• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • Tagged with
  • 18
  • 18
  • 12
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strukturanalyse zum Katalysemechanismus und zur Stabilität der Arylsulfatase A

Bülow, Rixa von 26 January 2000 (has links)
No description available.
2

Nanoporous block copolymer stamps: design and applications

Hou, Peilong 10 December 2019 (has links)
This thesis focuses on the surface patterning by using nanoporous block copolymer (BCP) stamps. Polystyrene‐block‐poly(2‐vinylpyridine) (PS‐b‐P2VP) was used as model BCP. Nanoporous BCP stamps were fabricated by replication of lithographically patterned silicon molds. Nanopores inside of BCP stamps were generated by swelling‐induced pore formation. A method for scanner-based capillary stamping (SCS) with spongy nanoporous BCP stamps was developed. First, in the course of stamps design using replication molding of PS-b-P2VP against surface-modified macroporous silicon molds, PS-b-P2VP fiber rings remaining on the macroporous silicon molds were obtained that allow immobilization of water drops on the hydrophobically modified surfaces of the macroporous silicon molds. Water drops immobilized by these rings can be prevented from dewetting within the PS‐b‐P2VP fiber rings. Second, after spongy nanoporous PS-b-P2VP stamps had been obtained, preliminary experiments with non-inked PS-b-P2VP stamps revealed that parts of the stamps’ contact elements can be lithographically transferred onto counterpart surfaces. As a result, arrays of nanostructured submicron PS‐b‐P2VP dots with heights of ∼100 nm onto silicon wafers and glass slides were produced. Lastly, the SCS technique was developed, which overcomes the limitation of time-consuming re-inking procedures associated with classical soft lithography including microcontact printing (µCP) and polymer pen lithography (PPL) with solid stamps, as well as the limitations regarding throughput of scanning probe‐based serial writing approaches such as nanoscale dispensing (NADIS) and other micropipetting techniques. In addition, sizes of stamped droplets can be controlled by adjusting surface wettability and dwell time.
3

Adaptive Aggregation and Chirality Recognition of Neuroactive Substances and their Building Blocks: A Vibrational Spectroscopic and Microscopic Study / Adaptive Aggregation und Chiralitätserkennung neuroaktiver Substanzen und ihrer Bausteine: Eine vibrationsspektroskopische und mikrosopische Untersuchung

Nedić, Marija 06 June 2012 (has links)
No description available.
4

Strukturaufkälrung von Natrium-Solvens-Clustern durch IR-anregungsmodulierte Photoionisatiosnspektroskopie / Structure determination of sodium solvent clusters via IR-excitation modulated photoionisation mass spectroscopy

Forck, Richard 22 June 2012 (has links)
No description available.
5

Live Cell STED Microscopy using Genetically Encoded Markers / Lebendzell-STED-Mikroskopie mit genetisch kodierten Markierungen

Hein, Birka 02 July 2009 (has links)
No description available.
6

Controlled radical polymerization at pressures up to 2000 bar / Kontrollierte radikalische Polymerization bis zu Drücken von 2000 bar

Minaux, Eric 01 May 2001 (has links)
No description available.
7

Crystal Engineering in Nanoporous Matrices

Graubner, Gitte 12 February 2015 (has links)
As former studies reveal, the nanoporous confinement could have influence on polymorphic drug crystallization. However, little attention has been paid to the question how crystallization of the commonly polymorphic drugs in nanoporous matrices influences the drug release. As a consequence, sufficient information about the crystallization conditions and their influence on phase behavior, crystal texture, and stability of polymorphs should be retrieved prior to drug delivery experiments. Drug release should be polymorph-selective and even crystal face-specific. Therefore, the topic of this PhD thesis is the systematic investigation of crystallization parameters (e.g., pore morphology, thermal history, presence or absence of a bulk surface reservoir) and their influence on the nucleation and crystal growth of the two selected model compounds in nanoporous matrices: acetaminophen (ACE) and n-tetracosane. Both are confined to two host-systems: AAO containing aligned cylindrical, isolated pores and CPG containing curved, interconnected pores. The guest materials inside the two model matrices have been investigated with X-ray diffraction (WAXS) and differential scanning calorimetry. In the first part it is shown that the nanopore morphology of the host systems determines into which polymorphic form ACE crystallizes. Moreover, the pore morphology influences the kinetics of solid/solid transitions. In AAO uniformly oriented form III crystals are converted into also uniformly oriented form II crystals by a solid/solid transition. Such a phase transition is kinetically suppressed in CPG membranes due to the curved pore morphology. In the second step, polymorph-specific release experiments with ACE from AAO membranes reveal that the drug dissolution is not exclusively diffusion-limited and can be described by the Korsmeyer-Peppas model. Dissolution of crystalline ACE having rough crystal faces exposed to the environment is nearly as fast as release of amorphous ACE. Encapsulating of ACE in AAO nanopores with a PLLA polymer retard the drug dissolution but does not modify the release kinetics. In the third part of this thesis crystallization of n-tetracosane, a saturated hydrocarbon, in nanoporous matrices was studied. n-Tetracosane shows inside AAO membranes the rotator phase sequence: triclinic−RV−RI−RII−liquid. Further, the long axes of the n-tetracosane molecules are oriented normal to the AAO pore axes. In general, n-tetracosane under confinement shows a more complex phase behavior than the polymeric analogue polyethylene. The presented work expands the available strategies for mesoscopic crystal engineering. The methods might be transferred into other areas of interest such as polymorphism screening or preparation of different types of nanowires with customized optoelectronic or ferroelectric properties.
8

Thermodynamic driving forces in protein regulation studied by molecular dynamics simulations / Molekulardynamische Studien zu thermodynamischen Triebkräfte von Proteinregulierung

Hensen, Ulf 22 January 2009 (has links)
No description available.
9

Dynamics of the B-A Transition of DNA Double Helices / Dynamik der B-A Umwaldung von DNA Doppelhelices

Jose, Davis 26 April 2005 (has links)
No description available.
10

Determinants of water and ion permeation through nanopores studied by Molecular Dynamics simulations / Untersuchung der bestimmenden Faktoren der Wasser- und Ionenpermeation durch Nanoporen mit Hilfe von Molekulardynamik- Simulationen

Portella Carbó, Guillem 30 April 2008 (has links)
No description available.

Page generated in 0.0141 seconds