärkere Verbindung zwischen Selektivitätsfilter und der Porenhelix in den kaliumselektiven Mutanten ermöglicht keine nichtselektive Ionenleitung. Unter Verwendung von protonendetektierter Festkörper-NMR wurde die Wechselwirkung zwischen Wassermolekülen und der kaliumselektiven Mutante NaK2K charakterisiert und präsentiert in Kapitel 5. Es wurde gezeigt, dass der Selektivitätsfilter von NaK2K unter physiologischen Bedingungen wasserfrei ist. Diese Ergebnisse werden in Kapitel 6 im Ganzen betrachtet und die verbleibenden Fragen werden erörtert, außerdem wird ein kurzer Ausblick auf die zukünftige Forschung zum Thema Ionenselektivität im NaK-Kanal gegeben. / Ion channels are essential to cellular homeostasis and electrical activity in higher eukaryotes. This thesis discusses the non-selective channel NaK and its potassium-selective mutants. The importance of ion channels is discussed in chapter 1 with a special focus on the tetrameric cation-selective ion channel superfamily. Various members of this superfamily are explored and their structures and ion selectivity are analysed. NaK is shown to have two distinct selectivity filter conformations that are stabilized by either Na+ or K+ ions in chapter 2. Using solid-state NMR spectroscopy and molecular dynamics simulations, two ion conduction pathways were discovered. In chapter 3 a crystal structure of NaK was determined that confirms the previously predicted side-entry ion binding site, essential to the side-entry pathway. The two subunits in the asymmetric unit display the dynamical nature of the lower parts of the transmembrane helices as well as dual conformations for residues in the selectivity filter. In contrast to NaK the potassium-selective mutants are more ion sensitive as shown in chapter 4. The entire selectivity filter loses its stability under Na+ conditions for the potassium-selective mutants. The stronger connection of the selectivity filter and the pore helix in the potassium-selective mutants does not allow for non-selective ion conduction. Using proton-detected ssNMR, the interaction between water molecules and the potassium-selective mutant NaK2K was characterized and this is presented in chapter 5. The selectivity filter of NaK2K was shown to be free of water under physiological conditions. These results get put in perspective and the questions which remain are discussed in chapter 6. A short outlook on future research for the topic of ion selectivity in the NaK channel is given.

Page generated in 0.1338 seconds